Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2855-2020
https://doi.org/10.5194/hess-24-2855-2020
Research article
 | 
29 May 2020
Research article |  | 29 May 2020

Structural and functional control of surface-patch to hillslope runoff and sediment connectivity in Mediterranean dry reclaimed slope systems

Mariano Moreno-de-las-Heras, Luis Merino-Martín, Patricia M. Saco, Tíscar Espigares, Francesc Gallart, and José M. Nicolau

Related authors

Assessing vegetation structure and ANPP dynamics in a grassland–shrubland Chihuahuan ecotone using NDVI–rainfall relationships
M. Moreno-de las Heras, R. Díaz-Sierra, L. Turnbull, and J. Wainwright
Biogeosciences, 12, 2907–2925, https://doi.org/10.5194/bg-12-2907-2015,https://doi.org/10.5194/bg-12-2907-2015, 2015
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Instruments and observation techniques
Mixed-cultivation grasslands enhance runoff generation and reduce soil loss in the restoration of degraded alpine hillsides
Yulei Ma, Yifan Liu, Jesús Rodrigo-Comino, Manuel López-Vicente, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 28, 3947–3961, https://doi.org/10.5194/hess-28-3947-2024,https://doi.org/10.5194/hess-28-3947-2024, 2024
Short summary
Assessment of plot-scale sediment transport on young moraines in the Swiss Alps using a fluorescent sand tracer
Fabian Maier, Florian Lustenberger, and Ilja van Meerveld
Hydrol. Earth Syst. Sci., 27, 4609–4635, https://doi.org/10.5194/hess-27-4609-2023,https://doi.org/10.5194/hess-27-4609-2023, 2023
Short summary
Subsurface flow paths in a chronosequence of calcareous soils: impact of soil age and rainfall intensities on preferential flow occurrence
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022,https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Evaporation, infiltration and storage of soil water in different vegetation zones in the Qilian Mountains: a stable isotope perspective
Guofeng Zhu, Leilei Yong, Xi Zhao, Yuwei Liu, Zhuanxia Zhang, Yuanxiao Xu, Zhigang Sun, Liyuan Sang, and Lei Wang
Hydrol. Earth Syst. Sci., 26, 3771–3784, https://doi.org/10.5194/hess-26-3771-2022,https://doi.org/10.5194/hess-26-3771-2022, 2022
Short summary
Groundwater fluctuations during a debris flow event in western Norway – triggered by rain and snowmelt
Stein Bondevik and Asgeir Sorteberg
Hydrol. Earth Syst. Sci., 25, 4147–4158, https://doi.org/10.5194/hess-25-4147-2021,https://doi.org/10.5194/hess-25-4147-2021, 2021
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Anderson, G. L., Hanson, J. D., and Haas, R. H.: Evaluating Landsat thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands, Remote Sens. Environ., 45, 165–175, https://doi.org/10.1016/0034-4257(93)90040-5, 1993. 
Arnau-Rosalén, E., Calvo-Cases, A., Boix-Fayos, C., Lavee, H., and Sarah, P.: Analysis of soil surface component patterns affecting runoff generation, an example of methods applied to Mediterranean slopes in Alicante (Spain), Geomorphology, 101, 595–606, https://doi.org/10.1016/j.geomorph.2008.03.001, 2008. 
Bargarello, V. and Ferro, V.: Analysis of soil loss data from plots of differing length for the Sparacia experimental area, Sicily, Italy, Biosyst. Eng., 105, 411–422, https://doi.org/10.1016/j.biosystemseng.2009.12.015, 2010. 
Bargarello, V., Ferro, V., Keesstra, S., Rodrigo-Comino, J., Pulido, M., and Cerdà, A.: Testing simple scaling in soil erosion processes at plot scale, Catena 167, 171–180, https://doi.org/10.1016/j.catena.2018.04.035, 2018. 
Download
Short summary
This study shifts from present discussions of the connectivity theory to the practical application of the connectivity concept for the analysis of runoff and sediment dynamics in Mediterranean dry slope systems. Overall, our results provide evidence for the feasibility of using the connectivity concept to understand how the spatial distribution of vegetation and micro-topography (including rills) interact with rainfall dynamics to generate spatially continuous runoff and sediment fluxes.