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Abstract. Rapid population and economic growth in South-
east Asia has been accompanied by extensive land use
change with consequent impacts on catchment hydrology.
Modeling methodologies capable of handling changing land
use conditions are therefore becoming ever more important
and are receiving increasing attention from hydrologists. A
recently developed data-assimilation-based framework that
allows model parameters to vary through time in response to
signals of change in observations is considered for a medium-
sized catchment (2880 km2) in northern Vietnam experienc-
ing substantial but gradual land cover change. We investigate
the efficacy of the method as well as the importance of the
chosen model structure in ensuring the success of a time-
varying parameter method. The method was used with two
lumped daily conceptual models (HBV and HyMOD) that
gave good-quality streamflow predictions during pre-change
conditions. Although both time-varying parameter models
gave improved streamflow predictions under changed con-
ditions compared to the time-invariant parameter model, per-
sistent biases for low flows were apparent in the HyMOD
case. It was found that HyMOD was not suited to represent-
ing the modified baseflow conditions, resulting in extreme
and unrealistic time-varying parameter estimates. This work
shows that the chosen model can be critical for ensuring
the time-varying parameter framework successfully models
streamflow under changing land cover conditions. It can also
be used to determine whether land cover changes (and not
just meteorological factors) contribute to the observed hy-

drologic changes in retrospective studies where the lack of a
paired control catchment precludes such an assessment.

1 Introduction

Population and economic growth in Southeast Asia has led to
significant land use change, with rapid deforestation occur-
ring largely for agricultural purposes (Kummer and Turner,
1994). Forest cover in the Greater Mekong Subregion (com-
prising Myanmar, Thailand, Cambodia, Laos, Vietnam and
South China) has decreased from about 73 % in 1973 to about
51 % in 2009 (WWF, 2013). Vietnam in particular has had
the second highest rate of deforestation of primary forest in
the world, based on estimates from the Forest Resource As-
sessment by the United Nations Food and Agriculture Orga-
nization (FAO, 2005). Such extensive land use change has the
potential to significantly alter catchment hydrology (in terms
of both quantity and quality), with its effects sometimes not
immediate but occurring gradually over a lengthy period of
time. Recent estimates from satellite measurements indicate
that rapid deforestation is continuing in the region, although
at lower rates (e.g., Kim et al., 2015). Persistent land use
change necessitates modeling methodologies that are capable
of providing accurate hydrologic forecasts and predictions,
despite nonstationarity in catchment processes. This is also
particularly relevant for water resource management which
requires reliable estimates of water availability, both in terms

Published by Copernicus Publications on behalf of the European Geosciences Union.



2904 S. Pathiraja et al.: Time-varying parameter models for catchments with land use change

of volume and timing, to properly allocate resources between
different water uses and to mitigate flood damage. Vietnam
has built many reservoirs in the last decades and more are
planned because they are considered to be fundamentally im-
portant for electricity production, flood control, water supply
and irrigation, ultimately contributing to the development of
the country (Giuliani et al., 2016).

The literature on land use change and its impacts on catch-
ment hydrology is extensive, with studies examining the ef-
fects of (1) conversion to agricultural land use (Thanapak-
pawin et al, 2007; Warburton et al., 2012); (2) deforesta-
tion (Costa et al., 2003; Coe et al, 2011); (3) afforestation
(e.g., Yang et al., 2012; Brown et al, 2013) and (4) urban-
ization (Bhaduri et al., 2001; Rose and Peters, 2001). Fewer
studies have examined how traditional modeling approaches
must be modified to handle nonstationary conditions, or how
modeling methods can be used to assess impacts of land use
change. Split sample calibration has been used frequently to
retrospectively examine changes to model parameters due to
land use or climatic change (Seibert and McDonnell, 2010;
Coron et al., 2012; McIntyre and Marshall, 2010; Legesse
et al., 2003). Several other studies have employed scenario
modeling, whereby hydrologic models are parameterized to
represent different possible future land use conditions (e.g.,
Niu and Sivakumar, 2013; Elfert and Borman, 2010). A re-
lated approach involves combining land use change fore-
cast models with hydrologic models (e.g., Wijesekara et al.,
2012). However, the aforementioned approaches are unsuited
to hydrologic forecasting in changing catchments, as the pre-
dicted land use change may not reflect actual changes. A po-
tentially more suitable approach in such a setting is to al-
low model parameters to vary in time, rather than assuming a
constant optimal value or stationary probability distribution.
Many existing methods utilizing such a framework require
some a priori knowledge of the land use change in order to
inform variations in model parameters (see for instance Ef-
stratiadis et al., 2015; Brown et al., 2006; and Westra et al.,
2014). Recent efforts have examined the potential for time-
varying parameter models to automatically adapt to changing
conditions using information contained in hydrologic obser-
vations and sequential data assimilation, without requiring
explicit knowledge of the changes (see for example Taver et
al., 2015; Pathiraja et al., 2016a, b). Such approaches can
objectively modify model parameters in response to signals
of change in observations in real time, while simultaneously
providing uncertainty estimates of parameters and stream-
flow predictions. They can also be used to determine whether
land cover changes (and not solely meteorological factors)
contribute to observed changes in streamflow dynamics in
retrospective studies where the lack of a paired control catch-
ment precludes such an assessment.

Pathiraja et al. (2016a) presented an ensemble Kalman fil-
ter based algorithm (the so-called Locally Linear (LL) Dual
EnKF) to estimate time variations in model parameters. The
method sequentially assimilates observations into a numer-

ical model in real time to generate improved estimates of
model states, fluxes and parameters based on their respec-
tive uncertainties. Its purpose is to infer changes to catch-
ment properties (e.g., land cover change) from hydrologic
observations, without prior knowledge of such changes, at
the timescale of the available observations. It can therefore be
used for various applications: (1) to retrospectively estimate
time variations in model parameters; (2) for short-term pre-
dictive modeling (days to weeks), e.g., flood forecasting; and
(3) for online/real-time water resource management, e.g., de-
termining releases from reservoirs in catchments with chang-
ing land cover conditions. In retrospective mode, the method
is advantageous compared to split-sample-calibration-type
approaches since no a priori knowledge of land use change
is needed, and the modeler does not have to make somewhat
arbitrary decisions about how to segregate the data. When
used for prediction or forecasting, states and parameters are
updated sequentially using all available observations up un-
til the current time. These updated states and parameters are
then used along with the prior parameter-generating model
to produce hydrologic predictions over a short time horizon.
This allows one to seamlessly obtain predictions without the
modeler needing to explicitly modify the model to account
for any catchment changes. The efficacy of the method was
demonstrated in Pathiraja et al. (2016b) through an applica-
tion to small experimental catchments (< 350 ha) with drastic
land cover changes and strong signals of change in stream-
flow observations.

Here we investigate two issues related to the use of time-
varying parameter models for prediction in realistic catch-
ments with changing land cover conditions. Firstly, we in-
vestigate the efficacy of the time-varying parameter method
for sparsely observed, medium-sized catchments with spa-
tially complex and gradual land use change (occurring over
months/years). Several authors have demonstrated that im-
pacts of land use change on the hydrologic response are de-
pendent on many factors including the type and rate of land
cover conversion as well the spatial pattern of different land
uses within the catchment (Dwarakish and Ganasri, 2015;
Warburton et al., 2012). In such situations, the effects of un-
resolved spatial heterogeneities in model inputs (e.g., rain-
fall) and the relatively less pronounced changes in land sur-
face conditions make time-varying parameter detection and
accurate hydrologic prediction more difficult. The second ob-
jective is to examine the role of the hydrologic model in de-
termining the ability of the time-varying parameter frame-
work to provide high-quality predictions in changing condi-
tions. Often there may be several candidate hydrologic mod-
els (with time-invariant parameters) that have similar predic-
tive performance for a catchment when calibrated and vali-
dated over a time series of static land cover conditions (Mar-
shall et al., 2006). This work examines whether all such can-
didate models in time-varying parameter mode are also ca-
pable of providing accurate predictions under changing con-
ditions.
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These issues are investigated for the Nam Muc catchment
(2880 km2) in northern Vietnam which has experienced de-
forestation largely due to increasing agricultural develop-
ment. It serves as an ideal test catchment to study the ef-
ficacy of the time-varying parameter algorithm due to its
size, spatially complex pattern of land use changes and lack
of information on the precise timing of such changes. Land
cover change is estimated to have occurred at varying rates,
with cropland accounting for roughly 23 % between 1981
and 1994 and 52 % by 2000. We also consider two lumped
conceptual hydrologic models (given the availability of point
rainfall, temperature and streamflow data) operating at a
daily time step to address the second objective. Both models
demonstrate similar performance in representing streamflow
at the outlet during the pre-change calibration period (1975–
1979), although their performance during and after land use
change is unknown. Therefore, the effect of the model struc-
ture (i.e., model equations) on hydrologic predictions from
the time-varying parameter models is studied. This work rep-
resents the first application of a continuously time-varying
parameter approach for modeling a real medium-sized catch-
ment with no a priori (or partial) knowledge of the type and
timing of land use change.

The remainder of this paper is structured as follows. De-
tails of the study catchment and the impact of land cover
change are analyzed in Sect. 2. Section 3 summarizes the ex-
perimental setup including the hydrological models and the
time-varying parameter estimation method used. Results are
provided in Sect. 4, along with an analysis of whether the
time-varying model structures reflect the observed catchment
dynamics. Finally, we conclude with a summary of the main
outcomes of the study as well as proposed future work.

2 The Nam Muc catchment

The Nam Muc catchment (2880 km2) is located in the Red
River Basin, the second largest drainage basin in Vietnam
which also drains parts of China and Laos. The local cli-
mate is tropical-monsoon-dominated with distinct wet (May
to October) and dry (November to April) seasons. The wet
season tends to have high temperatures (on average 27
to 29 ◦C) due to south–southeasterly winds that bring hu-
mid air masses. Conversely, during the dry season, circula-
tion patterns reverse carrying cooler dry air masses to the
basin (leading to average temperatures of 16 to 21 ◦C). The
streamflow response is consequently monsoon-driven, with
high flows occurring between June and October (generally
peaking in July and August) and low flows in the Decem-
ber to May period (Vu, 1993). Average annual rainfall at
Nam Muc varies between 1300 and 2000 mm (on average
1600 mm) and catchment elevation ranges between 350 and
1500 m a.s.l. A summary of catchment properties is provided
in Table 1 for pre-change (prior to 1994) and post-change (af-

Table 1. Study catchment properties.

Pre-1994 Post-1994

Land use

Evergreen forest (%) 77 % 48 %
(including evergreen needle
and evergreen leaf)
Cropland ( %) 23 % 52 %

Hydrometeorological properties

Mean annual rainfall (mm) 1630 1660
Mean annual runoff (mm) 838 1190
Mean annual runoff coefficient 0.5 0.7
Mean annual PET (mm) 1300 1300
Estimated mean annual BFI 0.33 0.39

ter 1994) conditions. This separation was based on available
land cover information as described below.

2.1 Data and land cover change

Figure 1 shows the available land cover information for the
Nam Muc catchment. Land cover information for the catch-
ment is scant; we were able to locate only two sources which
unfortunately do not give a complete picture over the entire
time period of interest (1970 to 2004). The first land cover
map refers to the period 1981–1994 and was obtained by
the Vietnamese Forest Inventory and Planning Institute (http:
//fipi.vn/Home-en.htm). The second land cover map refers
to the year 2000 and was obtained from the FAO Global
Land Cover database (http://www.fao.org/geonetwork/srv/
en/metadata.show?id=12749&currTab=simple). A compari-
son of the two maps shows a reduction in forest cover in fa-
vor of cropland; evergreen leaf decreases from about 60 to
30 %, while cropland increases from about 23 to 52 %. The
change in land cover is patchy, although mostly concentrated
in the northern part of the catchment. Because of the scant
information available, it is not easy to identify the precise
time period of these changes. Based on the available land
cover map information and the changes to observed runoff
(see Sect. 2.2), we posit that a period of rapid extensive de-
forestation occurred in the early to mid-1990s.

Daily point rainfall data are available at four precipitation
stations surrounding the catchment (Dien Bien, Tuan Giao,
Quynh Nhai and Nam Muc; see Fig. 1). Catchment-averaged
rainfall was developed as a weighted sum of the four stations
with weights determined by Thiessen polygons. Daily mean
temperature was calculated in a similar fashion using tem-
perature records from the two closest gauges (Lai Chau and
Quynh Nhai; see Fig. 1). This was used to estimate potential
evapotranspiration (PET) through the empirical temperature–
latitude-based Hamon PET method (Hamon, 1961). Daily
rainfall, temperature and streamflow data were provided by
the Vietnamese Institute of Water Resources Planning.
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Figure 1. Study catchment showing gauges and changes in land
cover over time.

2.2 Impact of land cover change on streamflow

The annual runoff and direct runoff coefficient and baseflow
index were used to assess the impact of land cover change
on the hydrologic regime. Baseflow was estimated using the
two-parameter recursive baseflow filter of Eckhardt (2005)
(see Eq. 1), with online updating of baseflow estimates to
match low flows:

bk =
1

(1− a ·BFImax)[
(1−BFImax) · a · bk−1+ (1− a) ·BFImax · yk

]
, (1)

where bk is the estimated baseflow at time k, yk is the total
observed streamflow at time k, BFImax is the maximum value
of the BFI (long-term ratio of baseflow to total streamflow)
and a is a filter parameter. In this study, we adopt BFImax =

0.5 and a = 0.988 based on manual optimization.
An examination of the observed streamflow and rainfall

records shows that distinct changes to the hydrologic regime
are evident after the mid-1990s. The annual runoff coeffi-
cient

(
runoff
rainfall

)
varies between 0.4 and 0.6 prior to 1994,

after which it increases to between 0.6 and 0.8 until 2004
(see Fig. 2a). However, increases in annual yields are driven
mostly by changes to baseflow volume. This is evident in
Fig. 2a, which shows that the increase in the annual direct
runoff coefficient

(
runoff−baseflow

rainfall

)
is less than the increase in

the total runoff coefficient (roughly 0.1 increase compared
to 0.2 respectively). A small increase in the annual baseflow
index

(
baseflow

runoff

)
is also apparent, from about 0.32 on aver-

age in the period 1970 to 1982 to 0.39 on average after 1994
(Fig. 2b). This indicates that the annual increases in base-
flow volume exceed the increases in direct runoff volume.
Similar changes were found by Wang et al. (2012) who ana-
lyzed records in the entire Da River basin, which drains the

largest river in the Red River catchment. The exact physical
processes behind the observed increase in baseflow are not
precisely known, particularly since the effects of land use
change from forest to cropland are not unequivocal (Price,
2011). Deforestation may be associated with an increase in
mean annual flow and baseflow because of lower intercep-
tion and evapotranspiration rates (e.g., Keppeler and Ziemer,
1990). Nevertheless, permanent forest removal may decrease
baseflow because of soil compaction and lower infiltration
rates (e.g., Zimmermann et al., 2006; Bormann and Klaassen,
2008). Some authors also show that tillage practices, asso-
ciated with forest conversion to cropland, can increase soil
porosity, soil water content and infiltration, thus ultimately
contributing to baseflow formation (e.g., Alam et al., 2014).

On a seasonal timescale, it is apparent that both wet and
dry season flows exhibit temporal variations. We utilized the
Moving Average over Shifting Horizon (MASH) (Anghi-
leri et al., 2014) and Mann–Kendall test to assess seasonal
trends in observed streamflow, precipitation and temperature
data. The MASH tool can be used to qualitatively assess in-
terannual variations in the seasonal pattern of a variable. It
works by calculating a statistic of the data (e.g., mean) over
the same block of days in consecutive years. A steady in-
crease in baseflow is again apparent (see February to April in
Fig. 2c), as well as increases in wet season flows (see June to
September in Fig. 2c). The Mann–Kendall test (with signifi-
cance level equal to 5 %) on annual and monthly streamflow
time series shows increasing trends in almost all months, i.e.,
from October to July. No concurrent increases are apparent in
rainfall (see Fig. 2d). Also, the Mann–Kendall test applied to
precipitation time series does not show any statistically sig-
nificant trend, except a decrease in September for Nam Muc
and Quynh Nhai stations and an increase in July for the Dien
Bien station. Temperature variations are not evident from the
MASH analysis (not shown) and no significant trend can be
detected by applying the Mann–Kendall test. These results
indicate that changes in streamflow dynamics are likely due
to land use change rather than climatic impacts.

3 Experimental setup

3.1 Hydrologic models

Conceptual lumped models operating at a daily time step
were adopted due to the availability of point rather than
distributed hydrometeorological data of sufficient length.
We considered the HyMOD (Boyle, 2001) and Hydrol-
ogiska Byrans Vattenbalansavdelning (HBV) (Bergström,
1995) models. They differ mainly in the way components
of the response flow are separated (HBV has near-surface
flow, interflow and baseflow components, while HyMOD has
a quick flow and slow flow component only) and how these
flows are routed. A schematic of the models is shown in
Fig. 3.
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Figure 2. Impact of land use change on observed streamflow: (a) annual runoff coefficient, (b) annual baseflow index (BFI), (c) Moving
Average over Shifting Horizon (MASH) results for total observed runoff and (d) MASH for observed rainfall.

In the HyMOD model, spatial variations in catchment soil
storage capacity are represented by a Pareto distribution with
shape parameter b and maximum point soil storage depth
cmax. Excess rainfall (V ) is partitioned into three cascading
tanks, representing quick flow and a single slow flow store
through the splitting parameter α. Outflow from these linear
routing tanks is controlled by parameters kq (for the quick
flow store) and ks (for the slow flow store). The model has a
total of five states and five parameters.

In the HBV model, input to the soil store is represented by
a power-law function (see Fig. 3; note the snow store is ne-
glected for this study). Excess rainfall enters a shallow layer
store which generates (1) near-surface flow (q0) whenever
the shallow store state (stw1) is above a threshold (hl1) and
(2) interflow (q1) through a linear routing mechanism con-
trolled by the K1 parameter. Percolation from the shallow
layer store to the deep layer store (controlled by the perc pa-
rameter) then leads to the generation of baseflow, also via
linear routing (controlled by theK2 parameter). Finally, a tri-
angular weighting function of base length, Maxbas, is used
to route the sum of all three flow components. There are a
total of nine parameters and three states.

The Shuffled Complex Evolution Algorithm (SCE-UA)
(Duan et al., 1993) was used to calibrate HyMOD and the
Borg Evolutionary Algorithm (Hadka and Reed, 2013) was
used to calibrate HBV. The calibration algorithms were se-
lected based on previous studies that had successfully used
them for calibration of these models (Reed et al., 2013;
Moradkhani et al., 2005). The calibration procedure itself
is however not critical in our study because the optimal pa-

rameter values are only used as initial values for the time-
varying parameter method. Both models were calibrated to
pre-change conditions. The period 1973 to 1979 was selected
for calibration (with 2 years for spin-up) as it was expected
to have minimal land cover changes (and is therefore repre-
sentative of pre-change conditions) and also to ensure suffi-
cient data on pre-change conditions are available for assim-
ilation. Both models had very similar performance in terms
of reproducing observed runoff (a Nash–Sutcliffe efficiency
of 0.75 and 0.77 for HyMOD and HBV respectively). HBV
was slightly better at reproducing low flows, while HyMOD
was slightly better at mid-range flows (see Table 2). Here the
low flow threshold was defined as the average annual 50th
percentile flow and the high flow threshold as the average
annual 85th percentile flow.

3.2 Time-varying parameter estimation

A data-assimilation-based framework for estimating time-
varying parameters was presented in Pathiraja et al. (2016a).
The approach relies on an ensemble Kalman filter (EnKF)
(Evensen, 1994) to perform sequential joint state and param-
eter updating. EnKFs were developed to extend the applica-
bility of the celebrated Kalman filter (Kalman, 1960) to non-
linear systems, although they provide a suboptimal update
as only the mean and covariance are considered in generat-
ing the posterior distribution. However, they have been used
with much success in many hydrologic applications (see for
example Reichle et al., 2002; Gu and Oliver, 2005; Komma
et al., 2008; Sun et al., 2009; Xu et al., 2016). EnKFs offer a
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Figure 3. Schematic of the models used in this study: (a) HBV and (b) HyMOD. Parameters are shown in blue and states are shown in green.

Table 2. Model performance in pre-change conditions used for cal-
ibration (1975–1979). Boldface numbers correspond to the model
with superior performance for the particular metric. NSE is the
Nash–Sutcliffe efficiency; MAE is the mean absolute error; RMSE
is the root mean squared error.

HYMOD HBV

NSE ( ) 0.77 0.75

Peak flows (q > 5 mm d−1)

MAE (mm d−1) 3.11 2.85
RMSE (mm d−1) 4.55 4.72

Medium flows (1 mm d−1
≤ q ≤ 5 mm d−1)

MAE (mm d−1) 0.66 0.80
RMSE (mm d−1) 0.86 1.09

Low flows (q < 1 mm d−1)

MAE (mm d−1) 0.35 0.20
RMSE (mm d−1) 0.42 0.34

practical alternative to sequential Monte Carlo/particle filter
methods that propagate the full probability density through

time but suffer from several implementation issues, even in
moderate dimensional systems. The LL Dual EnKF method
of Pathiraja et al. (2016a) works by sequentially proposing
parameters, updating these using the ensemble Kalman fil-
ter and available observations and subsequently using these
updated parameters to propose and update model states. An
approach for proposing parameters in the time-varying set-
ting was also presented, for cases where no prior knowledge
of parameter variations is available. The method was ver-
ified against multiple synthetic case studies as well as for
two small experimental catchments experiencing controlled
land use change (Pathiraja et al., 2016a, b). The algorithm
is summarized below; for full details refer to Pathiraja et
al. (2016a).

3.2.1 LL Dual EnKF

Suppose a dynamical system can be described by a vec-
tor of states xt and outputs yt and a vector of associated
model parameters θ t at any given time t . The uncertain sys-
tem states and parameters are represented by an ensemble of
states

{
xit
}
i=1 : n and parameters

{
θ it
}
i=1 : n each with nmem-

bers. The prior state and parameter distributions
{
xi−t

}
i=1 : n

and
{
θ i−t

}
i=1 : n, respectively, represent our prior knowledge
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S. Pathiraja et al.: Time-varying parameter models for catchments with land use change 2909

of the system, usually derived as the output from a numeri-
cal model. Suppose also that the system outputs are observed(
yot
)

but that there is also some uncertainty associated with
these observations. The purpose of the data assimilation al-
gorithm (here the EnKF) is to combine the prior estimates
with measurements, based on their respective uncertainties,
to obtain an improved estimate of the system states and pa-
rameters. A single cycle of the LL Dual EnKF procedure for
a given time t is undertaken as follows. Note that in the fol-
lowing, the overbar notation is used to indicate the ensemble
mean.

1. Propose a prior parameter ensemble. This involves gen-
erating a parameter ensemble using prior knowledge. In
this case, our prior knowledge comes from the updated
parameter ensemble from the previous time (θ i+t−1) and
how it has changed over recent time steps. The assumed
parameter dynamics is a Gaussian random walk with
time-varying mean and variance, given by

θ i−t ∼ N
(
θ i+t−1+ mt .1t , s

26θt−1

)
for i = 1 : n (2)

6θt−1 =
1

n− 1

n∑
i=1

(
θ i+t−1− θ

+

t−1

)(
θ i+t−1− θ

+

t−1

)T
, (3)

where 6θt−1 is the sample covariance matrix of the up-

dated parameter ensemble at time t − 1; θ+t−1 indicates
the ensemble mean of the updated parameters at time
t − 1; ()T represents the transpose operator; and s2 is
a tuning parameter. The prior ensemble mean is deter-
mined as the linear extrapolation of the updated ensem-
ble means from the previous two time steps; i.e.,

mt [k]=
{
mt−1 [k] , |mt−1 [k]| ≤ mmax
mt−2 [k] , |mt−1 [k]| > mmax

(4)

mt−1 =
θ+t−1− θ

+

t−2

1t
(5)

mt−2 =
θ+t−2− θ

+

t−3

1t
, (6)

where mt [k] indicates the kth component of the vector
mt , the estimated rate of change. Note that the extrap-
olation is forced to be less than a predefined maximum
rate of change mmax to minimize overfitting and avoid
parameter drift due to isolated large updates. The max-
imum rate of change is model-specific and will depend
on the modeler’s judgement regarding expected extreme
changes.

2. Consider observation and forcing uncertainty. This is
done by perturbing measurements of forcings and sys-
tem outputs with random noise sampled from a distri-
bution representing the uncertainty in those measure-
ments. The result is an ensemble of forcings (uit ) and
observations (yit ) each with n members. For example,

if random errors in measurements of system outputs
(herein also referred to as observations) are character-
ized by a zero mean Gaussian distribution, the ensemble
of observations is given by

yit ∼ N
(
yot ,6

yoyo

t

)
for i = 1 : n, (7)

where yot is the recorded measurement at time t and
6
yoyo

t is the error covariance matrix of the measure-
ments.

3. Generate simulations using prior parameters. The prior
parameters from Step 1, θ i−t , and updated states from
the previous time, xi+t−1, are forced through the model
equations to generate an ensemble of model simulations
of states (x̂it ) and outputs (ŷit ):

x̂it = f
(
xi+t−1,θ

i−
t ,u

i
t

)
for i = 1 : n (8)

ŷit = h
(
x̂it ,θ

i−
t

)
for i = 1 : n. (9)

4. Perform the Kalman update of parameters. Parameters
are updated using the Kalman update equation and the
prior parameter and simulated output ensemble from
Step 1 and 3:

θ i+t = θ
i−
t +K

θ
t

(
yit − ŷ

i
t

)
for i = 1 : n (10)

Kθ
t = 6

θŷ
t

[
6
ŷŷ
t + 6

yoyo

t

]−1
, (11)

where 6θŷt is a matrix of the sample cross-covariance
between errors in parameters θ i−t and simulated output
ŷit ; and 6ŷŷt is the sample error covariance matrix of the
simulated output:

6
θŷ
t =

1
n− 1

n∑
i=1

(
θ i−t − θ

−
t

)(
ŷit − ŷt

)T
(12)

6
ŷŷ
t =

1
n− 1

n∑
i=1

(
ŷit − ŷt

)(
ŷit − ŷt

)T
. (13)

5. Generate simulations using updated parameters. Step 3
is repeated with the updated parameter ensemble θ i+t
to generate the prior ensemble of model simulations of
states (xi−t ) and outputs (̃yit ):

xi−t = f
(
xi+t−1,θ

i+
t ,u

i
t

)
for i = 1 : n (14)

ỹit = h
(
xi−t ,θ

i+
t

)
for i = 1 : n. (15)

6. Perform the Kalman update of states and outputs. Use
the Kalman update equation for correlated measurement
and process noise (Eqs. 15 to 18) and the simulated state
(xi−t ) and output (̃yit ) ensembles from Step 5 to update
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them. Since the measurements have already been used
to generate ỹit , the errors in model simulations and mea-
surements are now correlated. The standard Kalman up-
date equation (as in the form of Eqs. 10 and 11) can no
longer be used as it relies on the assumption that er-
rors in measurements and model simulations are inde-
pendent.

xi+t = x
i−
t +K

x
t

(
yit − ỹ

i
t

)
for i = 1 : n (16)

Kx
t =

[
6
xỹ
t +6

εxy
o

t

]
[
6
ỹỹ
t +6

εỹy
o

t +

(
6
εỹy

o

t

)T
+6

yoyo

t

]−1

(17)

εixt = x
i−
t − x̂

i
t (18)

εiỹt = ỹ
i
t − ŷ

i
t , (19)

where 6xỹt is a matrix of the sample cross-covariance
between simulated states

{
xi−t

}
i=1 : n

and outputs{̃
yit
}
i=1 : n from Step 5; 6εxy

o

t represents the sample
covariance between

{
εixt

}
i=1 : n and the observations;

and6
εỹy

o

t represents the sample covariance between the{
εiỹt

}
i=1 : n

and the observations.

The above algorithm specifies the updating of states and pa-
rameters at any given time, based on available observations.
This allows one to retrospectively estimate time variations
in model parameters, as well as provide one-time-step-ahead
forecasts of states and outputs (as per Eqs. 8 and 9). Fore-
casts at longer time horizons (i.e., longer than one time step
ahead) would be made by generating prior parameters and
states as detailed in Steps 1 to 3, although the local linear
extrapolations are only valid close to the current time point.

3.2.2 Application to the Nam Muc catchment

Joint state and parameter estimation was undertaken for the
Nam Muc catchment over the period 1980 to 2004 by assim-
ilating streamflow observations into the HyMOD and HBV
models at a daily time step. Additionally, simulations using
the time-invariant parameters obtained from calibration over
the period 1973–1979 were generated for 1980 to 2004, for
comparison. Estimating a large number of parameters from
limited data is problematic in that the system is highly under-
determined, making it difficult to ensure the estimated pa-
rameters are meaningful. Given the fairly low parameter di-
mensionality of HyMOD, all model parameters were allowed
to vary in time, while for HBV we applied the Sobol method
to identify the most sensitive parameters to be included in the
time-varying parameter estimation. The Sobol method is a
global sensitivity analysis method based on variance decom-
position. It identifies the partial variance contribution of each
parameter to the total variance of the hydrological model out-
put (see for example Saltelli et al., 2008; Nossent et al. 2011).

Table 3. Variance-based sensitivity analysis results for HBV pa-
rameters: first-order sensitivity index representing the contribution
of varying a single parameter to the variance of the model output.
Lower values indicate lower sensitivity.

Sensitivity index

hl1 0.10
lp 0.12
Maxbas 0.14
fcap 0.18
K0 0.23
K2 0.23
K1 0.38
beta 0.41
perc 0.47

The method, implemented through the SAFE toolbox (Pi-
anosi et al., 2015), found the lp and Maxbas parameters to
be the least sensitive and least important in defining varia-
tions in catchment hydrology (see Table 3). These were held
fixed (lp= 1 and Maxbas= 1 day) in the following analy-
sis. Note that although the hl1 parameter was found to have
low sensitivity, it was retained as a time-varying parameter
due to its conceptual importance in separating interflow and
near-surface flow (refer Fig. 3).

Unbiased normally distributed ensembles of the parame-
ters and states are required to initialize the LL Dual EnKF.
Initial parameter ensembles were generated by sampling
from a Gaussian distribution with a mean equal to the cal-
ibrated parameters over the pre-change period and variance
estimated from parameter sets with similar objective function
values. Parameter sets with similar objective function values
were obtained when using different starting points to the opti-
mization algorithm during the model calibration stage. Initial
state ensembles were also sampled from normal distributions
with a mean equal to the simulated state at the end of the
calibration period. An ensemble size of 100 members was
adopted and assumed sufficiently large based on the findings
of Moradkhani et al. (2005) and Aksoy et al. (2006). Due
to the stochastic–dynamic nature of the method, ensemble
statistics were calculated over 20 separate realizations of the
LL Dual EnKF. The prior parameter-generating method de-
scribed in Step 1 of Sect. 3.2 requires specification of the
tuning parameter s2 to define the variance of the perturba-
tions. This was tuned by selecting the s2 value that opti-
mized the quality of forecast streamflow over the calibration
period. Forecast quality was assessed using the logarithmic
score (LS) (Good, 1952) of background streamflow predic-
tions (̃yit ) using updated parameters (Eq. 15), which was av-
eraged over the calibration period of length T :

LS=
T∑
t=1

LSt (20)
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Table 4. LL EnKF inputs for the HBV model case.

Parameters

Description Units Initial sampling Feasible s2 Max allowable daily rate
distribution range of change (mmax)

β Soil moisture
exponent

( ) N (2, 0.1) 0–7 0.003 1.8× 10−3

fcap Maximum soil
moisture store
depth

(mm) N (467, 10) 10–2000 0.003 0.4

hl1 Threshold for
generation of
near-surface flow

(mm) N (120, 10) 0–400 0.003 0.1

K Near-surface flow
routing coefficient

( ) N (0.3, 0.005) 0.0625–1 0.003 2× 10−4

K1 Interflow routing
coefficient

( ) N (0.09, 5× 10−4) 0.02–0.1 0.003 9× 10−6

perc Percolation rate (mm d−1) N (1.3, 10−4) 0–3 0.003 10−3

K2 Baseflow routing
coefficient

( ) N (0.01, 10−6) 5× 10−5–0.02 0.003 9× 10−6

States

sowat Soil moisture store (mm) N (0,1) (0, fcap)
stw1 Shallow layer store (mm) N (0,1) (0,∞)
stw2 Deep layer store (mm) N (0,0.1) (0,∞)

LSt = log
(
f
(
y = yot

))
, (21)

where f (y) is the probability density function of the back-
ground streamflow predictions (represented by the empirical
probability density function of the sample points

{
ỹit
}
i=1 : n);

and yot is the measurement of the system outputs. The s2

value that gave the largest LS was adopted for the assimi-
lation period. The maximum allowable daily rate of change
in the ensemble mean was based on assuming a linear rate
of change within the entire feasible parameter space over a
3-year period.

As detailed in Sect. 3.2, observation and forcing uncer-
tainty is considered by perturbing measurements with ran-
dom noise. Here streamflow errors were assumed to be zero-
mean normally distributed (truncated to ensure positivity)
and heteroscedastic. The variance is defined as a proportion
of the observed streamflow, to reflect the fact that larger flows
tend to have greater errors than low flows:

yit ∼ TN
(
yot , dy

o
t

)
for i = 1 : n, (22)

where TN indicates the truncated normal distribution to en-
sure positive flows and d = 0.1. A multiplier of 0.1 was cho-
sen based on estimates adopted for similar gauges in hydro-
logic data assimilation (DA) studies (e.g., Clark et al., 2008;
Weerts and El Serafy, 2006; Xie et al., 2014).

Several studies have noted that a major source of rainfall
uncertainty arises from scaling point rainfall to the catchment
scale (Villarini and Krajewski, 2008; McMillan et al., 2011)

and that multiplicative error models are suited to describing
such errors (e.g., Kavetski et al., 2006). Rainfall uncertain-
ties were therefore described using unbiased, lognormally
distributed multipliers:

P it = PtM
i (23)

M i
∼ LN (m, v)

and Xi = log
(
M i
)
∼N(µ,σ 2) for i = 1 : n, (24)

where Pt is the measured rainfall at time t ; m and v are
the mean and variance of the lognormally distributed rainfall
multipliers M , respectively; and µ and σ 2 are the mean and
variance of the normally distributed logarithm of the rain-
fall multipliers M . For unbiased perturbations, we let m= 1.
The variance of the rainfall multipliers (v) was estimated by
considering upper and lower bound error estimates in the
Thiessen weights assigned to the four rainfall stations (see
Sect. 2.1 for calculation of catchment-averaged rainfall, Pt ).
The resulting upper and lower bound catchment-averaged
rainfall data were then used to estimate error parameters due
to spatial variation in rainfall:

v = e(2µ+ σ
2)
(
eσ

2
− 1

)
(25)

σ 2
=
ˆ
σ 2
= var

(
log

[
Pupper,10

Plower,10

])
(26)

µ≈ log(m)−
σ 2

2
=−

σ 2

2
, (27)
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Figure 4. Parameter trajectories using the HBV model. The dark grey shaded areas indicate the middle 90 % of the ensemble, bounded by
the 5th and 95th percentiles. The light grey shaded areas indicate the middle 50 % of the ensemble, bounded by the 25th and 75th percentiles.
The ensemble mean is indicated by the blue line. The vertical green panel indicates the assumed time period of rapid deforestation.

where Pupper,10 indicates catchment-averaged rainfall data
estimated using the upper bound Thiessen weights with daily
depth greater than 10 mm (similar for Plower,10). A 10 mm
rainfall depth threshold was chosen to avoid large rainfall
fractions due to small rainfall depths. ˆσ 2 was found to be
0.05 in this case study. Similarly, we assume the dominant
source of uncertainty in temperature data arises from spa-
tial variation. Differences in temperature records at Lai Chau
and Quynh Nhai (only available gauges with temperature
records) were analyzed and found to be approximately nor-
mally distributed with a sample mean of 0.2 ◦C and variance
of 1.4 ◦C. A perturbed temperature ensemble was then gen-
erated according to Eq. (28):

T it ∼ TN
(
T

avg
t , 1.4

)
for i = 1 : n, (28)

where T avg
t represents catchment-averaged temperature data

(see Sect. 2.1). Note that perturbations were taken to be unbi-
ased (zero mean) as the sample mean of the differences in the

temperature records was close to zero. The same perturbed
input and observation sequences were used for the HyMOD
and HBV runs for the sake of comparison. A summary of the
values adopted for the various components of the LL Dual
EnKF for each model is provided in Tables 4 and 5.

4 Results and discussion

Temporal variations in the estimated parameter distributions
from the LL Dual EnKF are evident for both models (see
Figs. 4 and 5). In the case of the HBV model, changes on an
interannual timescale are evident for the perc and β parame-
ters (see Fig. 4). The decrease in the β parameter means that a
greater proportion of rainfall is converted to runoff (i.e., more
water entering the shallow layer storage). Additionally, the
increase in the perc parameter means that a greater volume
of water is made available for baseflow generation. These
changes correspond with the observed increase in the annual
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Figure 5. Parameter trajectories using the HyMOD model. The dark grey shaded areas indicate the middle 90 % of the ensemble, bounded by
the 5th and 95th percentiles. The light grey shaded areas indicate the middle 50 % of the ensemble, bounded by the 25th and 75th percentiles.
The ensemble mean is indicated by the blue line. The vertical green panel indicates the assumed time period of rapid deforestation.

runoff coefficient (Fig. 2) and increase in baseflow volume
(as discussed in Sect. 2.2). From an algorithm perspective,
these parameters are most strongly correlated with stream-
flow (as well as the most sensitive; see Table 3), meaning
that they will receive the greatest proportional updates. Sim-
ilar parameter adjustments are seen for HyMOD, at least at a
qualitative level (see Fig. 5). The sharp increase in the b pa-
rameter during the post-change period means that a greater
volume of water is available for routing (as larger b values
mean that a smaller proportion of the catchment has deep
soil storage capacity) and the downward interannual trend
in α means that a greater portion of excess runoff is routed
through the baseflow store. Intra-annual variations in updated
model parameters for both HyMOD and HBV are also appar-
ent (refer Figs. 4 and 5). This is due to the inability of a sin-
gle parameter distribution to accurately model both wet and
dry season flows. Such variations were not observed when
using the time-varying parameter framework for small defor-
ested catchments (< 350 ha) (see Pathiraja et al., 2016b). The

comparatively less clear parameter changes for the Nam Muc
catchment are due to a combination of the increased difficulty
in accurately modeling the hydrologic response (even in pre-
change conditions) and due to the relatively more subtle and
gradual changes to land cover. Nonetheless, the method is
shown to generate a temporally varying structure that is con-
ceptually representative of the observed changes.

Despite the overall correspondence between changes to
model parameters and observed streamflow, a closer exam-
ination shows that the hydrologic model structure is criti-
cal in determining whether the time-varying parameter mod-
els accurately reflect changes in all aspects of the hydro-
logic response (not just total streamflow). In order to exam-
ine the impact of parameter variations on the model dynam-
ics, we generated model simulations with the time-varying
parameter ensemble from the LL Dual EnKF, but without
state updating (hereafter referred to as TVP-HBV and TVP-
HyMOD). Streamflow predictions from the LL Dual EnKF
(i.e., with state and parameter updating) for both the Hy-
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Table 5. LL EnKF inputs for the HYMOD model case.

Parameters

Description Units Initial sampling Feasible s2 Max allowable daily rate
distribution range of change (mmax)

b Pareto-distributed
soil storage shape
parameter

( ) N (0.37, 10−4) 0–0.3 0.004 3× 10−4

cmax Maximum point
soil storage depth

(mm) N (651, 10) 300–1500 0.004 0.3

kq Quick flow routing
coefficient

( ) N (0.6, 5× 10−4) 0.55–0.99 0.018 3× 10−4

ks Slow flow routing
coefficient

( ) N (0.04, 5× 10−4) 0.001–0.54 0.018 4× 10−5

α Excess runoff
Splitting parameter

( ) N (0.47, 5× 10−4) 0.001–0.99 0.018 4× 10−4

States

S Soil store (mm) N (180, 0.1× 180) (0, Smax =
bcmin+cmax

b+1 )

Sq1,2,3 Quick flow store (mm) N (0,1) (0,∞)
Ss Slow flow store (mm) N (0,1) (0,∞)
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Figure 6. Representative hydrographs of background streamflow from the LL Dual EnKF (black line), time-varying parameter model with
no state updating (blue line), time-invariant parameter model with no DA (green line) and observed streamflow (red line). Results for HBV
are shown in the top row and HyMOD in the bottom row. A pre-change year (1974) is shown on the left and a post-change year (1998) on
the right.
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Figure 7. Influence of time-varying parameters on model output (i.e., without state updating) summarized in terms of the annual runoff
coefficient (top row), annual direct runoff coefficient (second row) and annual baseflow index (BFI) (third row). Results for HyMOD are
shown in the first column, and results for HBV are shown in the second column.

MOD and HBV are generally of similar quality and superior
to those from the respective time-invariant parameter models
that have been calibrated on pre-change data (1975–1979),
although a slight bias in baseflow predictions from HyMOD
is evident (see for example Fig. 6). The Nash–Sutcliffe ef-
ficiency of one-step-ahead streamflow predictions over the
period 1980–2004 from the LL Dual EnKF is 0.87 when us-
ing HyMOD or HBV, compared to 0.76 and 0.72 for the re-
spective time-invariant parameter models evaluated over the
same period. However, differences in predictions from TVP-
HBV and TVP-HyMOD are more striking due to the lack of
state updating. Figure 7 shows annual statistics of simulated
streamflow from the TVP-HBV and TVP-HyMOD models
and observed runoff. The TVP-HBV gives direct runoff and
baseflow predictions that are consistent with runoff obser-
vations, meaning that the parameter adjustments reflect the
observed changes in the runoff response. This however is not

the case for the TVP-HyMOD. The annual runoff coefficient
and annual direct runoff coefficient are severely underesti-
mated in the post-change period by the TVP-HyMOD, while
the annual baseflow index has an increasing trend of magni-
tude far greater than that observed (Fig. 7c). All three quanti-
ties on the other hand are well represented by the TVP-HBV
(Fig. 7d–f). Similar conclusions can be drawn from Fig. 8,
which shows the results of a Moving Average over Shifting
Horizon (MASH) analysis (see Sect. 2.2) on total and direct
runoff (observed and simulated). Observed increases in Jan-
uary to April flows (see Fig. 8a) and wet season direct flows
(July to September) (see Fig. 8e) are well represented by the
TVP-HBV but not TVP-HyMOD.

The reason for the differences in performance between the
TVP-HBV and TVP-HyMOD lies in the structure of the hy-
drologic model. The TVP-HyMOD is incapable of represent-
ing the observed increase in annual runoff/direct runoff co-
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Figure 8. Moving Average over Shifting Horizon (MASH) results for observed streamflow (first column), simulated streamflow from time-
varying parameter model (without state DA) for HYMOD (second column), HBV (third column) and resampled climate HBV (fourth
column). These are split into total runoff (first row) and direct runoff or surface runoff (second row).

efficient due to the increased baseflow during dry periods,
despite having an annual baseflow index far greater than the
observed. This occurs due to an inability to generate flow
volume during periods of no rain. In joint state–parameter
updating using HyMOD, underestimated runoff predictions
during dry periods lead to adjustments to the ks and α pa-
rameters to increase baseflow depth (since these are the only
parameters that are associated with an active store). Unlike
HBV, HyMOD has no continuous supply of water to the rout-
ing stores (i.e., the quick flow and slow flow stores) during
recession periods (which typically have extended periods of
no rainfall, so that V in Fig. 3 is zero). This means that ks and
α are updated to extreme values to compensate for the volu-
metric shortfall. The HBV structure, on the other hand, has
a continuous percolation of water into the deep layer store
even during periods of no rain (as long as the shallow water
store is non-empty). In summary, the HyMOD model struc-
ture is poorly suited to simulating streamflow dynamics in
post-change conditions, although it gave reasonable simula-
tions in pre-change conditions. This highlights the need to se-
lect a sufficiently flexible model structure prior to undertak-
ing forecasting or predictive modeling using the time-varying
parameter approach. In particular, the model structure must
be capable of effectively simulating all potential future catch-
ment conditions.

Having established that the TVP-HBV provided a good
representation of the observed streamflow dynamics, we used
a modeling approach to determine whether the observed
changes were solely driven by forcings and which (if any)
components of runoff were also affected by land use change.
A resampled rainfall and temperature time series was gener-

ated by sampling the data without replacement across years
for each day (for instance rainfall and temperature for 1 Jan-
uary 1990 is found by randomly sampling from all records
on 1 January). This maintains the intra-annual (e.g., sea-
sonal) variability but destroys any interannual trends in the
meteorological data. Streamflow simulations were then gen-
erated using this resampled meteorological sequence as in-
puts to the TVP-HBV (i.e., without state updating). If the
resulting streamflow simulations do not reproduce the ob-
served changes to streamflow dynamics, then this indicates
that changes to meteorological forcings are the main contrib-
utor. However, if it is able to at least partially (or fully) repro-
duce the observed streamflow changes, this means that land
cover changes are impacting catchment hydrology (but po-
tentially in addition to forcing changes, due to the presence
of ecosystem feedbacks). Figure 8d and h show the results
of a MASH analysis undertaken on the resulting simulations
of total and direct runoff using the resampled forcing time
series and TVP-HBV model. Observed increases in baseflow
during the January–April period (see Fig. 8a) and increases
in direct runoff in the June–September period (see Fig. 8e)
are reproduced. The magnitude of increase in direct runoff in
July is slightly lower, also indicating the potential for some
climatic influences. This is consistent with findings from the
Mann–Kendall test, which identified a statistically significant
increase in July rainfall (see Sect. 2.2). Overall, however,
these results give further weight to the conclusion that land
cover change has impacted the hydrologic regime of the Nam
Muc catchment. These results also demonstrate that param-
eter changes correspond to actual changes in catchment hy-
drology and are not just random fluctuations that reproduce
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the observed streamflow statistics only when the observed
forcing time series is used.

5 Conclusions

As our anthropogenic footprint expands, it will become in-
creasingly important to develop modeling methodologies
that are capable of handling changing catchment conditions.
Previous work proposed the use of models whose parame-
ters vary with time in response to signals of change in ob-
servations. The so-called Locally Linear (LL) Dual EnKF
time-varying parameter estimation algorithm (Pathiraja et al.,
2016a) was applied to two sets of small (< 350 ha) paired
experimental catchments with deforestation occurring under
experimental conditions (rapid clearing of 100 and 50 % of
land surface) (Pathiraja et al., 2016b). Here we demonstrate
the efficacy of the method for a larger catchment experienc-
ing more realistic land cover change, while also investigat-
ing the importance of the chosen model structure in ensuring
the success of the time-varying parameter estimation method.
We also demonstrate that the time-varying parameter frame-
work can be used in a retrospective fashion to determine
whether land cover changes (and not just meteorological fac-
tors) contribute to the observed hydrologic changes.

Experiments were undertaken in the Nam Muc catchment
(2880 km2) in Vietnam, which experienced a relatively grad-
ual conversion from forest to cropland over a number of
years (cropland increased from roughly 23 % of the catch-
ment between 1981 and 1994 to 52 % by 2000). Changes
to the hydrologic regime after the mid-1990s were detected
and attributed mostly to an increase in baseflow volume. Ap-
plication of the LL Dual EnKF with two conceptual mod-
els (HBV and HyMOD) showed that the time-varying pa-
rameter framework with state updating improved stream-
flow prediction in post-change conditions compared to the
time-invariant parameter case. However, baseflow predic-
tions from the LL Dual EnKF with HBV were generally su-
perior to the HyMOD case which tended to have a slight neg-
ative bias. It was found that the structure (i.e., model equa-
tions) of HyMOD was unsuited to representing the modi-
fied baseflow conditions, resulting in extreme and unrealistic
time-varying parameter estimates. This work shows that the
chosen model is critical for ensuring the time-varying param-
eter framework successfully models streamflow in unknown
future land cover conditions, particularly when used in a real-
time forecasting mode. Appropriate model selection can be
a difficult task due to the significant uncertainty associated
with future land use change and can be even more problem-
atic when multiple models have similar performance in pre-
change conditions (as was the case in this study). One pos-
sible way to ensure success of the time-varying parameter
approach is to use models whose fundamental equations ex-
plicitly represent key physical processes (for instance, mod-
eling subsurface flow using the Richards equation with hy-

draulic conductivity allowed to vary with time). In this way,
time variations in model parameters would more closely re-
flect changes to physiographic properties, rather than also
having to account for missing processes. The drawback of
such physically based models is that they are generally data-
intensive, both in generating model simulations (i.e., detailed
inputs) and specifying parameters. Additionally, it may be
necessary to reduce the dimensionality of the time-varying
parameter vector by keeping less sensitive model parame-
ters fixed in order to make the estimation problem tractable.
Models of intermediate complexity that have explicit process
descriptions may be the most promising, although this also
remains to be demonstrated.
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