Articles | Volume 24, issue 4
https://doi.org/10.5194/hess-24-1871-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-1871-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries
Huayang Cai
Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou, China
Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Ping Zhang
Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou, China
Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Erwan Garel
Centre for Marine and Environmental Research (CIMA), University of Algarve, Faro, Portugal
Pascal Matte
Meteorological Research Division, Environment and Climate Change Canada, Quebec, Canada
Shuai Hu
Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou, China
Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Feng Liu
CORRESPONDING AUTHOR
Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou, China
Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Qingshu Yang
Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou, China
Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs/ Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
Related authors
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023, https://doi.org/10.5194/os-19-603-2023, 2023
Short summary
Short summary
For many problems concerning water resource utilization in estuaries, it is essential to be able to express observed salinity distributions based on simple theoretical models. In this study, we propose an analytical salt intrusion model inspired from a theory for predictions of flood hydrographs in watersheds. The newly developed model can be well calibrated using a minimum of three salinity measurements along the estuary and has been successfully applied in 21 estuaries worldwide.
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022, https://doi.org/10.5194/os-18-1691-2022, 2022
Short summary
Short summary
Quantifying spatial–temporal water level dynamics is essential for water resources management in estuaries. In this study, we propose a simple yet powerful regression model to examine the influence of the world’s largest dam, the Three Gorges Dam (TGD), on the spatial–temporal water level dynamics within the Yangtze River estuary. The presented method is particularly useful for determining scientific strategies for sustainable water resources management in dam-controlled estuaries worldwide.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Erwan Garel, Ping Zhang, and Huayang Cai
Ocean Sci., 17, 1605–1621, https://doi.org/10.5194/os-17-1605-2021, https://doi.org/10.5194/os-17-1605-2021, 2021
Short summary
Short summary
Understanding tidal hydrodynamics is essential for water resources management in estuarine environments. In this study, we propose an analytical model to examine the fortnightly water level variations due to tidal motions alone in tide-dominated estuaries. Details of the analytical model show that changes in the mean depth or length of semi-arid estuaries affect the fortnightly tide amplitude, which has significant potential impacts on the estuarine ecosystem management.
Leicheng Guo, Chunyan Zhu, Huayang Cai, Zheng Bing Wang, Ian Townend, and Qing He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-75, https://doi.org/10.5194/hess-2021-75, 2021
Revised manuscript not accepted
Short summary
Short summary
Overtide is a shallow water tidal component and its interaction with astronomical tides induces tidal wave deformation, which is an important process that controls sediment transport. We use a numerical tidal model to examine overtide changes in estuaries under varying river discharges and find spatially nonlinear changes and the threshold of an intermediate river that benefits maximal overtide generation. The findings inform management of sediment transport and flooding risk in estuaries.
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, https://doi.org/10.5194/hess-24-5859-2020, 2020
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019, https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.
Huayang Cai, Xianyi Zhang, Min Zhang, Leicheng Guo, Feng Liu, and Qingshu Yang
Ocean Sci., 15, 583–599, https://doi.org/10.5194/os-15-583-2019, https://doi.org/10.5194/os-15-583-2019, 2019
Short summary
Short summary
In this study, we assessed the impacts of the world’s largest dam, the Three Gorges Dam (TGD), on tide–river dynamics and concluded that the strongest impacts occurred during autumn and winter due to the TGD's operation. The results obtained will hopefully enhance our understanding of the impacts of large-scale human interventions on estuarine hydrodynamics and guide effective and sustainable water management in the Yangtze River estuary and other estuaries with substantial freshwater discharge.
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018, https://doi.org/10.5194/os-14-769-2018, 2018
H. Cai, H. H. G. Savenije, and C. Jiang
Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, https://doi.org/10.5194/hess-18-4153-2014, 2014
H. Cai, H. H. G. Savenije, and M. Toffolon
Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014, https://doi.org/10.5194/hess-18-287-2014, 2014
Angelique Melet, Begoña Pérez Gómez, and Pascal Matte
State Planet Discuss., https://doi.org/10.5194/sp-2024-27, https://doi.org/10.5194/sp-2024-27, 2024
Preprint under review for SP
Short summary
Short summary
Forecasting the sea level is crucial for supporting coastal management through early warning systems and for adopting adaptation strategies to climate changes impacts. We provide here an overview on models commonly used for sea level forecasting, that can be based on storm surge models or ocean circulation ones, integrated on structured or unstructured grids, including an outlook on new approaches based on ensemble methods.
Pascal Matte, John Wilkin, and Joanna Staneva
State Planet Discuss., https://doi.org/10.5194/sp-2024-9, https://doi.org/10.5194/sp-2024-9, 2024
Preprint under review for SP
Short summary
Short summary
Rivers, vital to the Earth's system, connect the ocean with the land, governing hydrological and biogeochemical contributions and influencing processes like upwelling and mixing. This paper reviews advancements in river modeling, focusing on estuaries, from coarse-resolution ocean forecasting to more precise coastal coupling approaches. It discusses river data sources and examines how river forcing is treated in global, regional and coastal operational systems.
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023, https://doi.org/10.5194/os-19-603-2023, 2023
Short summary
Short summary
For many problems concerning water resource utilization in estuaries, it is essential to be able to express observed salinity distributions based on simple theoretical models. In this study, we propose an analytical salt intrusion model inspired from a theory for predictions of flood hydrographs in watersheds. The newly developed model can be well calibrated using a minimum of three salinity measurements along the estuary and has been successfully applied in 21 estuaries worldwide.
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022, https://doi.org/10.5194/os-18-1691-2022, 2022
Short summary
Short summary
Quantifying spatial–temporal water level dynamics is essential for water resources management in estuaries. In this study, we propose a simple yet powerful regression model to examine the influence of the world’s largest dam, the Three Gorges Dam (TGD), on the spatial–temporal water level dynamics within the Yangtze River estuary. The presented method is particularly useful for determining scientific strategies for sustainable water resources management in dam-controlled estuaries worldwide.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Luciano de Oliveira Júnior, Paulo Relvas, and Erwan Garel
Ocean Sci., 18, 1183–1202, https://doi.org/10.5194/os-18-1183-2022, https://doi.org/10.5194/os-18-1183-2022, 2022
Short summary
Short summary
The circulation patterns of surface water over the northern Gulf of Cádiz are described based on hourly high-frequency radar data from 2016 to 2020. A persistent current follows the continental shelf slope eastward while near the coast, and currents generally have a balanced (eastward–westward) direction. In summer cross-shelf transport is promoted when westward coastal countercurrents recirculate offshore in the western region and merge with the slope current.
Erwan Garel, Ping Zhang, and Huayang Cai
Ocean Sci., 17, 1605–1621, https://doi.org/10.5194/os-17-1605-2021, https://doi.org/10.5194/os-17-1605-2021, 2021
Short summary
Short summary
Understanding tidal hydrodynamics is essential for water resources management in estuarine environments. In this study, we propose an analytical model to examine the fortnightly water level variations due to tidal motions alone in tide-dominated estuaries. Details of the analytical model show that changes in the mean depth or length of semi-arid estuaries affect the fortnightly tide amplitude, which has significant potential impacts on the estuarine ecosystem management.
Leicheng Guo, Chunyan Zhu, Huayang Cai, Zheng Bing Wang, Ian Townend, and Qing He
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-75, https://doi.org/10.5194/hess-2021-75, 2021
Revised manuscript not accepted
Short summary
Short summary
Overtide is a shallow water tidal component and its interaction with astronomical tides induces tidal wave deformation, which is an important process that controls sediment transport. We use a numerical tidal model to examine overtide changes in estuaries under varying river discharges and find spatially nonlinear changes and the threshold of an intermediate river that benefits maximal overtide generation. The findings inform management of sediment transport and flooding risk in estuaries.
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, https://doi.org/10.5194/hess-24-5859-2020, 2020
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019, https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.
Huayang Cai, Xianyi Zhang, Min Zhang, Leicheng Guo, Feng Liu, and Qingshu Yang
Ocean Sci., 15, 583–599, https://doi.org/10.5194/os-15-583-2019, https://doi.org/10.5194/os-15-583-2019, 2019
Short summary
Short summary
In this study, we assessed the impacts of the world’s largest dam, the Three Gorges Dam (TGD), on tide–river dynamics and concluded that the strongest impacts occurred during autumn and winter due to the TGD's operation. The results obtained will hopefully enhance our understanding of the impacts of large-scale human interventions on estuarine hydrodynamics and guide effective and sustainable water management in the Yangtze River estuary and other estuaries with substantial freshwater discharge.
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018, https://doi.org/10.5194/os-14-769-2018, 2018
Huayang Cai, Hubert H. G. Savenije, Chenjuan Jiang, Lili Zhao, and Qingshu Yang
Hydrol. Earth Syst. Sci., 20, 1177–1195, https://doi.org/10.5194/hess-20-1177-2016, https://doi.org/10.5194/hess-20-1177-2016, 2016
Short summary
Short summary
In this paper, an analytical model for tide-river dynamics has been used to understand the influence of tide and fresh water discharge on the rise of mean water level along the estuary, which remains poorly understood. It is shown that the mean water level is influenced primarily by the tide-river interaction in the tide-dominated region, while it is mainly controlled by the river flow in the upstream part of the estuary.
E. Garel and Ó. Ferreira
Earth Syst. Sci. Data, 7, 299–309, https://doi.org/10.5194/essd-7-299-2015, https://doi.org/10.5194/essd-7-299-2015, 2015
Short summary
Short summary
This contribution presents flagged (valid/non-valid) data from a current-meter and a multi-parametric probe operating between 2008 and 2014 at the lower Guadiana Estuary. To support data analysis, freshwater discharge into the estuary is also provided for the monitoring period. The data set is publicly available at PANGAEA in tab-delimitated format (http://doi.pangaea.de/10.1594/PANGAEA.845750).
H. Cai, H. H. G. Savenije, and C. Jiang
Hydrol. Earth Syst. Sci., 18, 4153–4168, https://doi.org/10.5194/hess-18-4153-2014, https://doi.org/10.5194/hess-18-4153-2014, 2014
H. Cai, H. H. G. Savenije, and M. Toffolon
Hydrol. Earth Syst. Sci., 18, 287–304, https://doi.org/10.5194/hess-18-287-2014, https://doi.org/10.5194/hess-18-287-2014, 2014
Related subject area
Subject: Coasts and Estuaries | Techniques and Approaches: Modelling approaches
Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models
Mangroves as nature-based mitigation for ENSO-driven compound flood risks in a large river delta
Forecasting estuarine salt intrusion in the Rhine–Meuse delta using an LSTM model
Coastal topography and hydrogeology control critical groundwater gradients and potential beach surface instability during storm surges
Effect of tides on river water behavior over the eastern shelf seas of China
Extreme precipitation events induce high fluxes of groundwater and associated nutrients to coastal ocean
Temporally resolved coastal hypoxia forecasting and uncertainty assessment via Bayesian mechanistic modeling
Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline
Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands
Estimating the probability of compound floods in estuarine regions
Accretion, retreat and transgression of coastal wetlands experiencing sea-level rise
Climate change overtakes coastal engineering as the dominant driver of hydrological change in a large shallow lagoon
Dynamic mechanism of an extremely severe saltwater intrusion in the Changjiang estuary in February 2014
Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: identifying the critical position and river discharge for maximum tidal damping
Sediment budget analysis of the Guayas River using a process-based model
Multivariate statistical modelling of compound events via pair-copula constructions: analysis of floods in Ravenna (Italy)
Analytical and numerical study of the salinity intrusion in the Sebou river estuary (Morocco) – effect of the “Super Blood Moon” (total lunar eclipse) of 2015
Linking biogeochemistry to hydro-geometrical variability in tidal estuaries: a generic modeling approach
Impact of the Three Gorges Dam, the South–North Water Transfer Project and water abstractions on the duration and intensity of salt intrusions in the Yangtze River estuary
A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling
Revised predictive equations for salt intrusion modelling in estuaries
Impact of the Hoa Binh dam (Vietnam) on water and sediment budgets in the Red River basin and delta
Large-scale suspended sediment transport and sediment deposition in the Mekong Delta
Hydrodynamic controls on oxygen dynamics in a riverine salt wedge estuary, the Yarra River estuary, Australia
Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon
Environmental flow assessments in estuaries based on an integrated multi-objective method
Modelling climate change effects on a Dutch coastal groundwater system using airborne electromagnetic measurements
An analytical solution for tidal propagation in the Yangtze Estuary, China
Understanding and managing the Westerschelde – synchronizing the physical system and the management system of a complex estuary
David F. Muñoz, Hamed Moftakhari, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 28, 2531–2553, https://doi.org/10.5194/hess-28-2531-2024, https://doi.org/10.5194/hess-28-2531-2024, 2024
Short summary
Short summary
Linking hydrodynamics with machine learning models for compound flood modeling enables a robust characterization of nonlinear interactions among the sources of uncertainty. Such an approach enables the quantification of cascading uncertainty and relative contributions to total uncertainty while also tracking their evolution during compound flooding. The proposed approach is a feasible alternative to conventional statistical approaches designed for uncertainty analyses.
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024, https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Short summary
The combination of extreme sea levels with increased river flow typically can lead to so-called compound floods. Often these are caused by storms (< 1 d), but climatic events such as El Niño could trigger compound floods over a period of months. We show that the combination of increased sea level and river discharge causes extreme water levels to amplify upstream. Mangrove forests, however, can act as a nature-based flood protection by lowering the extreme water levels coming from the sea.
Bas J. M. Wullems, Claudia C. Brauer, Fedor Baart, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 27, 3823–3850, https://doi.org/10.5194/hess-27-3823-2023, https://doi.org/10.5194/hess-27-3823-2023, 2023
Short summary
Short summary
In deltas, saltwater sometimes intrudes far inland and causes problems with freshwater availability. We created a model to forecast salt concentrations at a critical location in the Rhine–Meuse delta in the Netherlands. It requires a rather small number of data to make a prediction and runs fast. It predicts the occurrence of salt concentration peaks well but underestimates the highest peaks. Its speed gives water managers more time to reduce the problems caused by salt intrusion.
Anner Paldor, Nina Stark, Matthew Florence, Britt Raubenheimer, Steve Elgar, Rachel Housego, Ryan S. Frederiks, and Holly A. Michael
Hydrol. Earth Syst. Sci., 26, 5987–6002, https://doi.org/10.5194/hess-26-5987-2022, https://doi.org/10.5194/hess-26-5987-2022, 2022
Short summary
Short summary
Ocean surges can impact the stability of beaches by changing the hydraulic regime. These surge-induced changes in the hydraulic regime have important implications for coastal engineering and for beach morphology. This work uses 3D computer simulations to study how these alterations vary in space and time. We find that certain areas along and across the beach are potentially more vulnerable than others and that previous assumptions regarding the most dangerous places may need to be revised.
Lei Lin, Hao Liu, Xiaomeng Huang, Qingjun Fu, and Xinyu Guo
Hydrol. Earth Syst. Sci., 26, 5207–5225, https://doi.org/10.5194/hess-26-5207-2022, https://doi.org/10.5194/hess-26-5207-2022, 2022
Short summary
Short summary
Earth system (climate) model is an important instrument for projecting the global water cycle and climate change, in which tides are commonly excluded due to the much small timescales compared to the climate. However, we found that tides significantly impact the river water transport pathways, transport timescales, and concentrations in shelf seas. Thus, the tidal effect should be carefully considered in earth system models to accurately project the global water and biogeochemical cycle.
Marc Diego-Feliu, Valentí Rodellas, Aaron Alorda-Kleinglass, Maarten Saaltink, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 26, 4619–4635, https://doi.org/10.5194/hess-26-4619-2022, https://doi.org/10.5194/hess-26-4619-2022, 2022
Short summary
Short summary
Rainwater infiltrates aquifers and travels a long subsurface journey towards the ocean where it eventually enters below sea level. In its path towards the sea, water becomes enriched in many compounds that are naturally or artificially present within soils and sediments. We demonstrate that extreme rainfall events may significantly increase the inflow of water to the ocean, thereby increasing the supply of these compounds that are fundamental for the sustainability of coastal ecosystems.
Alexey Katin, Dario Del Giudice, and Daniel R. Obenour
Hydrol. Earth Syst. Sci., 26, 1131–1143, https://doi.org/10.5194/hess-26-1131-2022, https://doi.org/10.5194/hess-26-1131-2022, 2022
Short summary
Short summary
Low oxygen conditions (hypoxia) occur almost every summer in the northern Gulf of Mexico. Here, we present a new approach for forecasting hypoxia from June through September, leveraging a process-based model and an advanced statistical framework. We also show how using spring hydrometeorological information can improve forecast accuracy while reducing uncertainties. The proposed forecasting system shows the potential to support the management of threatened coastal ecosystems and fisheries.
Ahmed A. Nasr, Thomas Wahl, Md Mamunur Rashid, Paula Camus, and Ivan D. Haigh
Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, https://doi.org/10.5194/hess-25-6203-2021, 2021
Short summary
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
Víctor M. Santos, Mercè Casas-Prat, Benjamin Poschlod, Elisa Ragno, Bart van den Hurk, Zengchao Hao, Tímea Kalmár, Lianhua Zhu, and Husain Najafi
Hydrol. Earth Syst. Sci., 25, 3595–3615, https://doi.org/10.5194/hess-25-3595-2021, https://doi.org/10.5194/hess-25-3595-2021, 2021
Short summary
Short summary
We present an application of multivariate statistical models to assess compound flooding events in a managed reservoir. Data (from a previous study) were obtained from a physical-based hydrological model driven by a regional climate model large ensemble, providing a time series expanding up to 800 years in length that ensures stable statistics. The length of the data set allows for a sensitivity assessment of the proposed statistical framework to natural climate variability.
Wenyan Wu, Seth Westra, and Michael Leonard
Hydrol. Earth Syst. Sci., 25, 2821–2841, https://doi.org/10.5194/hess-25-2821-2021, https://doi.org/10.5194/hess-25-2821-2021, 2021
Short summary
Short summary
Flood probability estimation is important for applications such as land use planning, reservoir operation, infrastructure design and safety assessments. However, it is a challenging task, especially in estuarine areas where floods are caused by both intense rainfall and storm surge. This study provides a review of approaches to flood probability estimation in these areas. Based on analysis of a real-world river system, guidance on method selection is provided.
Angelo Breda, Patricia M. Saco, Steven G. Sandi, Neil Saintilan, Gerardo Riccardi, and José F. Rodríguez
Hydrol. Earth Syst. Sci., 25, 769–786, https://doi.org/10.5194/hess-25-769-2021, https://doi.org/10.5194/hess-25-769-2021, 2021
Short summary
Short summary
We study accretion, retreat and transgression of mangrove and saltmarsh wetlands affected by sea-level rise (SLR) using simulations on typical configurations with different levels of tidal obstruction. Interactions and feedbacks between flow, sediment deposition, vegetation migration and soil accretion result in wetlands not surviving the predicted high-emission scenario SLR, despite dramatic increases in sediment supply. Previous simplified models overpredict wetland resilience to SLR.
Peisheng Huang, Karl Hennig, Jatin Kala, Julia Andrys, and Matthew R. Hipsey
Hydrol. Earth Syst. Sci., 24, 5673–5697, https://doi.org/10.5194/hess-24-5673-2020, https://doi.org/10.5194/hess-24-5673-2020, 2020
Short summary
Short summary
Our results conclude that the climate change in the past decades has a remarkable effect on the hydrology of a large shallow lagoon with the same magnitude as that caused by the opening of an artificial channel, and it also highlighted the complexity of their interactions. We suggested that the consideration of the projected drying trend is essential in designing management plans associated with planning for environmental water provision and setting water quality loading targets.
Jianrong Zhu, Xinyue Cheng, Linjiang Li, Hui Wu, Jinghua Gu, and Hanghang Lyu
Hydrol. Earth Syst. Sci., 24, 5043–5056, https://doi.org/10.5194/hess-24-5043-2020, https://doi.org/10.5194/hess-24-5043-2020, 2020
Short summary
Short summary
An extremely severe saltwater intrusion event occurred in February 2014 in the Changjiang estuary and seriously influenced the water intake of the reservoir. For the event cause and for freshwater safety, the dynamic mechanism was studied with observed data and a numerical model. The results indicated that this event was caused by a persistent and strong northerly wind, which formed a horizontal estuarine circulation, surpassed seaward runoff and drove highly saline water into the estuary.
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019, https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.
Pedro D. Barrera Crespo, Erik Mosselman, Alessio Giardino, Anke Becker, Willem Ottevanger, Mohamed Nabi, and Mijail Arias-Hidalgo
Hydrol. Earth Syst. Sci., 23, 2763–2778, https://doi.org/10.5194/hess-23-2763-2019, https://doi.org/10.5194/hess-23-2763-2019, 2019
Short summary
Short summary
Guayaquil, the commercial capital of Ecuador, is located along the Guayas River. The city is among the most vulnerable cities to future flooding ascribed to climate change. Fluvial sedimentation is seen as one of the factors contributing to flooding. This paper describes the dominant processes in the river and the effects of past interventions in the overall sediment budget. This is essential to plan and design effective mitigation measures to face the latent risk that threatens Guayaquil.
Emanuele Bevacqua, Douglas Maraun, Ingrid Hobæk Haff, Martin Widmann, and Mathieu Vrac
Hydrol. Earth Syst. Sci., 21, 2701–2723, https://doi.org/10.5194/hess-21-2701-2017, https://doi.org/10.5194/hess-21-2701-2017, 2017
Short summary
Short summary
We develop a conceptual model to quantify the risk of compound events (CEs), i.e. extreme impacts to society which are driven by statistically dependent climatic variables. Based on this model we study compound floods, i.e. joint storm surge and high river level, in Ravenna (Italy). The model includes meteorological predictors which (1) provide insight into the physical processes underlying CEs, as well as into the temporal variability, and (2) allow us to statistically downscale CEs.
Soufiane Haddout, Mohammed Igouzal, and Abdellatif Maslouhi
Hydrol. Earth Syst. Sci., 20, 3923–3945, https://doi.org/10.5194/hess-20-3923-2016, https://doi.org/10.5194/hess-20-3923-2016, 2016
Chiara Volta, Goulven Gildas Laruelle, Sandra Arndt, and Pierre Regnier
Hydrol. Earth Syst. Sci., 20, 991–1030, https://doi.org/10.5194/hess-20-991-2016, https://doi.org/10.5194/hess-20-991-2016, 2016
Short summary
Short summary
A generic estuarine model is applied to three idealized tidal estuaries representing the main hydro-geometrical estuarine classes. The study provides insight into the estuarine biogeochemical dynamics, in particular the air-water CO2/sub> flux, as well as the potential response to future environmental changes and to uncertainties in model parameter values. We believe that our approach could help improving upscaling strategies to better integrate estuaries in regional/global biogeochemical studies.
M. Webber, M. T. Li, J. Chen, B. Finlayson, D. Chen, Z. Y. Chen, M. Wang, and J. Barnett
Hydrol. Earth Syst. Sci., 19, 4411–4425, https://doi.org/10.5194/hess-19-4411-2015, https://doi.org/10.5194/hess-19-4411-2015, 2015
Short summary
Short summary
This paper demonstrates a method for calculating the probability of long-duration salt intrusions in the Yangtze Estuary and examines the impact of the Three Gorges Dam, the South-North Water Transfer Project and local abstractions on that probability. The relationship between river discharge and the intensity and duration of saline intrusions is shown to be probabilistic and continuous. That probability has more than doubled under the normal operating rules for those projects.
F. M. Achete, M. van der Wegen, D. Roelvink, and B. Jaffe
Hydrol. Earth Syst. Sci., 19, 2837–2857, https://doi.org/10.5194/hess-19-2837-2015, https://doi.org/10.5194/hess-19-2837-2015, 2015
Short summary
Short summary
Suspended sediment concentration (SSC) levels are important indicator for the ecology of estuaries. Observations of SSC are difficult to make, therefore we revert to coupled 2-D hydrodynamic-sediment process-based transport models to make predictions in time (seasonal and yearly) and space (meters to kilometers). This paper presents calibration/validation of SSC for the Sacramento-San Joaquin Delta and translates SSC to turbidity in order to couple with ecology models.
J. I. A. Gisen, H. H. G. Savenije, and R. C. Nijzink
Hydrol. Earth Syst. Sci., 19, 2791–2803, https://doi.org/10.5194/hess-19-2791-2015, https://doi.org/10.5194/hess-19-2791-2015, 2015
Short summary
Short summary
We revised the predictive equations for two calibrated parameters in salt intrusion model (the Van der Burgh coefficient K and dispersion coefficient D) using an extended database of 89 salinity profiles including 8 newly conducted salinity measurements. The revised predictive equations consist of easily measured parameters such as the geometry of estuary, tide, friction and the Richardson number. These equations are useful in obtaining the first estimate of salinity distribution in an estuary.
V. D. Vinh, S. Ouillon, T. D. Thanh, and L. V. Chu
Hydrol. Earth Syst. Sci., 18, 3987–4005, https://doi.org/10.5194/hess-18-3987-2014, https://doi.org/10.5194/hess-18-3987-2014, 2014
N. V. Manh, N. V. Dung, N. N. Hung, B. Merz, and H. Apel
Hydrol. Earth Syst. Sci., 18, 3033–3053, https://doi.org/10.5194/hess-18-3033-2014, https://doi.org/10.5194/hess-18-3033-2014, 2014
L. C. Bruce, P. L. M. Cook, I. Teakle, and M. R. Hipsey
Hydrol. Earth Syst. Sci., 18, 1397–1411, https://doi.org/10.5194/hess-18-1397-2014, https://doi.org/10.5194/hess-18-1397-2014, 2014
C. Ferrarin, M. Ghezzo, G. Umgiesser, D. Tagliapietra, E. Camatti, L. Zaggia, and A. Sarretta
Hydrol. Earth Syst. Sci., 17, 1733–1748, https://doi.org/10.5194/hess-17-1733-2013, https://doi.org/10.5194/hess-17-1733-2013, 2013
T. Sun, J. Xu, and Z. F. Yang
Hydrol. Earth Syst. Sci., 17, 751–760, https://doi.org/10.5194/hess-17-751-2013, https://doi.org/10.5194/hess-17-751-2013, 2013
M. Faneca Sànchez, J. L. Gunnink, E. S. van Baaren, G. H. P. Oude Essink, B. Siemon, E. Auken, W. Elderhorst, and P. G. B. de Louw
Hydrol. Earth Syst. Sci., 16, 4499–4516, https://doi.org/10.5194/hess-16-4499-2012, https://doi.org/10.5194/hess-16-4499-2012, 2012
E. F. Zhang, H. H. G. Savenije, S. L. Chen, and X. H. Mao
Hydrol. Earth Syst. Sci., 16, 3327–3339, https://doi.org/10.5194/hess-16-3327-2012, https://doi.org/10.5194/hess-16-3327-2012, 2012
A. van Buuren, L. Gerrits, and G. R. Teisman
Hydrol. Earth Syst. Sci., 14, 2243–2257, https://doi.org/10.5194/hess-14-2243-2010, https://doi.org/10.5194/hess-14-2243-2010, 2010
Cited articles
Brunier, G., Anthony, E. J., Goichot, M., and Provansal, M., and Dussouillez,
P.: Recent morphological changes in the Mekong and Bassac river channels,
Mekong delta: the marked impact of river-bed mining and implications for
delta destabilisation, Geomorphology, 224, 177–191,
https://doi.org/10.1016/j.geomorph.2014.07.009, 2014. a
Cai, H., Savenije, H. H. G., and Toffolon, M.: A new analytical framework for
assessing the effect of sea-level rise and dredging on tidal damping in
estuaries, J. Geophys. Res.-Oceans, 117, C09023, https://doi.org/10.1029/2012jc008000, 2012. a, b, c, d
Cai, H., Savenije, H. H. G., and Jiang, C.: Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations, Hydrol. Earth Syst. Sci., 18, 4153–4168,
https://doi.org/10.5194/hess-18-4153-2014, 2014. a
Cai, H., Toffolon, M., and Savenije, H. H. G.: An Analytical Approach to
Determining Resonance in Semi-Closed Convergent Tidal Channels, Coast.
Eng. J., 58, 1650009, https://doi.org/10.1142/S0578563416500091, 2016. a, b, c, d
Cai, H., Huang, J., Niu, L., Ren, L., Liu, F., Ou, S., and Yang, Q.: Decadal
variability of tidal dynamics in the Pearl River Delta: Spatial patterns,
causes, and implications for estuarine water management, Hydrol. Process., 32, 3805–3819, https://doi.org/10.1002/hyp.13291, 2019. a
Deng, J. and Bao, Y.: Morphologic evolution and hydrodynamic variation during the last 30 years in the LINGDING Bay, South China Sea, J. Coast. Res., 64, 1482–1489, 2011. a
Du, J. L., Yang, S. L., and Feng, H.: Recent human impacts on the
morphological evolution of the Yangtze River delta foreland: A review and new
perspectives, Estuar. Coast. Shelf Sci., 181, 160–169, https://doi.org/10.1016/j.ecss.2016.08.025, 2016. a
Friedrichs, C. T. and Aubrey, D. G.: Tidal Propagation in Strongly Convergent
Channels, J. Geophys. Research-Oceans, 99, 3321–3336, https://doi.org/10.1029/93jc03219, 1994. a
Gisen, J. and Savenije, H. H. G.: Estimating bankfull discharge and depth in
ungauged estuaries, Water Resour. Res., 564, 2298–2316,
https://doi.org/10.1002/2014WR016227, 2015. a
Guo, L., van der Wegen, M., Roelvink, J. A., and He, Q.: The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics, J. Geophys. Res.-Earth, 119, 2315–2334, https://doi.org/10.1002/2014JF003110, 2014. a
Guo, L. C., van der Wegen, M., Wang, Z. B., Roelvink, D., and He, Q.: Exploring the impacts of multiple tidal constituents and varying river flow on long-term, large-scale estuarine morphodynamics by means of a 1-D model,
J. Geophys. Res.-Earth, 121, 1000–1022, https://doi.org/10.1002/2016JF003821, 2016. a
Hoitink, A. J. F., Wang, Z. B., Vermeulen, B., Huismans, Y., and Kastner, K.:
Tidal controls on river delta morphology, Nat. Geosci., 10, 637–645,
https://doi.org/10.1038/NGEO3000, 2017. a
Jay, D. A.: Green Law Revisited – Tidal Long-Wave Propagation in Channels with Strong Topography, J. Geophys. Res.-Oceans, 96, 20585–20598, https://doi.org/10.1029/91jc01633, 1991. a, b
Jiang, C., Pan, S. Q., and Chen, S. L.: Recent morphological changes of the
Yellow River (Huanghe) submerged delta: Causes and environmental implications, Geomorphology, 293, 93–107, https://doi.org/10.1016/j.geomorph.2017.04.036, 2017. a
Li, W.: Numerical modeling of tidal current on deep water channel project of
Nansha Harbor District of Guangzhou Port, J. Waterway Harbor, 29, 179–184, 2008. a
Liu, F., Yuan, L., Yang, Q., Ou, S. Y., Xie, L., and Cui, X.: Hydrological
responses to the combined influence of diverse human activities in the Pearl
River delta, China, Catena, 113, 41–55, https://doi.org/10.1016/j.catena.2013.09.003,
2014. a
Liu, F., Chen, H., Cai, H. Y., Luo, X. X., Ou, S. Y., and Yang, Q. S.: Impacts of ENSO on multi-scale variations in sediment discharge from the Pearl River to the South China Sea, Geomorphology, 293, 24–36,
https://doi.org/10.1016/j.geomorph.2017.05.007, 2017. a, b
Liu, F., Xie, R., Luo, X., Yang, L., Cai, H., and Yang, Q. S.: Stepwise
adjustment of deltaic channels in response to human interventions and its
hydrological implications for sustainable water managements in the Pearl River Delta, China, J. Hydrol., 573, 194–206, https://doi.org/10.1016/j.jhydrol.2019.03.063, 2019. a
Luan, H. L., Ding, P. X., Wang, Z. B., and Ge, J. Z.: Process-based
morphodynamic modeling of the Yangtze Estuary at a decadal timescale: Controls on estuarine evolution and future trends, Geomorphology, 290,
347–364, https://doi.org/10.1016/j.geomorph.2017.04.016, 2017. a, b
Mao, Q. W., Shi, P., Yin, K. D., Gan, J. P., and Qi, Y. Q.: Tides and tidal
currents in the Pearl River estuary, Cont. Shelf Res., 24, 1797–1808, https://doi.org/10.1016/j.csr.2004.06.008, 2004. a
Monge-Ganuzas, M., Cearreta, A., and Evans, G.: Morphodynamic consequences of
dredging and dumping activities along the lower Oka estuary (Urdaibai
Biosphere Reserve, southeastern Bay of Biscay, Spain), Ocean Coast. Manage., 77, 40–49, https://doi.org/10.1016/j.ocecoaman.2012.02.006, 2013. a
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T-TIDE, Comput. Geosci.,
28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002. a
Prandle, D.: How tides and river flows determine estuarine bathymetries, Prog. Oceanogr., 61, 1–26, https://doi.org/10.1016/j.pocean.2004.03.001, 2004. a
Prandle, D. and Rahman, M.: Tidal Response in Estuaries, J. Phys. Oceanogr., 10, 1552–1573, https://doi.org/10.1175/1520-0485(1980)010<1552:TRIE>2.0.CO;2, 1980. a
Savenije, H. H. G.: Salinity and Tides in Alluvial Estuaries, Elsevier, New York, 2005. a
Savenije, H. H. G.: Salinity and Tides in Alluvial Estuaries, completely
revised 2nd edition, available at: https://salinityandtides.com/ (last access: 10 December 2019), 2012. a
Schuttelaars, H. M., de Jonge, V. N., and Chernetsky, A.: Improving the
predictive power when modelling physical effects of human interventions in
estuarine systems, Ocean Coast. Manage., 79, 70–82,
https://doi.org/10.1016/j.ocecoaman.2012.05.009, 2013. a
Syvitski, J. P. M., Kettner, A. J., Overeem, I., Hutton, E. W. H., Hannon, M. T., Brakenridge, G. R., Day, J., Vorosmarty, C., Saito, Y., Giosan, L., and Nicholls, R. J.: Sinking deltas due to human activities, Nat. Geosci., 2, 681–686, https://doi.org/10.1038/NGEO629, 2009. a
Toffolon, M. and Savenije, H. H. G.: Revisiting linearized one-dimensional
tidal propagation, J. Geophys. Res.-Oceans, 116, C07007, https://doi.org/10.1029/2010jc006616, 2011.
a, b
van Maren, D. S., Oost, A. P., Wang, Z. B., and Vos, P. C.: The effect of land reclamations and sediment extraction on the suspended sediment concentration in the Ems Estuary, Mar. Geol., 376, 147–157,
https://doi.org/10.1016/j.margeo.2016.03.007, 2016. a
van Rijn, L. C.: Analytical and numerical analysis of tides and salinities in
estuaries; part I: tidal wave propagation in convergent estuaries, Ocean
Dynam., 61, 1719–1741, https://doi.org/10.1007/s10236-011-0453-0, 2011. a, b, c
Wang, Z. B., Van Maren, D. S., Ding, P. X., Yang, S. L., Van Prooijen, B. C.,
De Vet, P. L. M., Winterwerp, J. C., De Vriend, H. J., Stive, M. J. F., and
He, Q.: Human impacts on morphodynamic thresholds in estuarine systems, Cont. Shelf Res., 111, 174–183, https://doi.org/10.1016/j.csr.2015.08.009, 2015. a
Winterwerp, J. C. and Wang, Z. B.: Man-induced regime shifts in small estuaries – I: theory, Ocean Dynam., 63, 1279–1292,
https://doi.org/10.1007/s10236-013-0662-9, 2013. a, b, c
Wu, Z. Y., Milliman, J. D., Zhao, D. N., Zhou, J. Q., and Yao, C. H.: Recent
geomorphic change in LingDing Bay, China, in response to economic and urban
growth on the Pearl River Delta, Southern China, Global Planet. Change, 123, 1–12, https://doi.org/10.1016/j.gloplacha.2014.10.009, 2014. a, b, c
Wu, Z. Y., Saito, Y., Zhao, D. N., Zhou, J. Q., Cao, Z. Y., Li, S. J., Shang,
J. H., and Liang, Y. Y.: Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River estuary, China, during 1955–2013, Scient. Rep., 6, 37742, https://doi.org/10.1038/Srep37742, 2016. a, b, c, d
Zhang, W., Ruan, X. H., Zheng, J. H., Zhu, Y. L., and Wu, H. X.: Long-term
change in tidal dynamics and its cause in the Pearl River Delta, China,
Geomorphology, 120, 209–223, https://doi.org/10.1016/j.geomorph.2010.03.031, 2010. a, b
Zhang, W., Xu, Y., Hoitink, A. J. F., Sassi, M. G., Zheng, J. H., Chen, X. W., and Zhang, C.: Morphological change in the Pearl River Delta, China, Mar. Geol., 363, 202–219, https://doi.org/10.1016/j.margeo.2015.02.012, 2015. a, b
Zhang, W., Cao, Y., Zhu, Y., Zheng, J., Ji, X., Xu, Y., Wu, Y., and Hoitink,
A.: Unravelling the causes of tidal asymmetry in deltas, J. Hydrol., 564, 588–604, https://doi.org/10.1016/j.jhydrol.2018.07.023, 2018. a
Short summary
Understanding the morphological changes in estuaries due to natural processes and human interventions is especially important with regard to sustainable water management and ecological impacts on the estuarine environment. In this contribution, we explore the morphological evolution in tide-dominated estuaries by means of a novel analytical approach using the observed water levels along the channel. The method could serve as a useful tool to understand the evolution of estuarine morphology.
Understanding the morphological changes in estuaries due to natural processes and human...