Articles | Volume 23, issue 12
https://doi.org/10.5194/hess-23-4983-2019
https://doi.org/10.5194/hess-23-4983-2019
Research article
 | 
05 Dec 2019
Research article |  | 05 Dec 2019

A global Budyko model to partition evaporation into interception and transpiration

Ameneh Mianabadi, Miriam Coenders-Gerrits, Pooya Shirazi, Bijan Ghahraman, and Amin Alizadeh

Related authors

A simple global Budyko model to partition evaporation into interception and transpiration
Ameneh Mianabadi, Miriam Coenders-Gerrits, Pooya Shirazi, Bijan Ghahraman, and Amin Alizadeh
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-306,https://doi.org/10.5194/hess-2017-306, 2017
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025,https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Lack of robustness of hydrological models: a large-sample diagnosis and an attempt to identify hydrological and climatic drivers
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025,https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Achieving water budget closure through physical hydrological process modelling: insights from a large-sample study
Xudong Zheng, Dengfeng Liu, Shengzhi Huang, Hao Wang, and Xianmeng Meng
Hydrol. Earth Syst. Sci., 29, 627–653, https://doi.org/10.5194/hess-29-627-2025,https://doi.org/10.5194/hess-29-627-2025, 2025
Short summary
Heavy-tailed flood peak distributions: what is the effect of the spatial variability of rainfall and runoff generation?
Elena Macdonald, Bruno Merz, Viet Dung Nguyen, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 29, 447–463, https://doi.org/10.5194/hess-29-447-2025,https://doi.org/10.5194/hess-29-447-2025, 2025
Short summary
State updating of the Xin'anjiang model: joint assimilating streamflow and multi-source soil moisture data via the asynchronous ensemble Kalman filter with enhanced error models
Junfu Gong, Xingwen Liu, Cheng Yao, Zhijia Li, Albrecht H. Weerts, Qiaoling Li, Satish Bastola, Yingchun Huang, and Junzeng Xu
Hydrol. Earth Syst. Sci., 29, 335–360, https://doi.org/10.5194/hess-29-335-2025,https://doi.org/10.5194/hess-29-335-2025, 2025
Short summary

Cited articles

Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements, FAO Irrig. Drain. Pap. 56, FAO, Rome, Italy, p. 300, 1998. 
Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, https://doi.org/10.1016/S0022-1694(02)00101-4, 2002. 
Baird, A. J. and Wilby, R. L.: Eco-hydrology: Plants and Water in Terrestrial and Aquatic Environments, Routledge, London, 1999. 
Blyth, E. and Harding, R. J.: Methods to separate observed global evapotranspiration into the interception, transpiration and soil surface evaporation components, Hydrol. Process., 25, 4063–4068, https://doi.org/10.1002/hyp.8409, 2011. 
Budyko, M. I.: Climate and life, Academic Press, Orlando, Florida, 1974. 
Download
Short summary
Evaporation is the biggest water consumer of the rainfall that falls on the land. Knowing its magnitude will help water resources to develop water use strategies. This study describes a model that can estimate the magnitude of evaporation on a global level. It does not use local information, only information from rainfall and vegetation patterns derived from satellites.
Share