Research article
20 Apr 2018
Research article | 20 Apr 2018
Analytical flow duration curves for summer streamflow in Switzerland
Ana Clara Santos et al.
Related authors
Water tracing with environmental DNA in a high-Alpine catchment
Elvira Mächler, Anham Salyani, Jean-Claude Walser, Annegret Larsen, Bettina Schaefli, Florian Altermatt, and Natalie Ceperley
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-551,https://doi.org/10.5194/hess-2019-551, 2019
Revised manuscript not accepted
Short summary
How plant water status drives tree source water partitioning
Magali F. Nehemy, Paolo Benettin, Mitra Asadollahi, Dyan Pratt, Andrea Rinaldo, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-528,https://doi.org/10.5194/hess-2019-528, 2019
Preprint withdrawn
SEHR-ECHO v1.0: a Spatially Explicit Hydrologic Response model for ecohydrologic applications
B. Schaefli, L. Nicótina, C. Imfeld, P. Da Ronco, E. Bertuzzo, and A. Rinaldo
Geosci. Model Dev., 7, 2733–2746, https://doi.org/10.5194/gmd-7-2733-2014,https://doi.org/10.5194/gmd-7-2733-2014, 2014
Short summary
Related subject area
Flexible vector-based spatial configurations in land models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020,https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Assimilation of Soil Moisture and Ocean Salinity (SMOS) brightness temperature into a large-scale distributed conceptual hydrological model to improve soil moisture predictions: the Murray–Darling basin in Australia as a test case
Renaud Hostache, Dominik Rains, Kaniska Mallick, Marco Chini, Ramona Pelich, Hans Lievens, Fabrizio Fenicia, Giovanni Corato, Niko E. C. Verhoest, and Patrick Matgen
Hydrol. Earth Syst. Sci., 24, 4793–4812, https://doi.org/10.5194/hess-24-4793-2020,https://doi.org/10.5194/hess-24-4793-2020, 2020
Short summary
Frequency and magnitude variability of Yalu River flooding: numerical analyses for the last 1000 years
Hui Sheng, Xiaomei Xu, Jian Hua Gao, Albert J. Kettner, Yong Shi, Chengfeng Xue, Ya Ping Wang, and Shu Gao
Hydrol. Earth Syst. Sci., 24, 4743–4761, https://doi.org/10.5194/hess-24-4743-2020,https://doi.org/10.5194/hess-24-4743-2020, 2020
Short summary
Adaptive clustering: reducing the computational costs of distributed (hydrological) modelling by exploiting time-variable similarity among model elements
Uwe Ehret, Rik van Pruijssen, Marina Bortoli, Ralf Loritz, Elnaz Azmi, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 4389–4411, https://doi.org/10.5194/hess-24-4389-2020,https://doi.org/10.5194/hess-24-4389-2020, 2020
Short summary
Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts
Francesco Avanzi, Joseph Rungee, Tessa Maurer, Roger Bales, Qin Ma, Steven Glaser, and Martha Conklin
Hydrol. Earth Syst. Sci., 24, 4317–4337, https://doi.org/10.5194/hess-24-4317-2020,https://doi.org/10.5194/hess-24-4317-2020, 2020
Short summary
A history of TOPMODEL
Keith J. Beven, Rob Lamb, Mike J. Kirkby, and Jim E. Freer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-409,https://doi.org/10.5194/hess-2020-409, 2020
Revised manuscript accepted for HESS
Short summary
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020,https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020,https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
The era of Infiltration
Keith Beven
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-308,https://doi.org/10.5194/hess-2020-308, 2020
Revised manuscript accepted for HESS
Short summary
Crossing hydrological and geochemical modeling to understand the spatiotemporal variability of water chemistry in a headwater catchment (Strengbach, France)
Julien Ackerer, Benjamin Jeannot, Frederick Delay, Sylvain Weill, Yann Lucas, Bertrand Fritz, Daniel Viville, and François Chabaux
Hydrol. Earth Syst. Sci., 24, 3111–3133, https://doi.org/10.5194/hess-24-3111-2020,https://doi.org/10.5194/hess-24-3111-2020, 2020
On the shape of forward transit time distributions in low-order catchments
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020,https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees
Shengli Liao, Zhanwei Liu, Benxi Liu, Chuntian Cheng, Xinfeng Jin, and Zhipeng Zhao
Hydrol. Earth Syst. Sci., 24, 2343–2363, https://doi.org/10.5194/hess-24-2343-2020,https://doi.org/10.5194/hess-24-2343-2020, 2020
Short summary
Behind the scenes of streamflow model performance
Laurène J. E. Bouaziz, Guillaume Thirel, Tanja de Boer-Euser, Lieke A. Melsen, Joost Buitink, Claudia C. Brauer, Jan De Niel, Sotirios Moustakas, Patrick Willems, Benjamin Grelier, Gilles Drogue, Fabrizio Fenicia, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Benjamin J. Dewals, Albrecht H. Weerts, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-176,https://doi.org/10.5194/hess-2020-176, 2020
Revised manuscript accepted for HESS
Short summary
Dynamics of hydrological-model parameters: mechanisms, problems and solutions
Tian Lan, Kairong Lin, Chong-Yu Xu, Xuezhi Tan, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 24, 1347–1366, https://doi.org/10.5194/hess-24-1347-2020,https://doi.org/10.5194/hess-24-1347-2020, 2020
On the configuration and initialization of a large-scale hydrological land surface model to represent permafrost
Mohamed E. Elshamy, Daniel Princz, Gonzalo Sapriza-Azuri, Mohamed S. Abdelhamed, Al Pietroniro, Howard S. Wheater, and Saman Razavi
Hydrol. Earth Syst. Sci., 24, 349–379, https://doi.org/10.5194/hess-24-349-2020,https://doi.org/10.5194/hess-24-349-2020, 2020
Short summary
Cited articles
Addor, N. and Fischer, E. M.: The influence of natural variability and
interpolation errors on bias characterization in RCM simulations, J.
Geophys. Res.-Atmos., 120, 10180–10195,
https://doi.org/10.1002/2014JD022824, 2015.
a
Aschwanden, A.: Caractéristiques physiographiques des bassins de recherches
hydrologiques en Suisse, Berne, Service hydrologique et géologique national, Communications hydrologiques, 23, 1996. a
Basso, S., Schirmer, M., and Botter, G.: On the emergence of heavy-tailed
streamflow distributions, Adv. Water Res., 82, 98–105,
https://doi.org/10.1016/j.advwatres.2015.04.013, 2015.
a,
b,
c,
d,
e,
f,
g,
h,
i
Bernet, D. B., Prasuhn, V., and Weingartner, R.: Surface water floods in
Switzerland: what insurance claim records tell us about the damage in space
and time, Nat. Hazards Earth Syst. Sci., 17, 1659–1682,
https://doi.org/10.5194/nhess-17-1659-2017, 2017.
a
Blanc, P. and Schädler, B.: Water in Switzerland – an overview, Tech. rep., available
at:
http://www.naturalsciences.ch/topics/water/ (in English; last
access: 18 August 2015), 2013. a
Botter, G., Peratoner, F., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo,
A.: Signatures of large-scale soil moisture dynamics on streamflow statistics
across U.S. climate regimes, Water Resour. Res., 43,
https://doi.org/10.1029/2007wr006162, 2007a.
a,
b,
c,
d,
e
Botter, G., Porporato, A., Daly, E., Rodriguez-Iturbe, I., and Rinaldo, A.:
Probabilistic characterization of base flows in river basins: Roles of soil,
vegetation, and geomorphology, Water Resour. Res., 43,
https://doi.org/10.1029/2006wr005397, 2007b.
a
Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Basin-scale
soil moisture dynamics and the probabilistic characterization of carrier
hydrologic flows: Slow, leaching-prone components of the hydrologic response,
Water Resour. Res., 43, w02417,
https://doi.org/10.1029/2006WR005043,
2007c.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j
Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A.: Nonlinear
storage-discharge relations and catchment streamflow regimes, Water Resour.
Res., 45,
https://doi.org/10.1029/2008wr007658, 2009.
a,
b,
c,
d,
e,
f
Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A.: Resilience of
river flow regimes, P. Natl. Acad. Sci. USA, 110,
12925–12930,
https://doi.org/10.1073/pnas.1311920110, 2013.
a,
b,
c,
d,
e
Castellarin, A., Botter, G., Hughes, D. A., Liu, S., Ouarda, T. B. M. J.,
Parajka, J., Post, D. A., Sivapalan, M., Spence, C., Viglione, A., and Vogel, R. M.:
Prediction of flow duration curves in ungauged basins, Runoff prediction in
ungauged basins: Synthesis across processes, places and scales, Cambridge University Press, 135–162,
2013. a
Ceola, S., Botter, G., Bertuzzo, E., Porporato, A., Rodriguez-Iturbe, I., and
Rinaldo, A.: Comparative study of ecohydrological streamflow probability
distributions, Water Resour. Res., 46,
https://doi.org/10.1029/2010wr009102,
2010.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m,
n,
o,
p
Doulatyari, B., Betterle, A., Basso, S., Biswal, B., Schirmer, M., and Botter,
G.: Predicting streamflow distributions and flow duration curves from
landscape and climate, Adv. Water Res., 83, 285–298,
https://doi.org/10.1016/j.advwatres.2015.06.013, 2015.
a
Doulatyari, B., Betterle, A., Radny, D., Celegon, E. A., Fanton, P., Schirmer,
M., and Botter, G.: Patterns of streamflow regimes along the river network:
The case of the Thur river, Environ. Modell. Softw., 93,
42–58,
https://doi.org/10.1016/j.envsoft.2017.03.002, 2017.
a,
b,
c,
d
Dralle, D., Karst, N., and Thompson, S. E.: a, b careful: The challenge of
scale invariance for comparative analyses in power law models of the
streamflow recession, Geophys. Res. Lett., 42, 9285–9293, 2015. a
Swiss Federal Office for Statistics: Geostat – Version 1997, Swiss spatial land use statistics data-base
(Arealstatistik der Schweiz 1979/85 und Arealstatistik der Schweiz 1992/97), Neuchâtel, Switzerland, 35 p, 2001. a
Federal Office for the Environment: Biogeographical regions of Switzerland (CH),
available at:
https://opendata.swiss/en/dataset/biogeographische-regionen-der-schweiz-ch (last access: 15 December 2017), 2004. a
FOEN: Hydrological data and forecasts, Federal Office for the Environment (FOEN), Bern,
Switzerland, available at:
https://www.hydrodaten.admin.ch/en/stations-and-data.html, last access: 15 December
2017.
a,
b
Gabella, M., Speirs, P., Hamann, U., Germann, U., and Berne, A.: Measurement of Precipitation in the Alps
Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges,
Remote Sens., 9, 1147,
https://doi.org/10.3390/rs9111147, 2017.
a
Gerrits, A. M. J.: The role of interception in the hydrological cycle, TU
Delft, Delft University of Technology, 2010. a
Laio, F., Baldassarre, G. D., and Montanari, A.: Model selection techniques for
the frequency analysis of hydrological extremes, Water Resour. Res.,
45,
https://doi.org/10.1029/2007wr006666, 2009.
a
MeteoSwiss, F. O. o. M. a. C.: Documentation of MeteoSwiss Grid-Data Products: Daily mean, minimum and maximum temperature, MeteoSwiss, Zürich, 4, 2011a. a
MeteoSwiss, F. O. o. M. a. C.: Documentation of MeteoSwiss Grid-Data Products: Daily Precipitation (final analysis): RhiresD, MeteoSwiss, Zürich, 4, 2011b. a
Müller, M. F. and Thompson, S. E.: Comparing statistical and process-based
flow duration curve models in ungauged basins and changing rain regimes,
Hydrol. Earth Syst. Sci., 20, 669–683,
https://doi.org/10.5194/hess-20-669-2016, 2016.
a
Müller, M. F., Dralle, D. N., and Thompson, S. E.: Analytical model for
flow duration curves in seasonally dry climates, Water Resour. Res.,
50, 5510–5531,
https://doi.org/10.1002/2014wr015301, 2014.
a
Mutzner, R., Bertuzzo, E., Tarolli, P., Weijs, S. V., Nicotina, L., Ceola, S.,
Tomasic, N., Rodriguez-Iturbe, I., Parlange, M. B., and Rinaldo, A.:
Geomorphic signatures on Brutsaert base flow recession analysis, Water
Resour. Res., 49, 5462–5472,
https://doi.org/10.1002/wrcr.20417, 2013.
a,
b
Paschalis, A., Fatichi, S., Molnar, P., Rimkus, S., and Burlando, P.: On the
effects of small scale space-time variability of rainfall on
basin flood response, J. Hydrol., 514, 313–327,
https://doi.org/10.1016/j.jhydrol.2014.04.014, 2014.
a
Rodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., and Coxi, D. R.:
Probabilistic modelling of water balance at a point: the role of climate,
soil and vegetation, P. Roy. Soc. A-Math.
Phy., 455, 3789–3805,
https://doi.org/10.1098/rspa.1999.0477, 1999.
a,
b,
c
Schaefli, B., Hingray, B., Niggli, M., and Musy, A.: A conceptual
glacio-hydrological model for high mountainous catchments, Hydrol. Earth
Syst. Sci., 9, 95–109,
https://doi.org/10.5194/hess-9-95-2005, 2005.
a
Schaefli, B., Rinaldo, A., and Botter, G.: Analytic probability distributions
for snow-dominated streamflow, Water Resour. Res., 49, 2701–2713,
https://doi.org/10.1002/wrcr.20234, 2013.
a,
b,
c,
d,
e,
f,
g
Searcy, J. K.: Flow-duration curves, US Government Printing Office, 1959. a
SwissTopo: DHM25- The digital height model of Switzerland DHM25, Product information, Wabern, Bern, 15, 2005. a
Weingartner, R. and Aschwanden, H.: Discharge regime–the basis for the
estimation of average flows, Hydrological Atlas of Switzerland, Plate, 5, 26,
1992.
a,
b,
c