Articles | Volume 24, issue 5
https://doi.org/10.5194/hess-24-2655-2020
https://doi.org/10.5194/hess-24-2655-2020
Review article
 | 
25 May 2020
Review article |  | 25 May 2020

A history of the concept of time of concentration

Keith J. Beven

Related authors

The importance of retention times in Natural Flood Management interventions
Elizabeth Follett, Keith Beven, Barry Hankin, David Mindham, and Nick Chappell
Proc. IAHS, 385, 197–201, https://doi.org/10.5194/piahs-385-197-2024,https://doi.org/10.5194/piahs-385-197-2024, 2024
Short summary
UPH Problem 20 – reducing uncertainty in model prediction: a model invalidation approach based on a Turing-like test
Keith Beven, Trevor Page, Paul Smith, Ann Kretzschmar, Barry Hankin, and Nick Chappell
Proc. IAHS, 385, 129–134, https://doi.org/10.5194/piahs-385-129-2024,https://doi.org/10.5194/piahs-385-129-2024, 2024
Short summary
Technical note: The CREDIBLE Uncertainty Estimation (CURE) toolbox: facilitating the communication of epistemic uncertainty
Trevor Page, Paul Smith, Keith Beven, Francesca Pianosi, Fanny Sarrazin, Susana Almeida, Liz Holcombe, Jim Freer, Nick Chappell, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 27, 2523–2534, https://doi.org/10.5194/hess-27-2523-2023,https://doi.org/10.5194/hess-27-2523-2023, 2023
Short summary
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie Wells, and Mike R. James
Atmos. Chem. Phys., 22, 6115–6134, https://doi.org/10.5194/acp-22-6115-2022,https://doi.org/10.5194/acp-22-6115-2022, 2022
Short summary
Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021,https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary

Related subject area

Subject: Hillslope hydrology | Techniques and Approaches: Theory development
Young and new water fractions in soil and hillslope waters
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-437,https://doi.org/10.5194/egusphere-2024-437, 2024
Short summary
Energy efficiency in transient surface runoff and sediment fluxes on hillslopes – a concept to quantify the effectiveness of extreme events
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023,https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Samuel Schroers, Olivier Eiff, Axel Kleidon, Ulrike Scherer, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 3125–3150, https://doi.org/10.5194/hess-26-3125-2022,https://doi.org/10.5194/hess-26-3125-2022, 2022
Short summary
Soil moisture: variable in space but redundant in time
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020,https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?
Stefan W. Ploum, Hjalmar Laudon, Andrés Peralta-Tapia, and Lenka Kuglerová
Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020,https://doi.org/10.5194/hess-24-1709-2020, 2020
Short summary

Cited articles

Almeida, I. K., Almeida, A. K., Anache, J. A. A., Steffen, J. L., and Sobrinho, T. A.: Estimation on time of concentration of overland flow in watersheds: a review, Geociências, 33, 661–671, 2014. 
Aron, G., Ball, J. E., and Smith, T. A.: Fractal concept used in time-of-concentration estimates, J. Irrig. Drain. Eng., 117, 635–641, 1991. 
Bedient, P. B. and Huber, W. C.: Hydrology and Floodplain Analysis, Addison-Wesley, Reading, Massachusetts, 1988. 
Ben-Zvi, A.: The velocity assumption behind linear invariable watershed response models, in: Mathematical Models in Hydrology, 2, IAHS Publication No. 101, IAHS Press, Wallingford, UK, 758–761, 1974. 
Berghuijs, W. R. and Allen, S. T.: Waters flowing out of systems are younger than the waters stored in those same systems, Hydrol. Process., 33, 3251–3254, 2019. 
Download
Short summary
The concept of time of concentration in the analysis of catchment responses dates back over 150 years. It is normally discussed in terms of the velocity of flow of a water particle from the furthest part of a catchment to the outlet. This is also the basis for the definition in the International Glossary of Hydrology, but this is in conflict with the way in which it is commonly used. This paper provides a clarification of the concept and its correct useage.