Articles | Volume 23, issue 12
Hydrol. Earth Syst. Sci., 23, 4983–5000, 2019
https://doi.org/10.5194/hess-23-4983-2019
Hydrol. Earth Syst. Sci., 23, 4983–5000, 2019
https://doi.org/10.5194/hess-23-4983-2019

Research article 05 Dec 2019

Research article | 05 Dec 2019

A global Budyko model to partition evaporation into interception and transpiration

Ameneh Mianabadi et al.

Related authors

A simple global Budyko model to partition evaporation into interception and transpiration
Ameneh Mianabadi, Miriam Coenders-Gerrits, Pooya Shirazi, Bijan Ghahraman, and Amin Alizadeh
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-306,https://doi.org/10.5194/hess-2017-306, 2017
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021,https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629, https://doi.org/10.5194/hess-25-4611-2021,https://doi.org/10.5194/hess-25-4611-2021, 2021
Short summary
Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, and Vladan Babovic
Hydrol. Earth Syst. Sci., 25, 4373–4401, https://doi.org/10.5194/hess-25-4373-2021,https://doi.org/10.5194/hess-25-4373-2021, 2021
Short summary
Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data
Natthachet Tangdamrongsub, Michael F. Jasinski, and Peter J. Shellito
Hydrol. Earth Syst. Sci., 25, 4185–4208, https://doi.org/10.5194/hess-25-4185-2021,https://doi.org/10.5194/hess-25-4185-2021, 2021
Short summary
Conditioning ensemble streamflow prediction with the North Atlantic Oscillation improves skill at longer lead times
Seán Donegan, Conor Murphy, Shaun Harrigan, Ciaran Broderick, Dáire Foran Quinn, Saeed Golian, Jeff Knight, Tom Matthews, Christel Prudhomme, Adam A. Scaife, Nicky Stringer, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 4159–4183, https://doi.org/10.5194/hess-25-4159-2021,https://doi.org/10.5194/hess-25-4159-2021, 2021
Short summary

Cited articles

Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrig. Drain. Pap. 56, FAO, Rome, Italy, p. 300, 1998. 
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, https://doi.org/10.1016/S0022-1694(02)00101-4, 2002. 
Baird, A. J. and Wilby, R. L.: Eco-hydrology: Plants and Water in Terrestrial and Aquatic Environments, Routledge, London, 1999. 
Blyth, E. and Harding, R. J.: Methods to separate observed global evapotranspiration into the interception, transpiration and soil surface evaporation components, Hydrol. Process., 25, 4063–4068, https://doi.org/10.1002/hyp.8409, 2011. 
Budyko, M. I.: Climate and life, Academic Press, Orlando, Florida, 1974. 
Download
Short summary
Evaporation is the biggest water consumer of the rainfall that falls on the land. Knowing its magnitude will help water resources to develop water use strategies. This study describes a model that can estimate the magnitude of evaporation on a global level. It does not use local information, only information from rainfall and vegetation patterns derived from satellites.