Articles | Volume 23, issue 12
https://doi.org/10.5194/hess-23-5227-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-5227-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record
Dorothy K. Hall
CORRESPONDING AUTHOR
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
Cryospheric Sciences Laboratory, NASA/Goddard Space Flight Center,
Greenbelt, MD 20771, USA
George A. Riggs
Cryospheric Sciences Laboratory, NASA/Goddard Space Flight Center,
Greenbelt, MD 20771, USA
Science Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USA
Nicolo E. DiGirolamo
Cryospheric Sciences Laboratory, NASA/Goddard Space Flight Center,
Greenbelt, MD 20771, USA
Science Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USA
Miguel O. Román
Earth from Space Institute/USRA, 7178 Columbia Gateway Dr.,
Columbia, MD 21046, USA
Related authors
Alden C. Adolph, Mary R. Albert, and Dorothy K. Hall
The Cryosphere, 12, 907–920, https://doi.org/10.5194/tc-12-907-2018, https://doi.org/10.5194/tc-12-907-2018, 2018
Short summary
Short summary
In our studies of surface temperature in Greenland, we found that there can be differences between the temperature of the snow surface and the air directly above, depending on wind speed and incoming solar radiation. We also found that temperature measurements of the snow surface from remote sensing instruments may be more accurate than previously thought. Our results are relevant to studies of climate change in the remote sensing community and in studies of the atmospheric boundary layer.
George A. Riggs, Dorothy K. Hall, and Miguel O. Román
Earth Syst. Sci. Data, 9, 765–777, https://doi.org/10.5194/essd-9-765-2017, https://doi.org/10.5194/essd-9-765-2017, 2017
Short summary
Short summary
The current collections of the NASA snow-cover data products generated from the MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments are described. Revisions in the MODIS snow cover algorithm increased accuracy, and the data content of products is increased from previous collection. The VIIRS algorithm and data product are very similar to those of MODIS. The objective of generating similar products is to enable the creation of a snow-cover extent climate-data record.
Alden C. Adolph, Mary R. Albert, and Dorothy K. Hall
The Cryosphere, 12, 907–920, https://doi.org/10.5194/tc-12-907-2018, https://doi.org/10.5194/tc-12-907-2018, 2018
Short summary
Short summary
In our studies of surface temperature in Greenland, we found that there can be differences between the temperature of the snow surface and the air directly above, depending on wind speed and incoming solar radiation. We also found that temperature measurements of the snow surface from remote sensing instruments may be more accurate than previously thought. Our results are relevant to studies of climate change in the remote sensing community and in studies of the atmospheric boundary layer.
George A. Riggs, Dorothy K. Hall, and Miguel O. Román
Earth Syst. Sci. Data, 9, 765–777, https://doi.org/10.5194/essd-9-765-2017, https://doi.org/10.5194/essd-9-765-2017, 2017
Short summary
Short summary
The current collections of the NASA snow-cover data products generated from the MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments are described. Revisions in the MODIS snow cover algorithm increased accuracy, and the data content of products is increased from previous collection. The VIIRS algorithm and data product are very similar to those of MODIS. The objective of generating similar products is to enable the creation of a snow-cover extent climate-data record.
Related subject area
Subject: Snow and Ice | Techniques and Approaches: Remote Sensing and GIS
Detecting snowfall events over the Arctic using optical and microwave satellite measurements
Extending the utility of space-borne snow water equivalent observations over vegetated areas with data assimilation
Assimilation of airborne gamma observations provides utility for snow estimation in forested environments
Characterizing 4 decades of accelerated glacial mass loss in the west Nyainqentanglha Range of the Tibetan Plateau
Estimating spatiotemporally continuous snow water equivalent from intermittent satellite observations: an evaluation using synthetic data
Development and validation of a new MODIS snow-cover-extent product over China
Processes governing snow ablation in alpine terrain – detailed measurements from the Canadian Rockies
Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: the Clutha Catchment, New Zealand
Icelandic snow cover characteristics derived from a gap-filled MODIS daily snow cover product
The recent developments in cloud removal approaches of MODIS snow cover product
Now you see it, now you don't: a case study of ephemeral snowpacks and soil moisture response in the Great Basin, USA
Assessment of a multiresolution snow reanalysis framework: a multidecadal reanalysis case over the upper Yampa River basin, Colorado
Snow cover dynamics in Andean watersheds of Chile (32.0–39.5° S) during the years 2000–2016
A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya
A snow cover climatology for the Pyrenees from MODIS snow products
Cloud obstruction and snow cover in Alpine areas from MODIS products
Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada
LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California
Early 21st century snow cover state over the western river basins of the Indus River system
Validation of the operational MSG-SEVIRI snow cover product over Austria
Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach
CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data
Snow cover dynamics and hydrological regime of the Hunza River basin, Karakoram Range, Northern Pakistan
Responses of snowmelt runoff to climatic change in an inland river basin, Northwestern China, over the past 50 years
Assessing the application of a laser rangefinder for determining snow depth in inaccessible alpine terrain
Emmihenna Jääskeläinen, Kerttu Kouki, and Aku Riihelä
Hydrol. Earth Syst. Sci., 28, 3855–3870, https://doi.org/10.5194/hess-28-3855-2024, https://doi.org/10.5194/hess-28-3855-2024, 2024
Short summary
Short summary
Snow cover is an important variable when studying the effect of climate change in the Arctic. Therefore, the correct detection of snowfall is important. In this study, we present methods to detect snowfall accurately using satellite observations. The snowfall event detection results of our limited area are encouraging. We find that further development could enable application over the whole Arctic, providing necessary information on precipitation occurrence over remote areas.
Justin M. Pflug, Melissa L. Wrzesien, Sujay V. Kumar, Eunsang Cho, Kristi R. Arsenault, Paul R. Houser, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 28, 631–648, https://doi.org/10.5194/hess-28-631-2024, https://doi.org/10.5194/hess-28-631-2024, 2024
Short summary
Short summary
Estimates of 250 m of snow water equivalent in the western USA and Canada are improved by assimilating observations representative of a snow-focused satellite mission with a land surface model. Here, by including a gap-filling strategy, snow estimates could be improved in forested regions where remote sensing is challenging. This approach improved estimates of winter maximum snow water volume to within 4 %, on average, with persistent improvements to both spring snow and runoff in many regions.
Eunsang Cho, Yonghwan Kwon, Sujay V. Kumar, and Carrie M. Vuyovich
Hydrol. Earth Syst. Sci., 27, 4039–4056, https://doi.org/10.5194/hess-27-4039-2023, https://doi.org/10.5194/hess-27-4039-2023, 2023
Short summary
Short summary
An airborne gamma-ray remote-sensing technique provides reliable snow water equivalent (SWE) in a forested area where remote-sensing techniques (e.g., passive microwave) typically have large uncertainties. Here, we explore the utility of assimilating the gamma snow data into a land surface model to improve the modeled SWE estimates in the northeastern US. Results provide new insights into utilizing the gamma SWE data for enhanced land surface model simulations in forested environments.
Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Linghong Ke, Xiao Qiao, Jie Zhang, Weihua Xiao, and Yuyan Zhou
Hydrol. Earth Syst. Sci., 27, 933–952, https://doi.org/10.5194/hess-27-933-2023, https://doi.org/10.5194/hess-27-933-2023, 2023
Short summary
Short summary
We assessed and compared the glacier areal retreat rate and surface thinning rate and the effects of topography, debris cover and proglacial lakes in the west Nyainqentanglha Range (WNT) during 1976–2000 and 2000–2020. Our study will help us to better understand the glacier change characteristics in the WNT on a long timescale and will serve as a reference for glacier changes in other regions on the Tibetan Plateau.
Xiaoyu Ma, Dongyue Li, Yiwen Fang, Steven A. Margulis, and Dennis P. Lettenmaier
Hydrol. Earth Syst. Sci., 27, 21–38, https://doi.org/10.5194/hess-27-21-2023, https://doi.org/10.5194/hess-27-21-2023, 2023
Short summary
Short summary
We explore satellite retrievals of snow water equivalent (SWE) along hypothetical ground tracks that would allow estimation of SWE over an entire watershed. The retrieval of SWE from satellites has proved elusive, but there are now technological options that do so along essentially one-dimensional tracks. We use machine learning (ML) algorithms as the basis for a track-to-area (TTA) transformation and show that at least one is robust enough to estimate domain-wide SWE with high accuracy.
Xiaohua Hao, Guanghui Huang, Zhaojun Zheng, Xingliang Sun, Wenzheng Ji, Hongyu Zhao, Jian Wang, Hongyi Li, and Xiaoyan Wang
Hydrol. Earth Syst. Sci., 26, 1937–1952, https://doi.org/10.5194/hess-26-1937-2022, https://doi.org/10.5194/hess-26-1937-2022, 2022
Short summary
Short summary
We develop and validate a new 20-year MODIS snow-cover-extent product over China, which is dedicated to addressing known problems of the standard snow products. As expected, the new product significantly outperforms the state-of-the-art MODIS C6.1 products; improvements are particularly clear in forests and for the daily cloud-free product. Our product has provided more reliable snow knowledge over China and can be accessible freely https://dx.doi.org/10.11888/Snow.tpdc.271387.
Michael Schirmer and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 143–157, https://doi.org/10.5194/hess-24-143-2020, https://doi.org/10.5194/hess-24-143-2020, 2020
Short summary
Short summary
The spatial distribution of snow water equivalent (SWE) and melt are important for hydrological applications in alpine terrain. We measured the spatial distribution of melt using a drone in very high resolution and could relate melt to topographic characteristics. Interestingly, melt and SWE were not related spatially, which influences the speed of areal melt out. We could explain this by melt varying over larger distances than SWE.
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
Hydrol. Earth Syst. Sci., 23, 3189–3217, https://doi.org/10.5194/hess-23-3189-2019, https://doi.org/10.5194/hess-23-3189-2019, 2019
Short summary
Short summary
Spatio-temporal variability of seasonal snow cover is characterised from 16 years of MODIS data for the Clutha Catchment, New Zealand. No trend was detected in snow-covered area. Spatial modes of variability reveal the role of anomalous winter airflow. The sensitivity of snow cover duration to temperature and precipitation variability is found to vary spatially across the catchment. These findings provide new insight into seasonal snow processes in New Zealand and guidance for modelling efforts.
Andri Gunnarsson, Sigurður M. Garðarsson, and Óli G. B. Sveinsson
Hydrol. Earth Syst. Sci., 23, 3021–3036, https://doi.org/10.5194/hess-23-3021-2019, https://doi.org/10.5194/hess-23-3021-2019, 2019
Short summary
Short summary
In this study a gap-filled snow cover product for Iceland is developed using MODIS satellite data and validated with both in situ observations and alternative remote sensing data sources with good agreement. Information about snow cover extent, duration and changes over time is presented, indicating that snow cover extent has been increasing slightly for the past few years.
Xinghua Li, Yinghong Jing, Huanfeng Shen, and Liangpei Zhang
Hydrol. Earth Syst. Sci., 23, 2401–2416, https://doi.org/10.5194/hess-23-2401-2019, https://doi.org/10.5194/hess-23-2401-2019, 2019
Short summary
Short summary
This paper is a review article on the cloud removal methods of MODIS snow cover products.
Rose Petersky and Adrian Harpold
Hydrol. Earth Syst. Sci., 22, 4891–4906, https://doi.org/10.5194/hess-22-4891-2018, https://doi.org/10.5194/hess-22-4891-2018, 2018
Short summary
Short summary
Ephemeral snowpacks are snowpacks that persist for less than 2 months. We show that ephemeral snowpacks melt earlier and provide less soil water input in the spring. Elevation is strongly correlated with whether snowpacks are ephemeral or seasonal. Snowpacks were also more likely to be ephemeral on south-facing slopes than north-facing slopes at high elevations. In warm years, the Great Basin shifts to ephemerally dominant as rain becomes more prevalent at increasing elevations.
Elisabeth Baldo and Steven A. Margulis
Hydrol. Earth Syst. Sci., 22, 3575–3587, https://doi.org/10.5194/hess-22-3575-2018, https://doi.org/10.5194/hess-22-3575-2018, 2018
Short summary
Short summary
Montane snowpacks are extremely complex to represent and usually require assimilating remote sensing images at very fine spatial resolutions, which is computationally expensive. Adapting the grid size of the terrain to its complexity was shown to cut runtime and storage needs by half while preserving the accuracy of ~ 100 m snow estimates. This novel approach will facilitate the large-scale implementation of high-resolution remote sensing data assimilation over snow-dominated montane ranges.
Alejandra Stehr and Mauricio Aguayo
Hydrol. Earth Syst. Sci., 21, 5111–5126, https://doi.org/10.5194/hess-21-5111-2017, https://doi.org/10.5194/hess-21-5111-2017, 2017
Short summary
Short summary
In Chile there is a lack of hydrological data, which complicates the analysis of important hydrological processes. In this study we validate a remote sensing product, i.e. the MODIS snow product, in Chile using ground observations, obtaining good results. Then MODIS was use to evaluated snow cover dynamic during 2000–2016 at five watersheds in Chile. The analysis shows that there is a significant reduction in snow cover area in two watersheds located in the northern part of the study area.
David R. Rounce, Daene C. McKinney, Jonathan M. Lala, Alton C. Byers, and C. Scott Watson
Hydrol. Earth Syst. Sci., 20, 3455–3475, https://doi.org/10.5194/hess-20-3455-2016, https://doi.org/10.5194/hess-20-3455-2016, 2016
Short summary
Short summary
Glacial lake outburst floods pose a significant threat to downstream communities and infrastructure as they rapidly unleash stored lake water. Nepal is home to many potentially dangerous glacial lakes, yet a holistic understanding of the hazards faced by these lakes is lacking. This study develops a framework using remotely sensed data to investigate the hazards and risks associated with each glacial lake and discusses how this assessment may help inform future management actions.
S. Gascoin, O. Hagolle, M. Huc, L. Jarlan, J.-F. Dejoux, C. Szczypta, R. Marti, and R. Sánchez
Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, https://doi.org/10.5194/hess-19-2337-2015, 2015
Short summary
Short summary
There is a good agreement between the MODIS snow products and observations from automatic stations and Landsat snow maps in the Pyrenees. The optimal thresholds for which a MODIS pixel is marked as snow-covered are 40mm in water equivalent and 150mm in snow depth.
We generate a gap-filled snow cover climatology for the Pyrenees. We compute the mean snow cover duration by elevation and aspect classes. We show anomalous snow patterns in 2012 and consequences on hydropower production.
P. Da Ronco and C. De Michele
Hydrol. Earth Syst. Sci., 18, 4579–4600, https://doi.org/10.5194/hess-18-4579-2014, https://doi.org/10.5194/hess-18-4579-2014, 2014
Short summary
Short summary
The negative impacts of cloud obstruction in snow mapping from MODIS and a new reliable cloud removal procedure for the Italian Alps.
P. D. Micheletty, A. M. Kinoshita, and T. S. Hogue
Hydrol. Earth Syst. Sci., 18, 4601–4615, https://doi.org/10.5194/hess-18-4601-2014, https://doi.org/10.5194/hess-18-4601-2014, 2014
P. B. Kirchner, R. C. Bales, N. P. Molotch, J. Flanagan, and Q. Guo
Hydrol. Earth Syst. Sci., 18, 4261–4275, https://doi.org/10.5194/hess-18-4261-2014, https://doi.org/10.5194/hess-18-4261-2014, 2014
Short summary
Short summary
In this study we present results from LiDAR snow depth measurements made over 53 sq km and a 1600 m elevation gradient. We found a lapse rate of 15 cm accumulated snow depth and 6 cm SWE per 100 m in elevation until 3300 m, where depth sharply decreased. Residuals from this trend revealed the role of aspect and highlighted the importance of solar radiation and wind for snow distribution. Lastly, we compared LiDAR SWE estimations with four model estimates of SWE and total precipitation.
S. Hasson, V. Lucarini, M. R. Khan, M. Petitta, T. Bolch, and G. Gioli
Hydrol. Earth Syst. Sci., 18, 4077–4100, https://doi.org/10.5194/hess-18-4077-2014, https://doi.org/10.5194/hess-18-4077-2014, 2014
S. Surer, J. Parajka, and Z. Akyurek
Hydrol. Earth Syst. Sci., 18, 763–774, https://doi.org/10.5194/hess-18-763-2014, https://doi.org/10.5194/hess-18-763-2014, 2014
V. López-Burgos, H. V. Gupta, and M. Clark
Hydrol. Earth Syst. Sci., 17, 1809–1823, https://doi.org/10.5194/hess-17-1809-2013, https://doi.org/10.5194/hess-17-1809-2013, 2013
T. Y. Lakhankar, J. Muñoz, P. Romanov, A. M. Powell, N. Y. Krakauer, W. B. Rossow, and R. M. Khanbilvardi
Hydrol. Earth Syst. Sci., 17, 783–793, https://doi.org/10.5194/hess-17-783-2013, https://doi.org/10.5194/hess-17-783-2013, 2013
A. A. Tahir, P. Chevallier, Y. Arnaud, and B. Ahmad
Hydrol. Earth Syst. Sci., 15, 2275–2290, https://doi.org/10.5194/hess-15-2275-2011, https://doi.org/10.5194/hess-15-2275-2011, 2011
J. Wang, H. Li, and X. Hao
Hydrol. Earth Syst. Sci., 14, 1979–1987, https://doi.org/10.5194/hess-14-1979-2010, https://doi.org/10.5194/hess-14-1979-2010, 2010
J. L. Hood and M. Hayashi
Hydrol. Earth Syst. Sci., 14, 901–910, https://doi.org/10.5194/hess-14-901-2010, https://doi.org/10.5194/hess-14-901-2010, 2010
Cited articles
Arsenault, K. R., Houser, P. R., and De Lannoy, G. J.: Evaluation of the
MODIS snow cover fraction product, Hydrol. Process., 28, 980–998, 2014.
Brubaker, K. L., Pinker, R. T., and Deviatova, E.: Evaluation and Comparison
of MODIS and IMS Snow-Cover Estimates for the Continental United States Using Station Data, J. Hydrometeorol., 6, 1002–1017, 2005.
Chelamallu, H. P., Venkataraman, G., and Murti, M. V. R.: Accuracy assessment of MODIS/Terra snow cover product for parts of Indian Himalayas, Geocarto Int., 29, 592–608, 2013.
Chen, C., Lakhankar, T., Romanov, P., Helfrich, Powell, A., and Khanbilvardi, R.: Validation of NOAA-interactive multisensor snow and ice mapping system (IMS) by comparison with ground-based measurements over continental United States, Remote Sens., 4,, 1134–1145, 2012.
Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J.-C., Skakun, S. V., and Justice, C.: The Harmonized Landsat and Sentinel-2 surface reflectance data set, Remote Sens. Environ., 219, 145–161, 2018.
Coll, J. and Li, X.: Comprehensive accuracy assessment of MODIS daily snow
cover products and gap filling methods, ISPRS J. Photogram. Remote Sens., 144, 435–452, 2018.
Crawford, C. J.: MODIS Terra Collection 6 fractional snow cover validation in
mountainous terrain during spring snowmelt using Landsat TM and ETM+,
Hydrol. Process., 29, 128–138, 2015.
Dariane, A. B., Khoramian, A., and Santi, E.: Investigating spatiotemporal
snow cover variability via cloud-free MODIS snow cover product in Central
Alborz Region, Remote Sens. Environ., 202, 152–165, 2017.
Deng, J., Huang, X., Feng, Q., Ma, X., and Liang, T.: Toward improved daily
cloud-free fractional snow cover mapping with multi-source remote sensing
data in China, Remote Sens., 7, 6986–7006, 2015.
Déry, S. J. and Brown, R. D.: Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback, Geophys. Res.
Lett., 34, L22504, https://doi.org/10.1029/2007GL031474, 2007.
Dietz, A. J., Kuenzer, C., and Conrad, C.: Snow-cover variability in central
Asia between 2000 and 2011 derived from improved MODIS daily snow-cover
products, Int. J. Remote Sens., 34, 3879–3902, https://doi.org/10.1080/01431161.2013.767480, 2013.
Dong, C. and Menzel, L.: Producing cloud-free MODIS snow cover products with
conditional probability interpolation and meteorological data, Remote
Sens. Environ., 186, 439–451, https://doi.org/10.1016/j.rse.2016.09.019, 2016.
Estilow, T. W., Young, A. H., and Robinson, D. A.: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring, Earth Syst. Sci. Data, 7, 137–142, https://doi.org/10.5194/essd-7-137-2015, 2015.
Foster, J. L., Hall, D. K., Eylander, J. B., Riggs, G. A., Nghiem, S. V.,
Tedesco, M., Kim, E., et al.: A blended global snow product using visible,
passive microwave and scatterometer satellite data, International Journal of
Remote Sensing, 32(5), 1371-1395, 2011.
Frei, A. and Lee, S.: A comparison of optical-band based snow extent
products during spring over North America, Remote Sens. Environ., 114,
1940–1948, 2010.
Gafurov, A. and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product, Hydrol. Earth Syst. Sci., 13, 1361–1373, https://doi.org/10.5194/hess-13-1361-2009, 2009.
Gafurov, A., Lüdtke, S., Unger-Shayesteh, K., Vorogushyn, S., Schöne, T., Schmidt, S., Kalashnikova, O., and Merz, B.: MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data, Environ. Earth Sci., 75, 1078, https://doi.org/10.1007/s12665-016-5869-x, 2016.
Gao, Y., Xie, H., Yao, T., and Xue, C.: Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration
of MODIS snow cover products of the Pacific Northwest USA, Remote Sens. Environ., 114, 1662–1675, 2010a.
Gao, Y., Xie, H., Lu, N., Yao, T., and, Liang, T.: Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra–Aqua MODIS and Aqua AMSR-E measurements, J. Hydrol., 385, 23–35,
https://doi.org/10.1016/j.jhydrol.2010.01.022, 2010b.
Gao, Y., Lu, N., and, Yao, T.: Evaluation of a cloud-gap-filled MODIS daily
snow cover product over the Pacific Northwest USA, J. Hydrol., 404, 157–165, https://doi.org/10.1016/j.jhydrol.2011.04.026, 2011.
Gladkova, I., Grossberg, M., Bonev, G., Romanov, P., and Shahriar, F.:
Increasing the accuracy of MODIS/Aqua snow product using quantitative image
restoration technique, IEEE Geosci. Remote Sens. Lett., 9, 740–743, 2012.
Hall, D. K. and Riggs, G. A.: Accuracy Assessment of the MODIS Snow Products,
Hydrol. Process., 21, 1534–1547, 2007.
Hall, D. K., Riggs, G. A., Foster, J. L., and Kumar, S. V.: Development and
evaluation of a cloud-gap-filled MODIS daily snow-cover product, Remote
Sens. Environ., 114, 496–503, https://doi.org/10.1016/j.rse.2009.10.007, 2010.
Hall, D. K., Crawford, C. J., DiGirolamo, N. E., Riggs, G. A., and Foster, J. L.: Detection of earlier snowmelt in the Wind River Range, Wyoming, using
Landsat imagery, 1972–2013, Remote Sens. Environ., 162, 45–54, 2015.
Hammond, J. C., Saavedra, F. A., and Kampf, S. K.: Global snow zone maps and
trends in snow persistence 2001–2016, Int. J. Climatol., 38, 4369–4383, https://doi.org/10.1002/joc.5674, 2018.
Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T., and Kasheta, T.:
Enhancements to, and forthcoming developments in the Interactive Multisensor
Snow and Ice Mapping System (IMS), Hydrol. Process., 21, 1576–1586, 2007.
Helfrich, S. R., Li, M., and Kongoli, C.: Interactive Multisensor Snow and
Ice Mapping System Version 3 (IMS V3) Algorithm Theoretical Basis Document
Version 2.0 Draft 4.1, NOAA NESDIS Center for Satellite Applications and
Research (STAR), College Park, MD, USA, 2012.
Huang, X., Liang, T., Zhang, X., and Guo, Z.: Validation of MODIS snow cover
products using Landsat and ground measurements during the 2001–2005 snow
seasons over northern Xinjiang, China, Int. J. Remote Sens., 32, 133–152, 2011.
Kadlec, J. and Ames, D. P.: Using crowdsources and weather station data to
fill cloud gaps in MODIS snow cover datasets, Environ. Model. Softw., 95, 258–270, 2017.
Klein, A. G. and Barnett, A. C.: Validation of daily MODIS snow cover maps of
the Upper Rio Grande River Basin for the 2000–2001 snow year, Remote
Sens. Environ., 86, 162–176, 2003.
Li, X., Fu, W., Shen, H., Huang, C., and Zhang, L.: Monitoring snow cover
variability (2000–2014) in the Hengduan Mountains based on cloud-removed
MODIS products with an adaptive spatio-temporal weighted method, J. Hydrol., 551, 314–327, https://doi.org/10.1016/j.jhydrol.2017.05.049, 2017
López-Burgos, V., Gupta, H. V., and Clark, M.: Reducing cloud obscuration of MODIS snow cover area products by combining spatio-temporal techniques with a probability of snow approach, Hydrol. Earth Syst. Sci., 17, 1809–1823, https://doi.org/10.5194/hess-17-1809-2013, 2013.
Malnes, E., Karlsen, S. R., Johansen, B., Bjerke, J. W., and Tømmervik, H.: Snow season variability in a boreal-Arctic transition area monitored by
MODIS data, Environ. Res. Lett., 11, 125005, https://doi.org/10.1088/1748-9326/11/12/125005, 2016.
Matson, M. and Wiesnet, D. R.: New database for climate studies, Nature, 289,
451–456, 1981.
MCST: MODIS Characterization Support Team, available at: https://mcst.gsfc.nasa.gov (last access: 16 December 2019), 2014.
Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P.: Declining
mountain snowpack in western North America, B. Am. Meteorol. Soc., 86, 39–49, 2005.
O'Leary, D., Hall, D., Medler, M., and Flower, A.: Quantifying the early
snowmelt event of 2015 in the Cascade Mountains, USA by developing and
validating MODIS-based snowmelt timing maps, Front. Earth Sci., 12, 693–710, 2018.
Parajka, J. and Blöschl, G.: Validation of MODIS snow cover images over Austria, Hydrol. Earth Syst. Sci., 10, 679–689, https://doi.org/10.5194/hess-10-679-2006, 2006.
Parajka, J. and Blöschl, G.: Spatio-temporal combination of MODIS
images–potential for snow cover mapping, Water Resour. Res., 44, W03406, https://doi.org/10.1029/2007WR006204, 2008.
Parajka, J., Pepe, M., Rampini, A., Rossi, S., and Blöschl, G.: A regional snow-line method for estimating snow cover from MODIS during cloud
cover, J. Hydrol., 381, 203–212, 2010.
Parajka, J., Holko, L., Kostka, Z., and Blöschl, G.: MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites, Hydrol. Earth Syst. Sci., 16, 2365–2377, https://doi.org/10.5194/hess-16-2365-2012, 2012.
Paudel, K. P. and Anderson, P.: Monitoring snow cover variability in an
agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology, Remote Sens. Environ., 115, 1234–1246, 2011.
Paull, D. J., Lees, B. G., and Thompson, J. A.: An improved liberal cloud-mask for addressing snow/cloud confusion with MODIS,
Photogram. Eng. Remote Sens., 81, 19–29, 2015.
Riggs, G. A. and Hall, D. K.: MODIS cloud-gap filled snow daily snow cover, 500 m resolution, https://doi.org/10.5067/MODIS/MOD10A1.006, 2019.
Riggs, G. A., Hall, D. K., and Salomonson, V. V.: MODIS Snow Products User
Guide to Collection 5, available at: https://modis-snow-ice.gsfc.nasa.gov/?c=userguides (last access: 16 December 2019), 2006.
Riggs, G. A., Hall, D. K., and Román, M. O.: Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records, Earth Syst. Sci. Data, 9, 765–777, https://doi.org/10.5194/essd-9-765-2017, 2017a.
Riggs, G. A., Hall, D. K., and Román, M. O.: NASA S-NPP VIIRS Snow Products Collection 1 (C1) User Guide, Release 1.0, available at:
https://modis-snow-ice.gsfc.nasa.gov/?c=userguides (last access: 16 December 2019), 2017b.
Riggs, G. A., Hall, D. K., and Román, M. O.: MODIS snow products user
guide for Collection 6.1 (C6.1), available at: https://modis-snow-ice.gsfc.nasa.gov/?c=userguides (last access: 17 March 2019), 2018.
Robinson, D. A., Dewey, K. F., and Heim, R. R.: Global snow cover monitoring:
An update, B. Am. Meteorol. Soc., 74, 1689–1696, 1993.
Salomonson, V. V. and Appel, I.: Estimating fractional snow cover from MODIS
using the normalized difference snow index, Remote Sens. Environ., 89, 351–360, 2004.
Salomonson, V. V. and Appel, I.: Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results, IEEE T. Geosci. Remote., 44, 1747–1756, 2006.
Stewart, I. T.: Changes in snowpack and snowmelt runoff for key mountain
regions, Hydrol. Process., 23, 78–94, 2009.
Tang, Z, Wang, J., Li, H., and Yan, L.: Spatiotemporal changes of snow cover
over the Tibetan plateau based on cloud-removed moderate resolution imaging
spectroradiometer fractional snow cover product from 2001 to 2011, J. Appl. Remote Sens., 7, 073582, https://doi.org/10.1117/1.JRS.7.073582, 2013.
Tang, Z., Wang, X., Wang, J., Wang, X., Li, H., and Jinag, Z.: Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001–2015, Remote Sens., 9, 1045, https://doi.org/10.3390/rs9101045, 2017.
Tong, J., Déry, S. J., and Jackson, P. L.: Topographic control of snow distribution in an alpine watershed of western Canada inferred from spatially-filtered MODIS snow products, Hydrol. Earth Syst. Sci., 13, 319–326, https://doi.org/10.5194/hess-13-319-2009, 2009a.
Tong, J., Déry, S. J., and Jackson, P. L.: Interrelationships between MODIS/Terra remotely sensed snow cover and the hydrometeorology of the Quesnel River Basin, British Columbia, Canada, Hydrol. Earth Syst. Sci., 13, 1439001452, https://doi.org/10.5194/hess-13-1439-2009, 2009b.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and earlier spring increase western U.S. forest wildfire activity, Science,
313, 940–943, 2006.
Xu, W., Ma, H., Wu, D., and Yuan, W.: Assessment of the Daily Cloud-Free MODIS Snow-Cover Product for Monitoring the Snow-Cover Phenology over the
Qinghai-Tibetan Plateau, Remote Sens., 9, 585, https://doi.org/10.3390/rs9060585, 2017.
Yu, J., Zhang, G., Yao, T., Xie, H., Zhang, H., Ke, C., and Yao, R.: Developing daily cloud-free snow composite products from MODIS Terra-Aqua
and IMS for the Tibetan Plateau, IEEE T. Geosci. Remote, 54, 2171–2180, 2016.
Short summary
Global snow cover maps have been available since 2000 from the MODerate resolution Imaging Spectroradiometer (MODIS), and since 2000 and 2011 from the Suomi National Polar-orbiting Partnership (S-NPP) and the Visible Infrared Imaging Radiometer Suite (VIIRS), respectively. These products are used extensively in hydrological modeling and climate studies. New, daily cloud-gap-filled snow products are available from both MODIS and VIIRS, and are being used to develop an Earth science data record.
Global snow cover maps have been available since 2000 from the MODerate resolution Imaging...