Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2163-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-22-2163-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Are we using the right fuel to drive hydrological models? A climate impact study in the Upper Blue Nile
Stefan Liersch
CORRESPONDING AUTHOR
Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A31, 14473 Potsdam, Germany
Julia Tecklenburg
Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A31, 14473 Potsdam, Germany
Henning Rust
Free University of Berlin (FUB), Institute of Meteorology, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany
Andreas Dobler
Free University of Berlin (FUB), Institute of Meteorology, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany
Madlen Fischer
Free University of Berlin (FUB), Institute of Meteorology, Carl-Heinrich-Becker-Weg 6–10, 12165 Berlin, Germany
Tim Kruschke
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, Germany
Hagen Koch
Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A31, 14473 Potsdam, Germany
Fred Fokko Hattermann
Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A31, 14473 Potsdam, Germany
Related authors
No articles found.
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
EGUsphere, https://doi.org/10.5194/egusphere-2024-3144, https://doi.org/10.5194/egusphere-2024-3144, 2024
Short summary
Short summary
We developed a simple yet effective model to predict storm surges in the German Bight, using wind data and a multiple linear regression approach. Trained on historical data from 1959 to 2022, our storm surge model demonstrates high predictive skill and performs as well as more complex models, despite its simplicity. It can predict both moderate and extreme storm surges, making it a valuable tool for future climate change studies.
Anja Lindenthal, Claudia Hinrichs, Simon Jandt-Scheelke, Tim Kruschke, Priidik Lagemaa, Eefke M. van der Lee, Ilja Maljutenko, Helen E. Morrison, Tabea R. Panteleit, and Urmas Raudsepp
State Planet, 4-osr8, 16, https://doi.org/10.5194/sp-4-osr8-16-2024, https://doi.org/10.5194/sp-4-osr8-16-2024, 2024
Short summary
Short summary
In 2022, large parts of the Baltic Sea experienced the third-warmest to warmest summer and autumn temperatures since 1997 and several marine heatwaves (MHWs). Using remote sensing, reanalysis, and in situ data, this study characterizes regional differences in MHW properties in the Baltic Sea in 2022. Furthermore, it presents an analysis of long-term trends and the relationship between atmospheric warming and MHW occurrences, including their propagation into deeper layers.
Andreas Trojand, Henning Rust, and Uwe Ulbrich
EGUsphere, https://doi.org/10.5194/egusphere-2024-1506, https://doi.org/10.5194/egusphere-2024-1506, 2024
Short summary
Short summary
The study investigates how the intensity of previous windstorm events and the time between two events affect the vulnerability of residential buildings in Germany. By analyzing 23 years of data, it was found that higher intensity of previous events generally reduces vulnerability in subsequent storms, while shorter intervals between events increase vulnerability. The results emphasize the approach of considering vulnerability in risk assessments as temporal dynamic.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1463, https://doi.org/10.5194/egusphere-2024-1463, 2024
Short summary
Short summary
The paper presents a method for deriving the chance of heavy downpour, the maximum amount expected at various intervals, and explain how the rainfall changes. It suggests that increases are more due to increased amounts on wet days rather than more wet days, and the rainfall intensity is found to be sensitive to future greenhouse gas emissions while the number of wet days appears to be less affected.
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
EGUsphere, https://doi.org/10.5194/egusphere-2024-1270, https://doi.org/10.5194/egusphere-2024-1270, 2024
Short summary
Short summary
Forest cover changes primarily affect the global climate system by altering the energy and water balance on the surface. This study explores how large-scale deforestation impacts drought across diverse climate zones and time scales. Results reveal drier conditions in tropics but wetter climates in arid regions post-deforestation. Minimal impact observed in temperate zones. Long-term drought is more affected than short-term. These insights enhance understanding of vegetation-climate dynamics.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Kun Xie, Lu Li, Hua Chen, Stephanie Mayer, Andreas Dobler, Chong-Yu Xu, and Ozan Mert Gokturk
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-68, https://doi.org/10.5194/hess-2024-68, 2024
Preprint under review for HESS
Short summary
Short summary
We compared extreme precipitations in Norway from convection-permitting models at 3 km resolution (HCLIM3) and regional climate model at 12 km (HCLIM12) and show that the HCLIM3 is more accurate than HCLIM12 in predicting the intense rainfalls that can lead to floods, especially at local scales. This is more clear in hourly extremes than daily. Our research suggests using more detailed climate models could improve forecasts, helping the local society brace for the impacts of extreme weather.
Andy Richling, Jens Grieger, and Henning W. Rust
EGUsphere, https://doi.org/10.5194/egusphere-2023-2582, https://doi.org/10.5194/egusphere-2023-2582, 2024
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score –a measure of forecast performance– as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Yan Li, Bo Huang, and Henning W. Rust
Hydrol. Earth Syst. Sci., 28, 321–339, https://doi.org/10.5194/hess-28-321-2024, https://doi.org/10.5194/hess-28-321-2024, 2024
Short summary
Short summary
The inconsistent changes in temperature and precipitation induced by forest cover change are very likely to affect drought condition. We use a set of statistical models to explore the relationship between forest cover change and drought change in different timescales and climate zones. We find that the influence of forest cover on droughts varies under different precipitation and temperature quantiles. Forest cover also could modulate the impacts of precipitation and temperature on drought.
Katja Frieler, Jan Volkholz, Stefan Lange, Jacob Schewe, Matthias Mengel, María del Rocío Rivas López, Christian Otto, Christopher P. O. Reyer, Dirk Nikolaus Karger, Johanna T. Malle, Simon Treu, Christoph Menz, Julia L. Blanchard, Cheryl S. Harrison, Colleen M. Petrik, Tyler D. Eddy, Kelly Ortega-Cisneros, Camilla Novaglio, Yannick Rousseau, Reg A. Watson, Charles Stock, Xiao Liu, Ryan Heneghan, Derek Tittensor, Olivier Maury, Matthias Büchner, Thomas Vogt, Tingting Wang, Fubao Sun, Inga J. Sauer, Johannes Koch, Inne Vanderkelen, Jonas Jägermeyr, Christoph Müller, Sam Rabin, Jochen Klar, Iliusi D. Vega del Valle, Gitta Lasslop, Sarah Chadburn, Eleanor Burke, Angela Gallego-Sala, Noah Smith, Jinfeng Chang, Stijn Hantson, Chantelle Burton, Anne Gädeke, Fang Li, Simon N. Gosling, Hannes Müller Schmied, Fred Hattermann, Jida Wang, Fangfang Yao, Thomas Hickler, Rafael Marcé, Don Pierson, Wim Thiery, Daniel Mercado-Bettín, Robert Ladwig, Ana Isabel Ayala-Zamora, Matthew Forrest, and Michel Bechtold
Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, https://doi.org/10.5194/gmd-17-1-2024, 2024
Short summary
Short summary
Our paper provides an overview of all observational climate-related and socioeconomic forcing data used as input for the impact model evaluation and impact attribution experiments within the third round of the Inter-Sectoral Impact Model Intercomparison Project. The experiments are designed to test our understanding of observed changes in natural and human systems and to quantify to what degree these changes have already been induced by climate change.
Bijan Fallah, Christoph Menz, Emmanuele Russo, Paula Harder, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-227, https://doi.org/10.5194/gmd-2023-227, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We tried to contribute to the local climate change impact study in Central Asia, a water-scarce and vulnerable region to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in Central Asia.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Rasmus E. Benestad, Abdelkader Mezghani, Julia Lutz, Andreas Dobler, Kajsa M. Parding, and Oskar A. Landgren
Geosci. Model Dev., 16, 2899–2913, https://doi.org/10.5194/gmd-16-2899-2023, https://doi.org/10.5194/gmd-16-2899-2023, 2023
Short summary
Short summary
A mathematical method known as common EOFs is not widely used within the climate research community, but it offers innovative ways of evaluating climate models. We show how common EOFs can be used to evaluate large ensembles of global climate model simulations and distill information about their ability to reproduce salient features of the regional climate. We can say that they represent a kind of machine learning (ML) for dealing with big data.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-7893-2022, https://doi.org/10.5194/acp-22-7893-2022, 2022
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry–climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Erika Médus, Emma D. Thomassen, Danijel Belušić, Petter Lind, Peter Berg, Jens H. Christensen, Ole B. Christensen, Andreas Dobler, Erik Kjellström, Jonas Olsson, and Wei Yang
Nat. Hazards Earth Syst. Sci., 22, 693–711, https://doi.org/10.5194/nhess-22-693-2022, https://doi.org/10.5194/nhess-22-693-2022, 2022
Short summary
Short summary
We evaluate the skill of a regional climate model, HARMONIE-Climate, to capture the present-day characteristics of heavy precipitation in the Nordic region and investigate the added value provided by a convection-permitting model version. The higher model resolution improves the representation of hourly heavy- and extreme-precipitation events and their diurnal cycle. The results indicate the benefits of convection-permitting models for constructing climate change projections over the region.
Robert Polzin, Annette Müller, Henning Rust, Peter Névir, and Péter Koltai
Nonlin. Processes Geophys., 29, 37–52, https://doi.org/10.5194/npg-29-37-2022, https://doi.org/10.5194/npg-29-37-2022, 2022
Short summary
Short summary
In this study, a recent algorithmic framework called Direct Bayesian Model Reduction (DBMR) is applied which provides a scalable probability-preserving identification of reduced models directly from data. The stochastic method is tested in a meteorological application towards a model reduction to latent states of smaller scale convective activity conditioned on large-scale atmospheric flow.
Noelia Otero, Oscar E. Jurado, Tim Butler, and Henning W. Rust
Atmos. Chem. Phys., 22, 1905–1919, https://doi.org/10.5194/acp-22-1905-2022, https://doi.org/10.5194/acp-22-1905-2022, 2022
Short summary
Short summary
Surface ozone and temperature are strongly dependent and their extremes might be exacerbated by underlying climatological drivers, such as atmospheric blocking. Using an observational data set, we measure the dependence structure between ozone and temperature under the influence of atmospheric blocking. Blocks enhanced the probability of occurrence of compound ozone and temperature extremes over northwestern and central Europe, leading to greater health risks.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Jana Ulrich, Felix S. Fauer, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6133–6149, https://doi.org/10.5194/hess-25-6133-2021, https://doi.org/10.5194/hess-25-6133-2021, 2021
Short summary
Short summary
The characteristics of extreme precipitation on different timescales as well as in different seasons are relevant information, e.g., for designing hydrological structures or managing water supplies. Therefore, our aim is to describe these characteristics simultaneously within one model. We find similar characteristics for short extreme precipitation at all considered stations in Germany but pronounced regional differences with respect to the seasonality of long-lasting extreme events.
Carola Detring, Annette Müller, Lisa Schielicke, Peter Névir, and Henning W. Rust
Weather Clim. Dynam., 2, 927–952, https://doi.org/10.5194/wcd-2-927-2021, https://doi.org/10.5194/wcd-2-927-2021, 2021
Short summary
Short summary
Stationary, long-lasting blocked weather patterns can lead to extreme conditions. Within this study the temporal evolution of the occurrence probability is analyzed, and the onset, decay and transition probabilities of blocking within the past 30 years are modeled. Using Markov models combined with logistic regression, we found large changes in summer, where the probability of transitions to so-called Omega blocks increases strongly, while the unblocked state becomes less probable.
Klaus Wyser, Torben Koenigk, Uwe Fladrich, Ramon Fuentes-Franco, Mehdi Pasha Karami, and Tim Kruschke
Geosci. Model Dev., 14, 4781–4796, https://doi.org/10.5194/gmd-14-4781-2021, https://doi.org/10.5194/gmd-14-4781-2021, 2021
Short summary
Short summary
This paper describes the large ensemble done by SMHI with the EC-Earth3 climate model. The ensemble comprises 50 realizations for each of the historical experiments after 1970 and four different future projections for CMIP6. We describe the creation of the initial states for the ensemble and the reduced set of output variables. A first look at the results illustrates the changes in the climate during this century and puts them in relation to the uncertainty from the model's internal variability.
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev., 14, 4335–4355, https://doi.org/10.5194/gmd-14-4335-2021, https://doi.org/10.5194/gmd-14-4335-2021, 2021
Short summary
Short summary
Decadal climate ensemble forecasts are increasingly being used to guide adaptation measures. To ensure the applicability of these probabilistic predictions, inherent systematic errors of the prediction system must be adjusted. Since it is not clear which statistical model is optimal for this purpose, we propose a recalibration strategy with a systematic model selection based on non-homogeneous boosting for identifying the most relevant features for both ensemble mean and ensemble spread.
Tian Tian, Shuting Yang, Mehdi Pasha Karami, François Massonnet, Tim Kruschke, and Torben Koenigk
Geosci. Model Dev., 14, 4283–4305, https://doi.org/10.5194/gmd-14-4283-2021, https://doi.org/10.5194/gmd-14-4283-2021, 2021
Short summary
Short summary
Three decadal prediction experiments with EC-Earth3 are performed to investigate the impact of ocean, sea ice concentration and thickness initialization, respectively. We find that the persistence of perennial thick ice in the central Arctic can affect the sea ice predictability in its adjacent waters via advection process or wind, despite those regions being seasonally ice free during two recent decades. This has implications for the coming decades as the thinning of Arctic sea ice continues.
Sabine Haase, Jaika Fricke, Tim Kruschke, Sebastian Wahl, and Katja Matthes
Atmos. Chem. Phys., 20, 14043–14061, https://doi.org/10.5194/acp-20-14043-2020, https://doi.org/10.5194/acp-20-14043-2020, 2020
Short summary
Short summary
Ozone depletion over Antarctica was shown to influence the tropospheric jet in the Southern Hemisphere. We investigate the atmospheric response to ozone depletion comparing climate model ensembles with interactive and prescribed ozone fields. We show that allowing feedbacks between ozone chemistry and model physics as well as including asymmetries in ozone leads to a strengthened ozone depletion signature in the stratosphere but does not significantly affect the tropospheric jet position.
Nico Becker, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 20, 2857–2871, https://doi.org/10.5194/nhess-20-2857-2020, https://doi.org/10.5194/nhess-20-2857-2020, 2020
Short summary
Short summary
A set of models is developed to forecast hourly probabilities of weather-related road accidents in Germany at the spatial scale of administrative districts. Model verification shows that using precipitation and temperature data leads to the best accident forecasts. Based on weather forecast data we show that skilful predictions of accident probabilities of up to 21 h ahead are possible. The models can be used to issue impact-based warnings, which are relevant for road users and authorities.
Noelia Otero, Henning W. Rust, and Tim Butler
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-691, https://doi.org/10.5194/acp-2020-691, 2020
Revised manuscript not accepted
Short summary
Short summary
Surface ozone concentrations are strongly correlated with temperature in summertime. Using long-term measurements, we investigate changes in the observed relationship between ozone and temperature over Germany. We propose a new statistical approach based on Generalized Additive Models (GAMs) to describe ozone production rates as a function of nitrogen oxides (NOx) and temperature. Our results suggest that NOx reductions alone can not explain the changes in the temperature dependence of ozone.
Markus Kunze, Tim Kruschke, Ulrike Langematz, Miriam Sinnhuber, Thomas Reddmann, and Katja Matthes
Atmos. Chem. Phys., 20, 6991–7019, https://doi.org/10.5194/acp-20-6991-2020, https://doi.org/10.5194/acp-20-6991-2020, 2020
Short summary
Short summary
Modelling the response of the atmosphere and its constituents to 11-year solar variations is subject to a certain uncertainty arising from the solar irradiance data set used in the chemistry–climate model (CCM) and the applied CCM itself.
This study reveals significant influences from both sources on the variations in the solar response in the stratosphere and mesosphere.
However, there are also regions where the random, unexplained part of the variations in the solar response is largest.
Danijel Belušić, Hylke de Vries, Andreas Dobler, Oskar Landgren, Petter Lind, David Lindstedt, Rasmus A. Pedersen, Juan Carlos Sánchez-Perrino, Erika Toivonen, Bert van Ulft, Fuxing Wang, Ulf Andrae, Yurii Batrak, Erik Kjellström, Geert Lenderink, Grigory Nikulin, Joni-Pekka Pietikäinen, Ernesto Rodríguez-Camino, Patrick Samuelsson, Erik van Meijgaard, and Minchao Wu
Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020, https://doi.org/10.5194/gmd-13-1311-2020, 2020
Short summary
Short summary
A new regional climate modelling system, HCLIM38, is presented and shown to be applicable in different regions ranging from the tropics to the Arctic. The main focus is on climate simulations at horizontal resolutions between 1 and 4 km, the so-called convection-permitting scales, even though the model can also be used at coarser resolutions. The benefits of simulating climate at convection-permitting scales are shown and are particularly evident for climate extremes.
Cristian Lussana, Ole Einar Tveito, Andreas Dobler, and Ketil Tunheim
Earth Syst. Sci. Data, 11, 1531–1551, https://doi.org/10.5194/essd-11-1531-2019, https://doi.org/10.5194/essd-11-1531-2019, 2019
Short summary
Short summary
seNorge_2018 is a collection of observational gridded datasets for daily total precipitation and daily mean, minimum, and maximum temperature for the Norwegian mainland covering the time period from 1957 to the present day. The fields have 1 km of grid spacing. The data are used for applications in climatology, hydrology, and meteorology. seNorge_2018 provides a "gridded truth", especially in data-dense regions. The uncertainty increases with decreasing data density.
Noelia Otero, Jana Sillmann, Kathleen A. Mar, Henning W. Rust, Sverre Solberg, Camilla Andersson, Magnuz Engardt, Robert Bergström, Bertrand Bessagnet, Augustin Colette, Florian Couvidat, Cournelius Cuvelier, Svetlana Tsyro, Hilde Fagerli, Martijn Schaap, Astrid Manders, Mihaela Mircea, Gino Briganti, Andrea Cappelletti, Mario Adani, Massimo D'Isidoro, María-Teresa Pay, Mark Theobald, Marta G. Vivanco, Peter Wind, Narendra Ojha, Valentin Raffort, and Tim Butler
Atmos. Chem. Phys., 18, 12269–12288, https://doi.org/10.5194/acp-18-12269-2018, https://doi.org/10.5194/acp-18-12269-2018, 2018
Short summary
Short summary
This paper evaluates the capability of air-quality models to capture the observed relationship between surface ozone concentrations and meteorology over Europe. The air-quality models tended to overestimate the influence of maximum temperature and surface solar radiation. None of the air-quality models captured the strength of the observed relationship between ozone and relative humidity appropriately, underestimating the effect of relative humidity, a key factor in the ozone removal processes.
Edmund P. Meredith, Henning W. Rust, and Uwe Ulbrich
Hydrol. Earth Syst. Sci., 22, 4183–4200, https://doi.org/10.5194/hess-22-4183-2018, https://doi.org/10.5194/hess-22-4183-2018, 2018
Short summary
Short summary
Kilometre-scale climate-model data are of great benefit to both hydrologists and end users studying extreme precipitation, though often unavailable due to the computational expense associated with such high-resolution simulations. We develop a method which identifies days with enhanced risk of extreme rainfall over a catchment, so that high-resolution simulations can be performed only when such a risk exists, reducing computational expense by over 90 % while still well capturing the extremes.
Stefanie Kremser, Jordis S. Tradowsky, Henning W. Rust, and Greg E. Bodeker
Atmos. Meas. Tech., 11, 3021–3029, https://doi.org/10.5194/amt-11-3021-2018, https://doi.org/10.5194/amt-11-3021-2018, 2018
Short summary
Short summary
We investigate the feasibility of quantifying the difference in biases of two instrument types (i.e. radiosondes) by flying the old and new instruments on alternating days, so-called interlacing, to statistically derive the systematic biases between the instruments. While it is in principle possible to estimate the difference between two instrument biases from interlaced measurements, the number of required interlaced flights is very large for reasonable autocorrelation coefficient values.
Alexander Pasternack, Jonas Bhend, Mark A. Liniger, Henning W. Rust, Wolfgang A. Müller, and Uwe Ulbrich
Geosci. Model Dev., 11, 351–368, https://doi.org/10.5194/gmd-11-351-2018, https://doi.org/10.5194/gmd-11-351-2018, 2018
Short summary
Short summary
We propose a decadal forecast recalibration strategy (DeFoReSt) which simultaneously adjusts unconditional and conditional bias, as well as the ensemble spread while considering the typical setting of decadal predictions, i.e., model drift and a climate trend. We apply DeFoReSt to decadal toy model data and surface temperature forecasts from the MiKlip system and find consistent improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.
Christoph Ritschel, Uwe Ulbrich, Peter Névir, and Henning W. Rust
Hydrol. Earth Syst. Sci., 21, 6501–6517, https://doi.org/10.5194/hess-21-6501-2017, https://doi.org/10.5194/hess-21-6501-2017, 2017
Short summary
Short summary
A stochastic model for precipitation is used to simulate an observed precipitation series; it is compared to the original series in terms of intensity–duration frequency curves. Basis for the latter curves is a parametric model for the duration dependence of the underlying extreme value model allowing a consistent estimation of one single duration-dependent distribution using all duration series simultaneously. The stochastic model reproduces the curves except for very rare extreme events.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Abdelkader Mezghani, Andreas Dobler, Jan Erik Haugen, Rasmus E. Benestad, Kajsa M. Parding, Mikołaj Piniewski, Ignacy Kardel, and Zbigniew W. Kundzewicz
Earth Syst. Sci. Data, 9, 905–925, https://doi.org/10.5194/essd-9-905-2017, https://doi.org/10.5194/essd-9-905-2017, 2017
Short summary
Short summary
Projected changes estimated from an ensemble of nine model simulations showed that annual means of temperature are expected to increase steadily by 1 °C until 2021–2050 and by 2 °C until 2071–2100 assuming the RCP4.5, which is accelerating assuming the RCP8.5 scenario and can reach up to almost 4 °C by 2071–2100. Similarly to temperature, projected changes in regional annual means of precipitation are expected to increase by 6 to 10 % and by 8 to 16 % for the two future horizons and RCPs.
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
Tobias Pardowitz, Robert Osinski, Tim Kruschke, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 16, 2391–2402, https://doi.org/10.5194/nhess-16-2391-2016, https://doi.org/10.5194/nhess-16-2391-2016, 2016
Short summary
Short summary
This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences. Such predictions are subject to large uncertainty due to meteorological forecast uncertainty and uncertainties in modelling weather impacts. The paper aims to quantify these uncertainties and demonstrate that valuable predictions can be made on the district level several days ahead.
Andreas Dobler, Jan Erik Haugen, and Rasmus Emil Benestad
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2016-27, https://doi.org/10.5194/esd-2016-27, 2016
Revised manuscript has not been submitted
Fred Fokko Hattermann, Shaochun Huang, Olaf Burghoff, Peter Hoffmann, and Zbigniew W. Kundzewicz
Nat. Hazards Earth Syst. Sci., 16, 1617–1622, https://doi.org/10.5194/nhess-16-1617-2016, https://doi.org/10.5194/nhess-16-1617-2016, 2016
Short summary
Short summary
We report that a considerable increase in flood-related losses can be expected in Germany in a future warmer climate. The general significance of the study is supported by the fact that the outcome of an ensemble of global climate models (GCMs) and regional climate models (RCMs) was used as a climate driver for a hydrological model considering more than 3000 river basins in Germany.
D. J. Befort, M. Fischer, G. C. Leckebusch, U. Ulbrich, A. Ganske, G. Rosenhagen, and H. Heinrich
Nat. Hazards Earth Syst. Sci., 15, 1437–1447, https://doi.org/10.5194/nhess-15-1437-2015, https://doi.org/10.5194/nhess-15-1437-2015, 2015
T. Vetter, S. Huang, V. Aich, T. Yang, X. Wang, V. Krysanova, and F. Hattermann
Earth Syst. Dynam., 6, 17–43, https://doi.org/10.5194/esd-6-17-2015, https://doi.org/10.5194/esd-6-17-2015, 2015
N. Akhtar, J. Brauch, A. Dobler, K. Béranger, and B. Ahrens
Nat. Hazards Earth Syst. Sci., 14, 2189–2201, https://doi.org/10.5194/nhess-14-2189-2014, https://doi.org/10.5194/nhess-14-2189-2014, 2014
V. Aich, B. Koné, F. F. Hattermann, and E. N. Müller
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-5171-2014, https://doi.org/10.5194/nhessd-2-5171-2014, 2014
Revised manuscript not accepted
V. Aich, S. Liersch, T. Vetter, S. Huang, J. Tecklenburg, P. Hoffmann, H. Koch, S. Fournet, V. Krysanova, E. N. Müller, and F. F. Hattermann
Hydrol. Earth Syst. Sci., 18, 1305–1321, https://doi.org/10.5194/hess-18-1305-2014, https://doi.org/10.5194/hess-18-1305-2014, 2014
J. Steppeler, S.-H. Park, and A. Dobler
Geosci. Model Dev., 6, 875–882, https://doi.org/10.5194/gmd-6-875-2013, https://doi.org/10.5194/gmd-6-875-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
On the use of streamflow transformations for hydrological model calibration
Simulation-based inference for parameter estimation of complex watershed simulators
Multi-scale soil moisture data and process-based modeling reveal the importance of lateral groundwater flow in a subarctic catchment
Catchment response to climatic variability: implications for root zone storage and streamflow predictions
Hybrid hydrological modeling for large alpine basins: a semi-distributed approach
Karst aquifer discharge response to rainfall interpreted as anomalous transport
HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin
Large-sample hydrology – a few camels or a whole caravan?
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Skill of seasonal flow forecasts at catchment scale: an assessment across South Korea
To what extent do flood-inducing storm events change future flood hazards?
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Assessing the impact of climate change on high return levels of peak flows in Bavaria applying the CRCM5 large ensemble
Impacts of climate and land surface change on catchment evapotranspiration and runoff from 1951 to 2020 in Saxony, Germany
Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method
Developing a tile drainage module for the Cold Regions Hydrological Model: lessons from a farm in southern Ontario, Canada
To bucket or not to bucket? Analyzing the performance and interpretability of hybrid hydrological models with dynamic parameterization
Widespread flooding dynamics under climate change: characterising floods using grid-based hydrological modelling and regional climate projections
HESS Opinions: The sword of Damocles of the impossible flood
Metamorphic testing of machine learning and conceptual hydrologic models
The influence of human activities on streamflow reductions during the megadrought in central Chile
Elevational control of isotopic composition and application in understanding hydrologic processes in the mid Merced River catchment, Sierra Nevada, California, USA
Lack of robustness of hydrological models: A large-sample diagnosis and an attempt to identify the hydrological and climatic drivers
The Significance of the Leaf-Area-Index on the Evapotranspiration Estimation in SWAT-T for Characteristic Land Cover Types of Western Africa
Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Impacts of spatiotemporal resolutions of precipitation on flood event simulation based on multimodel structures – a case study over the Xiang River basin in China
A network approach for multiscale catchment classification using traits
Multi-model approach in a variable spatial framework for streamflow simulation
Advancing understanding of lake–watershed hydrology: a fully coupled numerical model illustrated by Qinghai Lake
Technical note: Testing the connection between hillslope-scale runoff fluctuations and streamflow hydrographs at the outlet of large river basins
Empirical stream thermal sensitivity cluster on the landscape according to geology and climate
Deep learning for monthly rainfall–runoff modelling: a large-sample comparison with conceptual models across Australia
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
On optimization of calibrations of a distributed hydrological model with spatially distributed information on snow
Toward interpretable LSTM-based modeling of hydrological systems
Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model
What controls the tail behaviour of flood series: rainfall or runoff generation?
Learning Landscape Features from Streamflow with Autoencoders
Seasonal prediction of end-of-dry-season watershed behavior in a highly interconnected alluvial watershed in northern California
Glaciers determine the sensitivity of hydrological processes to perturbed climate in a large mountainous basin on the Tibetan Plateau
Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records
On the need for physical constraints in deep learning rainfall–runoff projections under climate change: a sensitivity analysis to warming and shifts in potential evapotranspiration
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Projecting sediment export from two highly glacierized alpine catchments under climate change: exploring non-parametric regression as an analysis tool
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Robert Hull, Elena Leonarduzzi, Luis De La Fuente, Hoang Viet Tran, Andrew Bennett, Peter Melchior, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 28, 4685–4713, https://doi.org/10.5194/hess-28-4685-2024, https://doi.org/10.5194/hess-28-4685-2024, 2024
Short summary
Short summary
Large-scale hydrologic simulators are a needed tool to explore complex watershed processes and how they may evolve with a changing climate. However, calibrating them can be difficult because they are costly to run and have many unknown parameters. We implement a state-of-the-art approach to model calibration using neural networks with a set of experiments based on streamflow in the upper Colorado River basin.
Jari-Pekka Nousu, Kersti Leppä, Hannu Marttila, Pertti Ala-aho, Giulia Mazzotti, Terhikki Manninen, Mika Korkiakoski, Mika Aurela, Annalea Lohila, and Samuli Launiainen
Hydrol. Earth Syst. Sci., 28, 4643–4666, https://doi.org/10.5194/hess-28-4643-2024, https://doi.org/10.5194/hess-28-4643-2024, 2024
Short summary
Short summary
We used hydrological models, field measurements, and satellite-based data to study the soil moisture dynamics in a subarctic catchment. The role of groundwater was studied with different ways to model the groundwater dynamics and via comparisons to the observational data. The choice of groundwater model was shown to have a strong impact, and representation of lateral flow was important to capture wet soil conditions. Our results provide insights for ecohydrological studies in boreal regions.
Nienke Tempel, Laurène Bouaziz, Riccardo Taormina, Ellis van Noppen, Jasper Stam, Eric Sprokkereef, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 4577–4597, https://doi.org/10.5194/hess-28-4577-2024, https://doi.org/10.5194/hess-28-4577-2024, 2024
Short summary
Short summary
This study explores the impact of climatic variability on root zone water storage capacities and, thus, on hydrological predictions. Analysing data from 286 areas in Europe and the US, we found that, despite some variations in root zone storage capacity due to changing climatic conditions over multiple decades, these changes are generally minor and have a limited effect on water storage and river flow predictions.
Bu Li, Ting Sun, Fuqiang Tian, Mahmut Tudaji, Li Qin, and Guangheng Ni
Hydrol. Earth Syst. Sci., 28, 4521–4538, https://doi.org/10.5194/hess-28-4521-2024, https://doi.org/10.5194/hess-28-4521-2024, 2024
Short summary
Short summary
This paper developed hybrid semi-distributed hydrological models by employing a process-based model as the backbone and utilizing deep learning to parameterize and replace internal modules. The main contribution is to provide a high-performance tool enriched with explicit hydrological knowledge for hydrological prediction and to improve understanding about the hydrological sensitivities to climate change in large alpine basins.
Dan Elhanati, Nadine Goeppert, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 28, 4239–4249, https://doi.org/10.5194/hess-28-4239-2024, https://doi.org/10.5194/hess-28-4239-2024, 2024
Short summary
Short summary
A continuous time random walk framework was developed to allow modeling of a karst aquifer discharge response to measured rainfall. The application of the numerical model yielded robust fits between modeled and measured discharge values, especially for the distinctive long tails found during recession times. The findings shed light on the interplay of slow and fast flow in the karst system and establish the application of the model for simulating flow and transport in such systems.
Frederik Kratzert, Martin Gauch, Daniel Klotz, and Grey Nearing
Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, https://doi.org/10.5194/hess-28-4187-2024, 2024
Short summary
Short summary
Recently, a special type of neural-network architecture became increasingly popular in hydrology literature. However, in most applications, this model was applied as a one-to-one replacement for hydrology models without adapting or rethinking the experimental setup. In this opinion paper, we show how this is almost always a bad decision and how using these kinds of models requires the use of large-sample hydrology data sets.
Franziska Clerc-Schwarzenbach, Giovanni Selleri, Mattia Neri, Elena Toth, Ilja van Meerveld, and Jan Seibert
Hydrol. Earth Syst. Sci., 28, 4219–4237, https://doi.org/10.5194/hess-28-4219-2024, https://doi.org/10.5194/hess-28-4219-2024, 2024
Short summary
Short summary
We show that the differences between the forcing data included in three CAMELS datasets (US, BR, GB) and the forcing data included for the same catchments in the Caravan dataset affect model calibration considerably. The model performance dropped when the data from the Caravan dataset were used instead of the original data. Most of the model performance drop could be attributed to the differences in precipitation data. However, differences were largest for the potential evapotranspiration data.
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024, https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Short summary
Gao et al. (2023) question the importance of soil in hydrology, sparking debate. We acknowledge some valid points but critique their broad, unsubstantiated views on soil's role. Our response highlights three key areas: (1) the false divide between ecosystem-centric and soil-centric approaches, (2) the vital yet varied impact of soil properties, and (3) the call for a scale-aware framework. We aim to unify these perspectives, enhancing hydrology's comprehensive understanding.
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024, https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Short summary
Root zone storage capacity (Sumax) changes significantly over multiple decades, reflecting vegetation adaptation to climatic variability. However, this temporal evolution of Sumax cannot explain long-term fluctuations in the partitioning of water fluxes as expressed by deviations ΔIE from the parametric Budyko curve over time with different climatic conditions, and it does not have any significant effects on shorter-term hydrological response characteristics of the upper Neckar catchment.
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024, https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024, https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Short summary
The authors compared regionalization methods for river flow prediction in 126 catchments from the south of Brazil, a region with humid subtropical and hot temperate climate. The regionalization method based on physiographic–climatic similarity had the best performance for predicting daily and Q95 reference flow. We showed that basins without flow monitoring can have a good approximation of streamflow using machine learning and physiographic–climatic information as inputs.
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024, https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary
Short summary
By examining basin-wide simulations of a river regime over 83 years with and without dams, we present evidence that climate variation was a key driver of hydrologic variabilities in the Mekong River basin (MRB) over the long term; however, dams have largely altered the seasonality of the Mekong’s flow regime and annual flooding patterns in major downstream areas in recent years. These findings could help us rethink the planning of future dams and water resource management in the MRB.
Yongshin Lee, Francesca Pianosi, Andres Peñuela, and Miguel Angel Rico-Ramirez
Hydrol. Earth Syst. Sci., 28, 3261–3279, https://doi.org/10.5194/hess-28-3261-2024, https://doi.org/10.5194/hess-28-3261-2024, 2024
Short summary
Short summary
Following recent advancements in weather prediction technology, we explored how seasonal weather forecasts (1 or more months ahead) could benefit practical water management in South Korea. Our findings highlight that using seasonal weather forecasts for predicting flow patterns 1 to 3 months ahead is effective, especially during dry years. This suggest that seasonal weather forecasts can be helpful in improving the management of water resources.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Florian Willkofer, Raul R. Wood, and Ralf Ludwig
Hydrol. Earth Syst. Sci., 28, 2969–2989, https://doi.org/10.5194/hess-28-2969-2024, https://doi.org/10.5194/hess-28-2969-2024, 2024
Short summary
Short summary
Severe flood events pose a threat to riverine areas, yet robust estimates of the dynamics of these events in the future due to climate change are rarely available. Hence, this study uses data from a regional climate model, SMILE, to drive a high-resolution hydrological model for 98 catchments of hydrological Bavaria and exploits the large database to derive robust values for the 100-year flood events. Results indicate an increase in frequency and intensity for most catchments in the future.
Maik Renner and Corina Hauffe
Hydrol. Earth Syst. Sci., 28, 2849–2869, https://doi.org/10.5194/hess-28-2849-2024, https://doi.org/10.5194/hess-28-2849-2024, 2024
Short summary
Short summary
Climate and land surface changes influence the partitioning of water balance components decisively. Their impact is quantified for 71 catchments in Saxony. Germany. Distinct signatures in the joint water and energy budgets are found: (i) past forest dieback caused a decrease in and subsequent recovery of evapotranspiration in the affected regions, and (ii) the recent shift towards higher aridity imposed a large decline in runoff that has not been seen in the observation records before.
Zhen Cui, Shenglian Guo, Hua Chen, Dedi Liu, Yanlai Zhou, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 28, 2809–2829, https://doi.org/10.5194/hess-28-2809-2024, https://doi.org/10.5194/hess-28-2809-2024, 2024
Short summary
Short summary
Ensemble forecasting facilitates reliable flood forecasting and warning. This study couples the copula-based hydrologic uncertainty processor (CHUP) with Bayesian model averaging (BMA) and proposes the novel CHUP-BMA method of reducing inflow forecasting uncertainty of the Three Gorges Reservoir. The CHUP-BMA avoids the normal distribution assumption in the HUP-BMA and considers the constraint of initial conditions, which can improve the deterministic and probabilistic forecast performance.
Mazda Kompanizare, Diogo Costa, Merrin L. Macrae, John W. Pomeroy, and Richard M. Petrone
Hydrol. Earth Syst. Sci., 28, 2785–2807, https://doi.org/10.5194/hess-28-2785-2024, https://doi.org/10.5194/hess-28-2785-2024, 2024
Short summary
Short summary
A new agricultural tile drainage module was developed in the Cold Region Hydrological Model platform. Tile flow and water levels are simulated by considering the effect of capillary fringe thickness, drainable water and seasonal regional groundwater dynamics. The model was applied to a small well-instrumented farm in southern Ontario, Canada, where there are concerns about the impacts of agricultural drainage into Lake Erie.
Eduardo Acuña Espinoza, Ralf Loritz, Manuel Álvarez Chaves, Nicole Bäuerle, and Uwe Ehret
Hydrol. Earth Syst. Sci., 28, 2705–2719, https://doi.org/10.5194/hess-28-2705-2024, https://doi.org/10.5194/hess-28-2705-2024, 2024
Short summary
Short summary
Hydrological hybrid models promise to merge the performance of deep learning methods with the interpretability of process-based models. One hybrid approach is the dynamic parameterization of conceptual models using long short-term memory (LSTM) networks. We explored this method to evaluate the effect of the flexibility given by LSTMs on the process-based part.
Adam Griffin, Alison L. Kay, Paul Sayers, Victoria Bell, Elizabeth Stewart, and Sam Carr
Hydrol. Earth Syst. Sci., 28, 2635–2650, https://doi.org/10.5194/hess-28-2635-2024, https://doi.org/10.5194/hess-28-2635-2024, 2024
Short summary
Short summary
Widespread flooding is a major problem in the UK and is greatly affected by climate change and land-use change. To look at how widespread flooding changes in the future, climate model data (UKCP18) were used with a hydrological model (Grid-to-Grid) across the UK, and 14 400 events were identified between two time slices: 1980–2010 and 2050–2080. There was a strong increase in the number of winter events in the future time slice and in the peak return periods.
Alberto Montanari, Bruno Merz, and Günter Blöschl
Hydrol. Earth Syst. Sci., 28, 2603–2615, https://doi.org/10.5194/hess-28-2603-2024, https://doi.org/10.5194/hess-28-2603-2024, 2024
Short summary
Short summary
Floods often take communities by surprise, as they are often considered virtually
impossibleyet are an ever-present threat similar to the sword suspended over the head of Damocles in the classical Greek anecdote. We discuss four reasons why extremely large floods carry a risk that is often larger than expected. We provide suggestions for managing the risk of megafloods by calling for a creative exploration of hazard scenarios and communicating the unknown corners of the reality of floods.
Peter Reichert, Kai Ma, Marvin Höge, Fabrizio Fenicia, Marco Baity-Jesi, Dapeng Feng, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 2505–2529, https://doi.org/10.5194/hess-28-2505-2024, https://doi.org/10.5194/hess-28-2505-2024, 2024
Short summary
Short summary
We compared the predicted change in catchment outlet discharge to precipitation and temperature change for conceptual and machine learning hydrological models. We found that machine learning models, despite providing excellent fit and prediction capabilities, can be unreliable regarding the prediction of the effect of temperature change for low-elevation catchments. This indicates the need for caution when applying them for the prediction of the effect of climate change.
Nicolás Álamos, Camila Alvarez-Garreton, Ariel Muñoz, and Álvaro González-Reyes
Hydrol. Earth Syst. Sci., 28, 2483–2503, https://doi.org/10.5194/hess-28-2483-2024, https://doi.org/10.5194/hess-28-2483-2024, 2024
Short summary
Short summary
In this study, we assess the effects of climate and water use on streamflow reductions and drought intensification during the last 3 decades in central Chile. We address this by contrasting streamflow observations with near-natural streamflow simulations. We conclude that while the lack of precipitation dominates streamflow reductions in the megadrought, water uses have not diminished during this time, causing a worsening of the hydrological drought conditions and maladaptation conditions.
Fengjing Liu, Martha H. Conklin, and Glenn D. Shaw
Hydrol. Earth Syst. Sci., 28, 2239–2258, https://doi.org/10.5194/hess-28-2239-2024, https://doi.org/10.5194/hess-28-2239-2024, 2024
Short summary
Short summary
Mountain snowpack has been declining and more precipitation falls as rain than snow. Using stable isotopes, we found flows and flow duration in Yosemite Creek are most sensitive to climate warming due to strong evaporation of waterfalls, potentially lengthening the dry-up period of waterfalls in summer and negatively affecting tourism. Groundwater recharge in Yosemite Valley is primarily from the upper snow–rain transition (2000–2500 m) and very vulnerable to a reduction in the snow–rain ratio.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-80, https://doi.org/10.5194/hess-2024-80, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
This work aims at investigating how hydrological models can be transferred to a period in which climatic conditions are different to the ones of the period in which it was set up. The RAT method, built to detect dependencies between model error and climatic drivers, was applied to 3 different hydrological models on 352 catchments in Denmark, France and Sweden. Potential issues are detected for a significant number of catchments for the 3 models even though these catchments differ for each model.
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-131, https://doi.org/10.5194/hess-2024-131, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
ET is computed from vegetation (plant transpiration) and soil (soil evaporation). In Western Africa, plant transpiration correlates with vegetation growth. Vegetation is often represented with the leaf-area-index (LAI). In this study, we evaluate the importance of LAI for the ET calculation. We take a close look at the LAI-ET interaction and show the relevance to consider both, LAI and ET. Our work contributes to the understanding of the processes of the terrestrial water cycle.
Qiutong Yu, Bryan A. Tolson, Hongren Shen, Ming Han, Juliane Mai, and Jimmy Lin
Hydrol. Earth Syst. Sci., 28, 2107–2122, https://doi.org/10.5194/hess-28-2107-2024, https://doi.org/10.5194/hess-28-2107-2024, 2024
Short summary
Short summary
It is challenging to incorporate input variables' spatial distribution information when implementing long short-term memory (LSTM) models for streamflow prediction. This work presents a novel hybrid modelling approach to predict streamflow while accounting for spatial variability. We evaluated the performance against lumped LSTM predictions in 224 basins across the Great Lakes region in North America. This approach shows promise for predicting streamflow in large, ungauged basin.
Marcus Buechel, Louise Slater, and Simon Dadson
Hydrol. Earth Syst. Sci., 28, 2081–2105, https://doi.org/10.5194/hess-28-2081-2024, https://doi.org/10.5194/hess-28-2081-2024, 2024
Short summary
Short summary
Afforestation has been proposed internationally, but the hydrological implications of such large increases in the spatial extent of woodland are not fully understood. In this study, we use a land surface model to simulate hydrology across Great Britain with realistic afforestation scenarios and potential climate changes. Countrywide afforestation minimally influences hydrology, when compared to climate change, and reduces low streamflow whilst not lowering the highest flows.
Qian Zhu, Xiaodong Qin, Dongyang Zhou, Tiantian Yang, and Xinyi Song
Hydrol. Earth Syst. Sci., 28, 1665–1686, https://doi.org/10.5194/hess-28-1665-2024, https://doi.org/10.5194/hess-28-1665-2024, 2024
Short summary
Short summary
Input data, model and calibration strategy can affect the accuracy of flood event simulation and prediction. Satellite-based precipitation with different spatiotemporal resolutions is an important input source. Data-driven models are sometimes proven to be more accurate than hydrological models. Event-based calibration and conventional strategy are two options adopted for flood simulation. This study targets the three concerns for accurate flood event simulation and prediction.
Fabio Ciulla and Charuleka Varadharajan
Hydrol. Earth Syst. Sci., 28, 1617–1651, https://doi.org/10.5194/hess-28-1617-2024, https://doi.org/10.5194/hess-28-1617-2024, 2024
Short summary
Short summary
We present a new method based on network science for unsupervised classification of large datasets and apply it to classify 9067 US catchments and 274 biophysical traits at multiple scales. We find that our trait-based approach produces catchment classes with distinct streamflow behavior and that spatial patterns emerge amongst pristine and human-impacted catchments. This method can be widely used beyond hydrology to identify patterns, reduce trait redundancy, and select representative sites.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Lele Shu, Xiaodong Li, Yan Chang, Xianhong Meng, Hao Chen, Yuan Qi, Hongwei Wang, Zhaoguo Li, and Shihua Lyu
Hydrol. Earth Syst. Sci., 28, 1477–1491, https://doi.org/10.5194/hess-28-1477-2024, https://doi.org/10.5194/hess-28-1477-2024, 2024
Short summary
Short summary
We developed a new model to better understand how water moves in a lake basin. Our model improves upon previous methods by accurately capturing the complexity of water movement, both on the surface and subsurface. Our model, tested using data from China's Qinghai Lake, accurately replicates complex water movements and identifies contributing factors of the lake's water balance. The findings provide a robust tool for predicting hydrological processes, aiding water resource planning.
Ricardo Mantilla, Morgan Fonley, and Nicolás Velásquez
Hydrol. Earth Syst. Sci., 28, 1373–1382, https://doi.org/10.5194/hess-28-1373-2024, https://doi.org/10.5194/hess-28-1373-2024, 2024
Short summary
Short summary
Hydrologists strive to “Be right for the right reasons” when modeling the hydrologic cycle; however, the datasets available to validate hydrological models are sparse, and in many cases, they comprise streamflow observations at the outlets of large catchments. In this work, we show that matching streamflow observations at the outlet of a large basin is not a reliable indicator of a correct description of the small-scale runoff processes.
Lillian M. McGill, E. Ashley Steel, and Aimee H. Fullerton
Hydrol. Earth Syst. Sci., 28, 1351–1371, https://doi.org/10.5194/hess-28-1351-2024, https://doi.org/10.5194/hess-28-1351-2024, 2024
Short summary
Short summary
This study examines the relationship between air and river temperatures in Washington's Snoqualmie and Wenatchee basins. We used classification and regression approaches to show that the sensitivity of river temperature to air temperature is variable across basins and controlled largely by geology and snowmelt. Findings can be used to inform strategies for river basin restoration and conservation, such as identifying climate-insensitive areas of the basin that should be preserved and protected.
Stephanie R. Clark, Julien Lerat, Jean-Michel Perraud, and Peter Fitch
Hydrol. Earth Syst. Sci., 28, 1191–1213, https://doi.org/10.5194/hess-28-1191-2024, https://doi.org/10.5194/hess-28-1191-2024, 2024
Short summary
Short summary
To determine if deep learning models are in general a viable alternative to traditional hydrologic modelling techniques in Australian catchments, a comparison of river–runoff predictions is made between traditional conceptual models and deep learning models in almost 500 catchments spread over the continent. It is found that the deep learning models match or outperform the traditional models in over two-thirds of the river catchments, indicating feasibility in a wide variety of conditions.
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-57, https://doi.org/10.5194/hess-2024-57, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Integrating streamflow and evaporation data can help improve the physical realism of hydrologic models. In this work we investigate the capabilities of the Variable Infiltration Capacity (VIC) to reproduce both hydrologic variables for 189 headwater located in Spain. Results from sensitivity analysis indicate that adding two vegetation is enough to improve the representation of evaporation, and the performance of VIC exceeded that of the largest modelling effort currently available in Spain.
Dipti Tiwari, Mélanie Trudel, and Robert Leconte
Hydrol. Earth Syst. Sci., 28, 1127–1146, https://doi.org/10.5194/hess-28-1127-2024, https://doi.org/10.5194/hess-28-1127-2024, 2024
Short summary
Short summary
Calibrating hydrological models with multi-objective functions enhances model robustness. By using spatially distributed snow information in the calibration, the model performance can be enhanced without compromising the outputs. In this study the HYDROTEL model was calibrated in seven different experiments, incorporating the SPAEF (spatial efficiency) metric alongside Nash–Sutcliffe efficiency (NSE) and root-mean-square error (RMSE), with the aim of identifying the optimal calibration strategy.
Luis Andres De la Fuente, Mohammad Reza Ehsani, Hoshin Vijai Gupta, and Laura Elizabeth Condon
Hydrol. Earth Syst. Sci., 28, 945–971, https://doi.org/10.5194/hess-28-945-2024, https://doi.org/10.5194/hess-28-945-2024, 2024
Short summary
Short summary
Long short-term memory (LSTM) is a widely used machine-learning model in hydrology, but it is difficult to extract knowledge from it. We propose HydroLSTM, which represents processes like a hydrological reservoir. Models based on HydroLSTM perform similarly to LSTM while requiring fewer cell states. The learned parameters are informative about the dominant hydrology of a catchment. Our results show how parsimony and hydrological knowledge extraction can be achieved by using the new structure.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-47, https://doi.org/10.5194/hess-2024-47, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature needed for challenging cases, associated with aridity and intermittent flow. Baseflow index, aridity, and soil/vegetation attributes strongly correlate with learned features, indicating their importance for streamflow prediction.
Claire Kouba and Thomas Harter
Hydrol. Earth Syst. Sci., 28, 691–718, https://doi.org/10.5194/hess-28-691-2024, https://doi.org/10.5194/hess-28-691-2024, 2024
Short summary
Short summary
In some watersheds, the severity of the dry season has a large impact on aquatic ecosystems. In this study, we design a way to predict, 5–6 months in advance, how severe the dry season will be in a rural watershed in northern California. This early warning can support seasonal adaptive management. To predict these two values, we assess data about snow, rain, groundwater, and river flows. We find that maximum snowpack and total wet season rainfall best predict dry season severity.
Yi Nan and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 669–689, https://doi.org/10.5194/hess-28-669-2024, https://doi.org/10.5194/hess-28-669-2024, 2024
Short summary
Short summary
This paper utilized a tracer-aided model validated by multiple datasets in a large mountainous basin on the Tibetan Plateau to analyze hydrological sensitivity to climate change. The spatial pattern of the local hydrological sensitivities and the influence factors were analyzed in particular. The main finding of this paper is that the local hydrological sensitivity in mountainous basins is determined by the relationship between the glacier area ratio and the mean annual precipitation.
Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt
Hydrol. Earth Syst. Sci., 28, 545–573, https://doi.org/10.5194/hess-28-545-2024, https://doi.org/10.5194/hess-28-545-2024, 2024
Short summary
Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult or impractical to install. We reconstructed flow at 27 gauges of the National Ecological Observatory Network (NEON), informing ~199 site-months of missing data in the official record and improving that accuracy of official estimates at 11 sites. This study shows that machine learning, but also routine regression methods, can be used to supplement existing gauge networks and reduce monitoring costs.
Sungwook Wi and Scott Steinschneider
Hydrol. Earth Syst. Sci., 28, 479–503, https://doi.org/10.5194/hess-28-479-2024, https://doi.org/10.5194/hess-28-479-2024, 2024
Short summary
Short summary
We investigate whether deep learning (DL) models can produce physically plausible streamflow projections under climate change. We address this question by focusing on modeled responses to increases in temperature and potential evapotranspiration and by employing three DL and three process-based hydrological models. The results suggest that physical constraints regarding model architecture and input are necessary to promote the physical realism of DL hydrological projections under climate change.
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024, https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Short summary
Hydrological modelling of mountainous catchments is challenging for many reasons, the main one being the temporal and spatial representation of precipitation forcings. This study presents an evaluation of the hydrological modelling of 55 small mountainous catchments of the northern French Alps, focusing on the influence of the type of precipitation reanalyses used as inputs. These evaluations emphasize the added value of radar measurements, in particular for the reproduction of flood events.
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024, https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
Short summary
How suspended sediment export from glacierized high-alpine areas responds to future climate change is hardly assessable as many interacting processes are involved, and appropriate physical models are lacking. We present the first study, to our knowledge, exploring machine learning to project sediment export until 2100 in two high-alpine catchments. We find that uncertainties due to methodological limitations are small until 2070. Negative trends imply that peak sediment may have already passed.
Cited articles
Abdo, K. S., Fiseha, B. M., Rientjes, T. H. M., Gieske, A. S. M., and Haile,
A. T.: Assessment of climate change impacts on the hydrology of Gilgel Abay
catchment in Lake Tana basin, Ethiopia, Hydrol. Process., 23,
3661–3669, https://doi.org/10.1002/hyp.7363, 2009. a
Addor, N. and Seibert, J.: Bias correction for hydrological impact studies –
beyond the daily perspective, Hydrol. Process., 28, 4823–4828,
https://doi.org/10.1002/hyp.10238, 2014. a, b, c, d
Aich, V., Liersch, S., Vetter, T., Huang, S., Tecklenburg, J., Hoffmann, P.,
Koch, H., Fournet, S., Krysanova, V., Müller, E. N., and Hattermann, F.
F.: Comparing impacts of climate change on streamflow in four large African
river basins, Hydrol. Earth Syst. Sci., 18, 1305–1321,
https://doi.org/10.5194/hess-18-1305-2014, 2014. a, b, c
Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S.,
Lounsbury, D., and Matonse, A. H.: Examination of change factor methodologies
for climate change impact assessment, Water Resour. Res., 47,
https://doi.org/10.1029/2010WR009104, 2011. a, b
Arnold, J., Allen, P., and Bernhardt, G.: A comprehensive surface groundwater
flow model, J. Hydrol., 142, 47–69, 1993. a
Bartholomé, E. and Belward, A.: GLC2000: a new approach to global land
cover
mapping from Earth observation data, Int. J. Remote
Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005. a
Berg, P., Feldmann, H., and Panitz, H.-J.: Bias correction of high resolution
regional climate model data, J. Hydrol., 448–449, 80–92,
https://doi.org/10.1016/j.jhydrol.2012.04.026, 2012. a
Beyene, T., Lettenmaier, D., and Kabat, P.: Hydrologic impacts of climate
change on the Nile River Basin: implications of the 2007 IPCC scenarios,
Climatic Change, 100, 433–461, https://doi.org/10.1007/s10584-009-9693-0, 2010. a, b
Bosshard, T., Kotlarski, S., Ewen, T., and Schär, C.: Spectral
representation of the annual cycle in the climate change signal, Hydrol.
Earth Syst. Sci., 15, 2777–2788, https://doi.org/10.5194/hess-15-2777-2011,
2011. a, b
Bryan, E., Deressa, T. T., Gbetibouo, G. A., and Ringler, C.: Adaptation to
climate change in Ethiopia and South Africa: options and constraints,
Environ. Sci. Policy, 12, 413–426,
https://doi.org/10.1016/j.envsci.2008.11.002, 2009. a
Busby, J., Cook, K., Vizy, E., Smith, T., and Bekalo, M.: Identifying hot
spots of security vulnerability associated with climate change in Africa,
Climatic Change, 124, 717–731, https://doi.org/10.1007/s10584-014-1142-z, 2014. a
Chiew, F. H. S., Teng, J., Vaze, J., Post, D. A., Perraud, J. M., Kirono, D.
G. C., and Viney, N. R.: Estimating climate change impact on runoff across
southeast Australia: Method, results, and implications of the modeling
method, Water Resour. Res., 45, W10414, https://doi.org/10.1029/2008WR007338, 2009. a, b
Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P.: On
the need for bias correction of regional climate change projections of
temperature and precipitation, Geophys. Res. Lett., 35, L20709,
https://doi.org/10.1029/2008GL035694, 2008. a
Conway, D. and Hulme, M.: Recent fluctuations in precipitation and runoff over
the Nile sub-basins and their impact on main Nile discharge, Climatic
Change, 25, 127–151, https://doi.org/10.1007/BF01661202, 1993. a
Conway, D. and Schipper, E. L. F.: Adaptation to climate change in Africa:
Challenges and opportunities identified from Ethiopia, Global Environ.
Change, 21, 227–237, https://doi.org/10.1016/j.gloenvcha.2010.07.013, 2011. a, b, c
Deressa, T. T., Hassan, R. M., and Ringler, C.: Perception of and adaptation
to climate change by farmers in the Nile basin of Ethiopia, J.
Agr. Sci., 149, 23–31, https://doi.org/10.1017/S0021859610000687, 2011. a
Di Baldassarre, G., Elshamy, M., van Griensven, A., Soliman, E., Kigobe, M.,
Ndomba, P., Mutemi, J., Mutua, F., Moges, S., Xuan, Y., Solomatine, D., and
Uhlenbrook, S.: Future hydrology and climate in the River Nile basin: a
review, Hydrolog. Sci. J.,
56, 199–211, https://doi.org/10.1080/02626667.2011.557378, 2011. a
Dile, Y. T., Berndtsson, R., and Setegn, S. G.: Hydrological Response to
Climate Change for Gilgel Abay River, in the Lake Tana Basin – Upper Blue
Nile Basin of Ethiopia, PLOS ONE, 8,
https://doi.org/10.1371/journal.pone.0079296, 2013. a, b, c, d
Diro, G. T., Grimes, D. I. F., Black, E., O'Neill, A., and Pardo-Iguzquiza, E.:
Evaluation of reanalysis rainfall estimates over Ethiopia, Int.
J. Climatol., 29, 67–78, https://doi.org/10.1002/joc.1699, 2009. a
Diro, G. T., Toniazzo, T., and Shaffrey, L.: Ethiopian Rainfall in Climate
Models, in: African Climate and Climate Change, edited by: Williams, C. J. R.
and Kniveton, D. R., Vol. 43 of Advances in Global Change Research,
51–69, Springer Netherlands, https://doi.org/10.1007/978-90-481-3842-5_3, 2011. a, b
Dobler, A., Yaoming, M., Sharma, N., Kienberger, S., and Ahrens, B.: Regional
climate projections in two alpine river basins: Upper Danube and Upper
Brahmaputra, Adv. Sci. Res., 7, 11–20,
https://doi.org/10.5194/asr-7-11-2011, 2011. a
Dosio, A. and Paruolo, P.: Bias correction of the ENSEMBLES high-resolution
climate change projections for use by impact models: Evaluation on the
present climate, J. Geophys. Res.-Atmos., 116, D16106,
https://doi.org/10.1029/2011JD015934, 2011. a
Elshamy, M., di Baldassarre, G., and van Griensven, A.: Characterizing Climate
Model Uncertainty Using an Informal Bayesian Framework: Application to the
River Nile, J. Hydrol. Eng. ASCE, 18, 582–589,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000656, 2013. a
Elshamy, M. E., Seierstad, I. A., and Sorteberg, A.: Impacts of climate
change on Blue Nile flows using bias-corrected GCM scenarios, Hydrol. Earth
Syst. Sci., 13, 551–565, https://doi.org/10.5194/hess-13-551-2009, 2009. a, b, c, d
FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version
1.1), FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2009. a
Gebreluel, G.: Ethiopia's Grand Renaissance Dam: Ending Africa's Oldest
Geopolitical Rivalry?, Wash. Quart., 37, 25–37,
https://doi.org/10.1080/0163660X.2014.926207, 2014. a, b
Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T.:
Technical Note: Downscaling RCM precipitation to the station scale using
statistical transformations – a comparison of methods, Hydrol. Earth Syst.
Sci., 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012, 2012. a
Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., and Piani, C.:
Impact of a Statistical Bias Correction on the Projected Hydrological Changes
Obtained from Three GCMs and Two Hydrology Models, J.
Hydrometeorol., 12, 556–578, https://doi.org/10.1175/2011JHM1336.1, 2011. a
Hargreaves, G. and Samani, Z.: Reference crop evapotranspiration from
temperature, T. ASAE, 11, 96–99, 1985. a
Hattermann, F. F., Huang, S., Burghoff, O., Hoffmann, P., and Kundzewicz, Z.
W.: Brief Communication: An update of the article “Modelling flood damages
under climate change conditions – a case study for Germany”, Nat. Hazards
Earth Syst. Sci., 16, 1617–1622, https://doi.org/10.5194/nhess-16-1617-2016,
2016. a
Headey, D., Taffesse, A. S., and You, L.: Diversification and Development in
Pastoralist Ethiopia, World Dev., 56, 200–213,
https://doi.org/10.1016/j.worlddev.2013.10.015, 2014. a
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A
trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam.,
4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013. a, b
Ibrahim, A.: The Nile Basin Cooperative Framework Agreement: The Beginning of
the End of Egyptian Hydro-Political Hegemony, Missouri Environmental Law and
Policy Review, 18, 284–312, available at:
https://scholarship.law.missouri.edu/cgi/viewcontent.cgi?article=1395&context=jesl
(last access: 24 January 2018),
2012. a
IPCC: Climate Change 2013. The Physical Science Basis. Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Tech. rep., IPCC, available at: http://www.ipcc.ch/report/ar5/wg1/ (last access: 14 April 2016), 2013. a
Jarvis, A., Reuter, H., Nelson, A., and Guevara, E.: Hole-filled seamless SRTM
data V4, International Centre for Tropical Agriculture (CIAT), available
at: http://srtm.csi.cgiar.org (last access: 9 February 2016), 2008. a
Jeuland, M. and Whittington, D.: Water resources planning under climate
change: Assessing the robustness of real options for the Blue Nile, Water
Resour. Res., 50, 2086–2107, https://doi.org/10.1002/2013WR013705, 2014. a
King, A.: An Assessment of Reservoir Filling Policies under a Changing Climate
for Ethiopias Grand Renaissance Dam, PhD thesis, Drexel University, 2013. a
Koch, H., Liersch, S., and Hattermann, F.: Integrating water resources
management in eco-hydrological modelling, Water Sci. Technol., 67,
1525–1533, https://doi.org/10.2166/wst.2013.022, 2013. a
Krysanova, V., Meiner, A., Roosaare, J., and Vasilyev, A.: Simulation modelling
of the coastal waters pollution from agricultural watershed, Ecol.
Model., 49, 7–29, 1989. a
Krysanova, V., Hattermann, F., and Wechsung, F.: Development of the
ecohydrological model SWIM for regional impact studies and vulnerability
assessment, Hydrol. Process., 19, 763–783, https://doi.org/10.1002/hyp.5619,
2005. a, b
Krysanova, V., Hattermann, F., Huang, S., Hesse, C., Vetter, T., Liersch, S.,
Koch, H., and Kundzewicz, Z. W.: Modelling climate and land use change
impacts with SWIM: lessons learnt from multiple applications, Hydrolog.
Sci. J., 60, 606–635, https://doi.org/10.1080/02626667.2014.925560, 2015. a
Liersch, S.: Discharge simulations for the Blue Nile at gauge El Diem based
on uncorrected and bias-corrected GCM and RCM inputs, Potsdam Institute for
Climate Impact Research, Dataset,
https://doi.org/10.4121/uuid:05b9f40f-583d-479b-a79e-f961f72436db, 2018. a
Liersch, S., Cools, J., Kone, B., Koch, H., Diallo, M., Aich, V., Fournet, S.,
and Hattermann, F.: Vulnerability of food production in the Inner Niger
Delta to water resources management under climate variability and change,
Environ. Sci. Policy, 34, 18–33,
https://doi.org/10.1016/j.envsci.2012.10.014, 2013. a
Liersch, S., Koch, H., and Hattermann, F. F.: Management Scenarios of the
Grand Ethiopian Renaissance Dam and Their Impacts under Recent and Future
Climates, Water, 9, 728, https://doi.org/10.3390/w9100728, 2017. a, b
Liersch, S., Rust, H., Dobler, A., Kruschke, T., and Fischer, M.:
Bias-corrected CORDEX precipitation, min/mean/max temperature for Ethiopia,
RCP 4.5 and RCP 8.5, GFZ Data Services, https://doi.org/10.5880/PIK.2018.009, 2018. a
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J.,
Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V.
K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Rev. Geophys., 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010. a, b
McCartney, M. P. and Menker Girma, M.: Evaluating the downstream implications
of planned water resource development in the Ethiopian portion of the Blue
Nile River, Water Int., 37, 362–379,
https://doi.org/10.1080/02508060.2012.706384, 2012. a, b
Megersa, B., Markemann, A., Angassa, A., Ogutu, J. O., Piepho, H.-P., and
Zarate, A. V.: Impacts of climate change and variability on cattle
production in southern Ethiopia: Perceptions and empirical evidence,
Agr. Syst., 130, 23–34, https://doi.org/10.1016/j.agsy.2014.06.002, 2014. a
Meinshausen, M., Smith, S., Calvin, K., Daniel, J., Kainuma, M., Lamarque,
J.-F., Matsumoto, K., Montzka, S., Raper, S., Riahi, K., Thomson, A.,
Velders, G., and Vuuren, D.: The RCP greenhouse gas concentrations and their
extensions from 1765 to 2300, Climatic Change, 109, 213–241,
https://doi.org/10.1007/s10584-011-0156-z, 2011. a, b
Mengistu, D., Bewket, W., and Lal, R.: Recent spatiotemporal temperature and
rainfall variability and trends over the Upper Blue Nile River Basin,
Ethiopia, Int. J. Climatol., 34, 2278–2292, https://doi.org/10.1002/joc.3837, 2014. a
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models,
Part 1 – a discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970. a
Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., and
Haerter, J.: Statistical bias correction of global simulated daily
precipitation and temperature for the application of hydrological models,
J. Hydrol., 395, 199–215, https://doi.org/10.1016/j.jhydrol.2010.10.024,
2010. a, b
Pierce, D. W., Barnett, T. P., Santer, B. D., and Gleckler, P. J.: Selecting
global climate models for regional climate change studies, P. Natl. Acad. Sci. USA, 106,
8441–8446, https://doi.org/10.1073/pnas.0900094106, 2009. a
Rust, H. W., Kruschke, T., Dobler, A., Fischer, M., and Ulbrich, U.:
Discontinuous daily Temperatures in the WATCH forcing data setes, J.
Hydrometeorol., 16, 465–472, https://doi.org/10.1175/JHM-D-14-0123.1, 2015. a
Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM precipitation:
A benchmark for dynamical and statistical downscaling methods, Int.
J. Climatol., 26, 679–689, https://doi.org/10.1002/joc.1287, 2006. a
Simane, B., Zaitchik, B. F., and Mesfin, D.: Building Climate Resilience in
the Blue Nile/Abay Highlands: A Framework for Action, Int. J. Environ.
Res. Pu., 9, 610–631, https://doi.org/10.3390/ijerph9020610, 2012. a
Smakhtin, V.: Estimating daily flow duration curves from monthly streamflow
data, Water SA, 26, 13–18, 2000. a
Soliman, E. S., Sayed, M. A. A., and Jeuland, M.: Impact Assessment of Future
Climate Change for the Blue Nile Basin, Using a RCM Nested in a GCM, Nile
Basin Water Engineering Scientific Magazine, 2, 15–30, 2009. a
Stagl, J. C. and Hattermann, F. F.: Impacts of Climate Change on the
Hydrological Regime of the Danube River and Its Tributaries Using an Ensemble
of Climate Scenarios, Water, 7, 6139–6172, https://doi.org/10.3390/w7116139, 2015. a
Taye, M. T. and Willems, P.: Temporal variability of hydroclimatic extremes in
the Blue Nile basin, Water. Resour. Res., 48, W03513, https://doi.org/10.1029/2011WR011466,
2012. a, b, c
Taye, M. T., Willems, P., and Block, P.: Implications of climate change on
hydrological extremes in the Blue Nile basin: A review, Journal of Hydrology:
Regional Studies, 4, 280–293, https://doi.org/10.1016/j.ejrh.2015.07.001,
2015. a
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Teklesadik, A. D., Alemayehu, T., van Griensven, A., Kumar, R., Liersch, S.,
Eisner, S., Tecklenburg, J., Ewunte, S., and Wang, X.: Inter-model
comparison of hydrological impacts of climate change on the Upper Blue Nile
basin using ensemble of hydrological models and global climate models,
Climatic Change, 141, 517–532, https://doi.org/10.1007/s10584-017-1913-4, 2017. a, b, c
Teutschbein, C. and Seibert, J.: Regional Climate Models for Hydrological
Impact Studies at the Catchment Scale: A Review of Recent Modeling
Strategies, Geography Compass, 4, 834–860,
https://doi.org/10.1111/j.1749-8198.2010.00357.x, 2010. a
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model
simulations for hydrological climate-change impact studies: Review and
evaluation of different methods, J. Hydrol., 456–457, 12–29,
https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
a
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Da Costa
Bechtold, V., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly,
G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson,
E.,
Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Van De Berg, L.,
Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac,
M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J.,
Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J.-F.,
Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A.,
Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.:
The ERA-40
re-analysis, Q. J. Roy. Meteor. Soc., 131,
2961–3012, https://doi.org/10.1256/qj.04.176, 2005. a
van Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K.,
Hurtt, G., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M.,
Nakicenovic, N., Smith, S., and Rose, S.: The representative concentration
pathways: an overview, Climatic Change, 109, 5–31,
https://doi.org/10.1007/s10584-011-0148-z, 2011. a, b
Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V., and
Hattermann, F.: Multi-model climate impact assessment and intercomparison for
three large-scale river basins on three continents, Earth Syst. Dynam., 6,
17–43, https://doi.org/10.5194/esd-6-17-2015, 2015. a
Vrac, M. and Friederichs, P.: Multivariate–intervariable, spatial, and
temporal–bias correction, J. Climate, 28, 218–237, 2015. a
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe,
J.: The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP):
Project framework, P. Natl. Acad. Sci. USA, 111,
3228–3232, https://doi.org/10.1073/pnas.1312330110, 2014. a
Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E.,
Österle, H., Adam, J. C., Bellouin, N., Boucher, O., and Best, M.: Creation
of the WATCH Forcing Data and its use to assess global and regional reference
crop evaporation over land during the twentieth century, J.
Hydrometeorol., 12, 823–848, https://doi.org/10.1175/2011JHM1369.1, 2011. a
Wilks, D. S.: Statistical methods in the atmospheric sciences, Academic Press,
San Diego, CA, 3rd Edn., 2011. a
Yee, T. W.: Vector Generalized Linear and Additive Models: With an
Implementation in R, Springer, New York, 2015. a
Zaitchik, B. F., Simane, B., Habib, S., Anderson, M. C., Ozdogan, M., and
Foltz, J. D.: Building Climate Resilience in the Blue Nile/Abay Highlands: A
Role for Earth System Sciences, Int. J. Environ. Res. Pu., 9,
435–461, https://doi.org/10.3390/ijerph9020435, 2012. a, b
Short summary
Application-oriented regional impact studies require accurate simulations of future climate variables and water availability. We analyse the quality of global and regional climate projections and discuss potentials of correction methods that partly overcome this quality issue. The model ensemble used in this study projects increasing average annual discharges and a shift in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.
Application-oriented regional impact studies require accurate simulations of future climate...