Arsenault, R., Malo, J., Brissette, F., Minville, M., and Leconte, R.:
Structural and non-structural climate change adaptation strategies for the
Péribonka water resource system, Water Resour. Manag., 27, 2075–2087,
https://doi.org/10.1007/s11269-013-0275-6, 2013.
Boucher, M. A., Tremblay, D., Delorme, L., Perreault, L., and Anctil, F.:
Hydro-economic assessment of hydrological forecasting systems, J.
Hydrol., 416, 133–144, https://doi.org/10.1016/j.jhydrol.2011.11.042, 2012.
Boucher, M.-A., Perreault, L., Anctil, F., and Favre, A.-C.: Exploratory
analysis of statistical post- processing methods for hydrological ensemble
forecasts, Hydrol. Process., 29, 1141–1155, https://doi.org/10.1002/hyp.10234, 2015.
Bourdin, D. R. and Stull, R. B.: Bias-corrected short-range Member-to-Member
ensemble forecasts of reservoir inflow, J. Hydrol., 502, 77–88,
https://doi.org/10.1016/j.jhydrol.2013.08.028, 2013.
Carpentier, P.-L., Gendreau, M., and Bastin, F.: Long-term management of a
hydroelectric multireservoir system under uncertainty using the progressive
hedging algorithm: Optimization of Multireservoir Operation, Water Resour.
Res., 49, 2812–2827, https://doi.org/10.1002/wrcr.20254, 2013.
Cassagnole, M., Ramos, M. H., Thirel, G., Gailhard, J., and Garçon, R.:
Is the economic value of hydrological forecasts related to their quality?
Case study of the hydropower sector, in: EGU General Assembly Conference
Abstracts, 23–28 April 2017, Vienna, Austria, 19, 9073, 2017.
Charbonneau, R., Fortin, J.-P., and Morin, G.: The CEQUEAU model:
description and examples of its use in problems related to water resource
management / Le modèle CEQUEAU: description et exemples d'utilisation
dans le cadre de problèmes reliés à l'aménagement, Hydrol.
Sci. B., 22, 193–202, https://doi.org/10.1080/02626667709491704, 1977.
Chen, J., Brissette, F. P., and Li, Z.: Postprocessing of Ensemble Weather
Forecasts Using a Stochastic Weather Generator, Mon. Weather Rev., 142,
1106–1124, https://doi.org/10.1175/MWR-D-13-00180.1, 2014.
Côté, P. and Leconte, R.: Comparison of Stochastic Optimization
Algorithms for Hydropower Reservoir Operation with Ensemble Streamflow
Prediction, J. Water Res. Pl.-ASCE, 142, 04015046,
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000575, 2015.
Côté, P., Haguma, D., Leconte, R., and Krau, S.: Stochastic
optimisation of Hydro-Quebec hydropower installations: a statistical
comparison between SDP and SSDP methods, Can. J. Civil Eng., 38, 1427–1434, 2011.
Crochemore, L., Ramos, M.-H., and Pappenberger, F.: Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 20, 3601–3618, https://doi.org/10.5194/hess-20-3601-2016, 2016.
Day, G.: Exteded Streamflow Forecasting Using NWSRFS, J. Water Res.
Pl.-ASCE, 111, 157–170, https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157),
1985.
DeChant, C. M. and Moradkhani, H.: Improving the characterization of initial condition for ensemble streamflow prediction
using data assimilation, Hydrol. Earth Syst. Sci., 15, 3399–3410, https://doi.org/10.5194/hess-15-3399-2011, 2011.
Faber, B. A. and Stedinger, J. R.: Reservoir optimization using sampling SDP
with ensemble streamflow prediction (ESP) forecasts, J. Hydrol., 249,
113–133, https://doi.org/10.1016/S0022-1694(01)00419-X, 2001.
Fan, F. M., Schwanenberg, D., Alvarado, R., dos Reis, A. A., Collischonn, W.,
and Naumman, S.: Performance of deterministic and probabilistic hydrological
forecasts for the short-term optimization of a tropical hydropower
reservoir, Water Resour. Manag., 30, 3609–3625,
https://doi.org/10.1007/s11269-016-1377-8, 2016.
FICO® Xpress Optimization Suite: Xpress-Optimizer Reference
manual – Release 20.00, Fair Isaac Corporation, available at:
https://www.fico.com/ (last access: 10 January 2018), 2009.
Fortin, V., Favre, A. C., and Said, M.: Probabilistic forecasting from
ensemble prediction systems: Improving upon the best-member method by using
a different weight and dressing kernel for each member, Q. J.
Roy. Meteor. Soc., 132, 1349–1369, 2006.
Gneiting, T., Raftery, A.-E., Westveld, A.-H., and Goldman, T.: Calibrated
probabilistic forecasting using ensemble model output statistics and minimum
CRPS estimation, Mon. Weather Rev., 133, 1098–1118, https://doi.org/10.1175/MWR2904.1,
2005.
Greuell, W., Franssen, W. H. P., Biemans, H., and Hutjes, R. W. A.: Seasonal streamflow forecasts for Europe – Part I: Hindcast verification with pseudo- and real observations, Hydrol. Earth Syst. Sci., 22, 3453–3472, https://doi.org/10.5194/hess-22-3453-2018, 2018.
Hamann, A. and Hug, G.: Real-time Optimization of a Hydropower Cascade Using
a Linear Modeling Approach, Proc. Power Syst. Comput. Conf. IEEE,
18–22 August 2014, Wroclaw, Poland, 1–7, 2014.
Hamill, T. M.: Interpretation of Rank Histograms for Verifying Ensemble
Forecasts, Mon. Weather Rev., 129, 550–560,
https://doi.org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2, 2001.
Harrigan, S., Prudhomme, C., Parry, S., Smith, K., and Tanguy, M.: Benchmarking ensemble streamflow prediction skill in the UK, Hydrol. Earth Syst. Sci., 22, 2023–2039, https://doi.org/10.5194/hess-22-2023-2018, 2018.
Hashino, T., Bradley, A. A., and Schwartz, S. S.: Evaluation of bias-correction methods for ensemble streamflow volume forecasts, Hydrol. Earth Syst. Sci., 11, 939–950, https://doi.org/10.5194/hess-11-939-2007, 2007.
Li, Y., Jiang, Y., Lei, X., Tian, F., Duan, H., and Lu, H.: Comparison of
Precipitation and Streamflow Correcting for Ensemble Streamflow
Forecasts, Water, 10, 177, https://doi.org/10.3390/w10020177, 2018.
Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an
integrated data assimilation framework, Water Resour. Res., 43, W07401,
https://doi.org/10.1029/2006WR005756, 2007.
Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M. P., Nijssen, B., Brekke, L. D., and Arnold, J. R.: An intercomparison of approaches for improving operational seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, 2017.
Pagano, T. C., Shrestha, D., Wang, Q., Robertson, D., and Hapuarachchi, P.:
Ensemble dressing for hydrological applications, Hydrol. Process., 27,
106–116, https://doi.org/10.1002/hyp.9313, 2013.
Pagano, T. C., Pappenberger, F., Wood, A. W., Ramos, M. H., Persson, A., and
Anderson, B.: Automation and human expertise in operational river
forecasting, WIREs Water, 3, 692–705, https://doi.org/10.1002/wat2.1163, 2016.
Pappenberger, F., Ramos, M. H., Cloke, H. L., Wetterhall, F., Alfieri, L.,
Bogner, K., and Salamon, P.: How do I know if my forecasts are better? Using
benchmarks in hydrological ensemble prediction, J. Hydrol., 522, 697–713,
https://doi.org/10.1016/j.jhydrol.2015.01.024, 2015.
Philbrick, C. R. and Kitandis, P. K.: Limitations of Deterministic
Optimization Applied to Reservoir Operations, J. Water Res. Pl.-ASCE,
125, 135–142, https://doi.org/10.1061/(ASCE)0733-9496(1999)125:3(135), 1999.
Séguin, S., Fleten, S.-E., Côté, P., Pichler, A., and Audet, C.:
Stochastic short-term hydropower planning with inflow scenario trees, Eur.
J. Oper. Res., 259, 1156–1168, https://doi.org/10.1016/j.ejor.2016.11.028, 2016.
Séguin, S., Audet, C., and Côté, P.: Scenario-Tree Modeling for
Stochastic Short-Term Hydropower Operations Planning, J. Water
Res. Pl., 143, 04017073, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000854, 2017.
Shukla, S. and Lettenmaier, D. P.: Seasonal hydrologic prediction in the United States: understanding the role of initial hydrologic conditions and seasonal climate forecast skill, Hydrol. Earth Syst. Sci., 15, 3529–3538, https://doi.org/10.5194/hess-15-3529-2011, 2011.
Tolson, B. A. and Shoemaker, C. A.: Dynamically dimensioned search algorithm
for computationally efficient watershed model calibration, Water Resour.
Res., 43, W01413, https://doi.org/10.1029/2005WR004723, 2007.
Voisin, N., Schaake, J. C., and Lettenmaier, D. P.: Calibration and downscaling
methods for quantitative ensemble precipitation forecasts, Weather
Forecast., 25, 1603–1627, https://doi.org/10.1175/2010WAF2222367.1, 2010.
Wood, A. W. and Schaake, J. C.: Correcting Errors in Streamflow Forecast
Ensemble Mean and Spread, J. Hydrometeorol., 9, 132–148,
https://doi.org/10.1175/2007JHM862.1, 2008.
Wright, S. J.: On the convergence of the Newton/log barrier method, Math.
Program., 90, 71–100, https://doi.org/10.1007/PL00011421, 2001.
Zalachori, I., Ramos, M.-H., Garçon, R., Mathevet, T., and Gailhard, J.: Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies, Adv. Sci. Res., 8, 135–141, https://doi.org/10.5194/asr-8-135-2012, 2012.
Zhao, T., Cai, X., and Yang, D.: Effect of streamflow forecast uncertainty on
real-time reservoir operation, Adv. Water Resour., 34, 495–504,
https://doi.org/10.1016/j.advwatres.2011.01.004, 2011.