Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 22, issue 7
Hydrol. Earth Syst. Sci., 22, 3575–3587, 2018
https://doi.org/10.5194/hess-22-3575-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Integration of Earth observations and models for global water...

Hydrol. Earth Syst. Sci., 22, 3575–3587, 2018
https://doi.org/10.5194/hess-22-3575-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 02 Jul 2018

Research article | 02 Jul 2018

Assessment of a multiresolution snow reanalysis framework: a multidecadal reanalysis case over the upper Yampa River basin, Colorado

Elisabeth Baldo and Steven A. Margulis

Related authors

Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California
Keith N. Musselman, Noah P. Molotch, and Steven A. Margulis
The Cryosphere, 11, 2847–2866, https://doi.org/10.5194/tc-11-2847-2017,https://doi.org/10.5194/tc-11-2847-2017, 2017
Short summary

Related subject area

Subject: Snow and Ice | Techniques and Approaches: Remote Sensing and GIS
Processes governing snow ablation in alpine terrain – detailed measurements from the Canadian Rockies
Michael Schirmer and John W. Pomeroy
Hydrol. Earth Syst. Sci., 24, 143–157, https://doi.org/10.5194/hess-24-143-2020,https://doi.org/10.5194/hess-24-143-2020, 2020
Short summary
Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record
Dorothy K. Hall, George A. Riggs, Nicolo E. DiGirolamo, and Miguel O. Román
Hydrol. Earth Syst. Sci., 23, 5227–5241, https://doi.org/10.5194/hess-23-5227-2019,https://doi.org/10.5194/hess-23-5227-2019, 2019
Short summary
Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: the Clutha Catchment, New Zealand
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
Hydrol. Earth Syst. Sci., 23, 3189–3217, https://doi.org/10.5194/hess-23-3189-2019,https://doi.org/10.5194/hess-23-3189-2019, 2019
Short summary
Icelandic snow cover characteristics derived from a gap-filled MODIS daily snow cover product
Andri Gunnarsson, Sigurður M. Garðarsson, and Óli G. B. Sveinsson
Hydrol. Earth Syst. Sci., 23, 3021–3036, https://doi.org/10.5194/hess-23-3021-2019,https://doi.org/10.5194/hess-23-3021-2019, 2019
Short summary
The recent developments in cloud removal approaches of MODIS snow cover product
Xinghua Li, Yinghong Jing, Huanfeng Shen, and Liangpei Zhang
Hydrol. Earth Syst. Sci., 23, 2401–2416, https://doi.org/10.5194/hess-23-2401-2019,https://doi.org/10.5194/hess-23-2401-2019, 2019
Short summary

Cited articles

Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006. a
Arsenault, K. R., Houser, P. R., De Lannoy, G. J. M., and Dirmeyer, P. A.: Impacts of snow cover fraction data assimilation on modeled energy and moisture budgets, J. Geophys. Res.-Atmos., 118, 7489–7504, https://doi.org/10.1002/jgrd.50542, 2013. a
Baldo, E. and Margulis, S. A.: Implementation of a physiographic complexity-based multiresolution snow modeling scheme, Water Resour. Res., 53, 3680–3694, https://doi.org/10.1002/2016WR020021, 2017. a, b, c, d, e, f, g, h, i, j, k, l, m
Beven, K. J., Cloke, H., Pappenberger, F., Lamb, R., and Hunter, N.: Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface, Sci. China Earth Sci., 58, 25–35, https://doi.org/10.1007/s11430-014-5003-4, 2015. a
Beven, K. J. and Kirby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrolog. Sci. Bull., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a
Publications Copernicus
Download
Short summary
Montane snowpacks are extremely complex to represent and usually require assimilating remote sensing images at very fine spatial resolutions, which is computationally expensive. Adapting the grid size of the terrain to its complexity was shown to cut runtime and storage needs by half while preserving the accuracy of ~ 100 m snow estimates. This novel approach will facilitate the large-scale implementation of high-resolution remote sensing data assimilation over snow-dominated montane ranges.
Montane snowpacks are extremely complex to represent and usually require assimilating remote...
Citation