Articles | Volume 23, issue 1
https://doi.org/10.5194/hess-23-447-2019
https://doi.org/10.5194/hess-23-447-2019
Research article
 | 
25 Jan 2019
Research article |  | 25 Jan 2019

Statistical approaches for identification of low-flow drivers: temporal aspects

Anne Fangmann and Uwe Haberlandt

Related authors

Flood frequency analysis using mean daily flows vs. instantaneous peak flows
Anne Bartens, Bora Shehu, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 28, 1687–1709, https://doi.org/10.5194/hess-28-1687-2024,https://doi.org/10.5194/hess-28-1687-2024, 2024
Short summary
Flood frequency analysis using mean daily flows vs. instantaneous peak flows
Anne Bartens and Uwe Haberlandt
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-466,https://doi.org/10.5194/hess-2021-466, 2021
Preprint withdrawn
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Learning landscape features from streamflow with autoencoders
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci., 28, 4971–4988, https://doi.org/10.5194/hess-28-4971-2024,https://doi.org/10.5194/hess-28-4971-2024, 2024
Short summary
On the use of streamflow transformations for hydrological model calibration
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024,https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Simulation-based inference for parameter estimation of complex watershed simulators
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024,https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024,https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024,https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary

Cited articles

Akaike, H.: New Look at Statistical-Model Identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/Tac.1974.1100705, 1974. 
Coles, S.: An introduction to statistical modeling of extreme values, Springer, London, 2001. 
Dai, A. G.: Increasing drought under global warming in observations and models, Nat. Clim. Change, 3, 52–58, https://doi.org/10.1038/Nclimate1633, 2013. 
de Wit, M. J. M., van den Hurk, B., Warmerdam, P. M. M., Torfs, P. J. J. F., Roulin, E., and van Deursen, W. P. A.: Impact of climate change on low-flows in the river Meuse, Climatic Change, 82, 351–372, https://doi.org/10.1007/s10584-006-9195-2, 2007. 
Fangmann, A.: Low flow prediction in time and space: An adaptive statistical scheme for regional climate change impact assessment, Mitteilungen, Heft 106, Inst. of Hydrology, Leibniz University of Hannover, Hannover, 160 pp., 2017. 
Download
Short summary
Low-flow events are little dynamic in space and time. Thus, it is hypothesized that models can be found, based on simple statistical relationships between low-flow metrics and meteorological states, that can help identify potential low-flow drivers. In this study we assess whether such relationships exist and whether they can be applied to predict future low flow within regional climate change impact assessment in the northwestern part of Germany.