Articles | Volume 21, issue 7
https://doi.org/10.5194/hess-21-3827-2017
https://doi.org/10.5194/hess-21-3827-2017
Research article
 | 
27 Jul 2017
Research article |  | 27 Jul 2017

A comparison of the discrete cosine and wavelet transforms for hydrologic model input data reduction

Ashley Wright, Jeffrey P. Walker, David E. Robertson, and Valentijn R. N. Pauwels

Related authors

Insights from a new methodology to optimize rain gauge weighting for rainfall-runoff models
Ashley J. Wright, David E. Robertson, Jeffrey P. Walker, and Valentijn R. N. Pauwels
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-450,https://doi.org/10.5194/hess-2019-450, 2019
Revised manuscript not accepted
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Modelling approaches
Probabilistic downscaling of EURO-CORDEX precipitation data for the assessment of future areal precipitation extremes for hourly to daily durations
Abbas El Hachem, Jochen Seidel, and András Bárdossy
Hydrol. Earth Syst. Sci., 29, 1335–1357, https://doi.org/10.5194/hess-29-1335-2025,https://doi.org/10.5194/hess-29-1335-2025, 2025
Short summary
An extension of the logistic function to account for nonstationary drought losses
Tongtiegang Zhao, Zecong Chen, and Yongyong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3476,https://doi.org/10.5194/egusphere-2024-3476, 2024
Short summary
Impact Webs: A novel conceptual modelling approach for characterising and assessing complex risks
Edward Sparkes, Davide Cotti, Angel Valdiviezo Ajila, Saskia E. Werners, and Michael Hagenlocher
EGUsphere, https://doi.org/10.5194/egusphere-2024-2844,https://doi.org/10.5194/egusphere-2024-2844, 2024
Short summary
Technical Note: Operational calibration and performance improvement for hydrodynamic models in data-scarce coastal areas
Francisco Rodrigues do Amaral, Benoît Camenen, Tin Nguyen Trung, Tran Anh Tu, Thierry Pellarin, and Nicolas Gratiot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1563,https://doi.org/10.5194/egusphere-2024-1563, 2024
Short summary
Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts
Marian Schönauer, Anneli M. Ågren, Klaus Katzensteiner, Florian Hartsch, Paul Arp, Simon Drollinger, and Dirk Jaeger
Hydrol. Earth Syst. Sci., 28, 2617–2633, https://doi.org/10.5194/hess-28-2617-2024,https://doi.org/10.5194/hess-28-2617-2024, 2024
Short summary

Cited articles

Ahmed, N., Natarajan, T., and Rao, K.: Discrete Cosine Transform, IEEE T. Comput., C-23, 90–93, https://doi.org/10.1109/T-C.1974.223784, 1974.
Ajami, N., Duan, Q., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005WR004745, 2007.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Blazkova, S. and Beven, K.: A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic, Water Resources Research, 45, W00B16, https://doi.org/10.1029/2007WR006726, 2009.
Bulygina, N. and Gupta, H.: Correcting the mathematical structure of a hydrological model via Bayesian data assimilation, Water Resour. Res., 47, WO5514, https://doi.org/10.1029/2010WR009614, 2011.
Download
Short summary
The accurate reduction of hydrologic model input data is an impediment towards understanding input uncertainty and model structural errors. This paper compares the ability of two transforms to reduce rainfall input data. The resultant transforms are compressed to varying extents and reconstructed before being evaluated with standard simulation performance summary metrics and descriptive statistics. It is concluded the discrete wavelet transform is most capable of preserving rainfall time series.
Share