Bormann, H. and Klaassen, K.: Seasonal and land use dependent
variability of soil hydraulic and soil hydrological properties of two
Northern German soils, Geoderma, 145, 295–302, 2008.
Boyle, D.: Multicriteria calibration of hydrological models, PhD
dissertation, Univ. of Ariz., Tucson, 2001.
Brown, A. E., Western, A. W., McMahon, T. A., and Zhang, L.: Impact
of forest cover changes on annual streamflow and flow duration curves,
J. Hydrol., 483, 39–50, 2013.
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A.
G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with
the ensemble Kalman filter: Use of streamflow observations to update states
in a distributed hydrological model, Adv. Water Resour., 31,
1309–1324, https://doi.org/10.1016/j.advwatres.2008.06.005,
2008.
Coe, M. T., Latrubesse, E. M., Ferreira, M. E., and Amsler, M. L.:
The effects of deforestation and climate variability on the streamflow of the
Araguaia River, Brazil, Biogeochemistry, 105, 119–131,
https://doi.org/10.1007/s10533-011-9582-2, 2011.
Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M.,
and Hendrickx, F.: Crash testing hydrological models in contrasted
climate conditions: An experiment on 216 Australian catchments,
Water Resour. Res., 48, 1–17, https://doi.org/10.1029/2011WR011721,
2012.
Costa, M. H., Botta, A., and Cardille, J. A.: Effects of large-scale
changes in land cover on the discharge of the Tocantins River, Southeastern
Amazonia, J. Hydrol., 283, 206–217,
https://doi.org/10.1016/S0022-1694(03)00267-1, 2003.
Duan, Q. Y., Gupta, V. K., and Sorooshian, S.: Shuffled complex
evolution approach for effective and efficient global minimization, J. Optimiz. Theory App., 76, 501–521,
https://doi.org/10.1007/BF00939380, 1993.
Dwarakish, G. S. and Ganasri, B. P.: Impact of land use change on
hydrological systems: A review of current modeling approaches, Cogent
Geoscience, 1, 1115691–1115691, https://doi.org/10.1080/23312041.2015.1115691, 2015.
Eckhardt, K.: How to construct recursive digital filters for baseflow
separation, Hydrol. Process., 19, 507–515, https://doi.org/10.1002/hyp.5675, 2005.
Efstratiadis, A., Nalbantis, I., and Koutsoyiannis, D.: Hydrological
modelling of temporally-varying catchments: facets of change and the value of
information, Hydrolog. Sci. J., 60, 1438–1461,
https://doi.org/10.1080/02626667.2014.982123, 2015.
Elfert, S. and Bormann, H.: Simulated impact of past and possible
future land use changes on the hydrological response of the Northern German
lowland “Hunte” catchment, J. Hydrol., 383, 245–255,
https://doi.org/10.1016/j.jhydrol.2009.12.040, 2010.
Evensen, G.: Sequential data assimilation with a nonlinear
quasi-geostrophic model using Monte Carlo methods to forecast error
statistics, J. Geophys. Res., 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994.
FAO: Global Forest Resources Assessment 2005, FRA, available at:
http://www.fao.org/docrep/008/a0400e/a0400e00.htm (last access: June 2017),
2005.
Good, I. J.: Rational Decisions, J. Roy. Stat. Soc. B, 14, 107–114, 1952.
Giuliani, M., Anghileri, D., Castelletti, A., Vu, P. N., and Soncini-Sessa,
R.: Large storage operations under climate change: expanding
uncertainties and evolving tradeoffs, Environ. Res. Lett.,
11, 035009, https://doi.org/10.1088/1748-9326/11/3/035009, 2016.
Gu, Y. and Oliver, D. S.: History matching of the PUNQ-S3 reservoir
model using the ensemble Kalman filter, SPE J., 10, 217–224,
https://doi.org/10.2118/89942-PA, 2005.
Hadka, D. and Reed, P.: Borg: an auto-adaptive many-objective
evolutionary computing framework, Evol. Comput., 21, 231–259, 2013.
Hamon, W.: Estimating potential evapotranspiration, T. Am. Soc. Civ. Eng., 128, 324–337, 1961.
Kalman, R. E.: A new approach to linear filtering and prediction
problems, J. Basic Eng.-T ASME, 82, 35–45, 1960.
Keppeler, E. T. and Ziemer, R. R.: Logging effects on streamflow: water
yield and summer low flows at Caspar Creek in northwestern California,
Water Resour. Res., 26, 1669–1679, 1990.
Komma, J., Blöschl, G., and Reszler, C.: Soil moisture updating by
Ensemble Kalman Filtering in real-time flood forecasting, J. Hydrol.,
357, 228–242, https://doi.org/10.1016/j.jhydrol.2008.05.020, 2008.
Kummer, D. and Turner, B.: The Human Causes of Deforestation in
Southeast Asia, BioScience, 44, 323–328,
https://doi.org/10.2307/1312382, 1994.
Legesse, D., Vallet-Coulomb, C., and Gasse, F.: Hydrological response
of a catchment to climate and land-use changes in Tropical Africa: case study
South Central Ethiopia, J. Hydrol., 275, 67–85, https://doi.org/10.1016/S0022-1694(03)00019-2, 2003.
Marshall, L., Sharma, A., and Nott, D.: Modeling the catchment via
mixtures: Issues of model specification and validation, Water
Resour. Res., 42, 1–14, https://doi.org/10.1029/2005WR004613, 2006.
McIntyre, N. and Marshall, M.: Identification of rural land
management signals in runoff response, Hydrol. Process., 24,
3521–3534, https://doi.org/10.1002/hyp.7774, 2010.
McMillan, H., Jackson, B., Clark, M., Kavetski, D., and Woods, R.:
Rainfall uncertainty in hydrological modelling: An evaluation of
multiplicative error models, J. Hydrol., 400, 83–94,
https://doi.org/10.1016/j.jhydrol.2011.01.026, 2011.
Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.: Dual
state–parameter estimation of hydrological models using ensemble Kalman
filter, Adv. Water Resour., 28, 135–147,
https://doi.org/10.1016/j.advwatres.2004.09.002, 2005.
Niu, J. and Sivakumar, B.: Study of runoff response to land use
change in the East River basin in South China, Stoch. Env. Res. Risk A.,
28, 857, https://doi.org/10.1007/s00477-013-0690-5,
2013.
Pathiraja, S., Marshall, L., Sharma, A., and Moradkhani, H.:
Hydrologic modeling in dynamic catchments: A data assimilation approach,
Water Resour. Res., 52, 3350–3372,
https://doi.org/10.1002/2015WR017192, 2016a.
Pathiraja, S., Marshall, L., Sharma, A., and Moradkhani, H.:
Detecting non-stationary hydrologic model parameters in a paired catchment
system using data assimilation, Adv. Water Resour., 94,
103–119, https://doi.org/10.1016/j.advwatres.2016.04.021, 2016b.
Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for Global
Sensitivity Analysis, Environ. Modell. Softw., 70, 80–85,
https://doi.org/10.1016/j.envsoft.2015.04.009, 2015.
Price, K.: Effects of watershed topography, soils, land use, and
climate on baseflow hydrology in humid regions: A review, Prog. Phys. Geog.,
35,
465–492,
2011.
Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R., and Kollat, J. B.:
Evolutionary multiobjective optimization in water resources: The
past, present, and future, Adv. Water Resour., 51, 438–456, 2013.
Reichle, R. H., McLaughlin, D. B., and Entekhabi, D.: Hydrologic Data
Assimilation with the Ensemble Kalman Filter, Mon.
Weather Rev., 130, 103–114,
https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2, 2002.
Rose, S. and Peters, N. E.: Effects of urbanization on streamflow in
the Atlanta area (Georgia, USA): a comparative hydrological approach,
Hydrol. Process., 15, 1441–1457,
https://doi.org/10.1002/hyp.218, 2001.
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli,
D., Saisana, M., and Tarantola, S.: Global Sensitivity Analysis, the
Primer, Wiley, Chichester, England, 2008.
Seibert, J. and McDonnell, J. J.: Land-cover impacts on streamflow:
a change-detection modelling approach that incorporates parameter
uncertainty, Hydrolog. Sci. J., 55, 316–332,
https://doi.org/10.1080/02626661003683264, 2010.
Sun, A. Y., Morris, A., and Mohanty, S.: Comparison of deterministic
ensemble Kalman filters for assimilating hydrogeological data, Adv. Water
Resour., 32, 280–292, https://doi.org/10.1016/j.advwatres.2008.11.006, 2009.
Taver, V., Johannet, A., Borrell-Estupina, V., and Pistre, S.:
Feed-forward vs recurrent neural network models for non-stationarity
modelling using data assimilation and adaptivity, Hydrolog. Sci. J.,
60, 1242–1265, https://doi.org/10.1080/02626667.2014.967696, 2015.
Thanapakpawin, P., Richey, J., Thomas, D., Rodda, S., Campbell, B., and
Logsdon, M.: Effects of landuse change on the hydrologic regime of the
Mae Chaem river basin, NW Thailand, J. Hydrol., 334,
215–230, https://doi.org/10.1016/j.jhydrol.2006.10.012, 2007.
Villarini, G. and Krajewski, W. F.: Empirically-based modeling of
spatial sampling uncertainties associated with rainfall measurements by rain
gauges, Adv. Water Resour., 31, 1015–1023,
https://doi.org/10.1016/j.advwatres.2008.04.007, 2008.
Vu, V. T.: Evaluation of the impact of deforestation to inflow regime of
the Hoa Binh Reservoir in Vietnam, Hydrology of Warm Humid Regions, Proceedings of
the Yokohama Symposium, July 1993, IAHS Publ. no. 216, 1993.
Wang, J., Ishidaira, H., and Xu, Z. X.: Effects of climate change and
human activities on inflow into the Hoabinh Reservoir in the Red River basin,
Procedia Environ. Sci., 13, 1688–1698, 2012.
Warburton, M. L., Schulze, R. E., and Jewitt, G. P. W.: Hydrological
impacts of land use change in three diverse South African catchments,
J. Hydrol., 414–415, 118–135,
https://doi.org/10.1016/j.jhydrol.2011.10.028, 2012.
Weerts, A. H. and El Serafy, G. Y. H.: Particle filtering and
ensemble Kalman filtering for state updating with hydrological conceptual
rainfall-runoff models, Water Resour. Res., 42,
https://doi.org/10.1029/2005WR004093, 2006.
Westra, S., Thyer, M., Leonard, M., Kavetski, D., and Lambert, M.: A
strategy for diagnosing and interpreting hydrological model nonstationarity,
Water Resour. Res., 5090–5113,
https://doi.org/10.1002/2013WR014719, 2014.
Wijesekara, G. N., Gupta, A., Valeo, C., Hasbani, J. G., Qiao, Y., Delaney,
P., and Marceau, D. J.: Assessing the impact of future land-use
changes on hydrological processes in the Elbow River watershed in southern
Alberta, Canada, J. Hydrol., 412–413, 220–232,
https://doi.org/10.1016/j.jhydrol.2011.04.018, 2012.
WWF: Ecosystems in the Greater Mekong: Past trends, current status,
possible futures, 2013.
Xie, X., Meng, S., Liang, S., and Yao, Y.: Improving streamflow predictions
at ungauged locations with real-time updating: application of an EnKF-based
state-parameter estimation strategy, Hydrol. Earth Syst. Sci., 18,
3923–3936, https://doi.org/10.5194/hess-18-3923-2014, 2014.
Xu, T. and Gomez-Hernandez, J.: Joint identification of contaminant
source location, initial release time, and initial solute concentration in an
aquifer via ensemble kalman filtering, Water Resour. Res., 600–612,
https://doi.org/10.1002/2016WR019111, 2016.
Yang, L., Wei, W., Chen, L., and Mo, B.: Response of deep soil
moisture to land use and afforestation in the semi-arid Loess Plateau, China,
J. Hydrol., 475, 111–122,
https://doi.org/10.1016/j.jhydrol.2012.09.041, 2012.