Articles | Volume 21, issue 5
https://doi.org/10.5194/hess-21-2559-2017
https://doi.org/10.5194/hess-21-2559-2017
Research article
 | 
23 May 2017
Research article |  | 23 May 2017

Assessment of extreme flood events in a changing climate for a long-term planning of socio-economic infrastructure in the Russian Arctic

Elena Shevnina, Ekaterina Kourzeneva, Viktor Kovalenko, and Timo Vihma

Related authors

Newly identified climatically and environmentally significant high-latitude dust sources
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022,https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Evaporation over a glacial lake in Antarctica
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022,https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Retention time of lakes in the Larsemann Hills oasis, East Antarctica
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021,https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
The probabilistic hydrological MARCSHYDRO (the MARkov Chain System) model: its structure and core version 0.2
Elena Shevnina and Andrey Silaev
Geosci. Model Dev., 12, 2767–2780, https://doi.org/10.5194/gmd-12-2767-2019,https://doi.org/10.5194/gmd-12-2767-2019, 2019
Short summary
Climate change will increase potential hydropower production in six Arctic Council member countries based on probabilistic hydrological projections
Elena Shevnina, Karoliina Pilli-Sihvola, Riina Haavisto, Timo Vihma, and Andrey Silaev
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-473,https://doi.org/10.5194/hess-2018-473, 2018
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Engineering Hydrology | Techniques and Approaches: Stochastic approaches
Uncertainty estimation of regionalised depth–duration–frequency curves in Germany
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 2075–2097, https://doi.org/10.5194/hess-27-2075-2023,https://doi.org/10.5194/hess-27-2075-2023, 2023
Short summary
FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022,https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021,https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Characteristics and process controls of statistical flood moments in Europe – a data-based analysis
David Lun, Alberto Viglione, Miriam Bertola, Jürgen Komma, Juraj Parajka, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 5535–5560, https://doi.org/10.5194/hess-25-5535-2021,https://doi.org/10.5194/hess-25-5535-2021, 2021
Short summary
Objective functions for information-theoretical monitoring network design: what is “optimal”?
Hossein Foroozand and Steven V. Weijs
Hydrol. Earth Syst. Sci., 25, 831–850, https://doi.org/10.5194/hess-25-831-2021,https://doi.org/10.5194/hess-25-831-2021, 2021
Short summary

Cited articles

Archeimer, B. and Lindström, G.: Climate impact on floods: changes in high flow in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015.
Ashkar, F. and Bobée, B.: Confidence intervals for flood events under a Pearson 3 or log Pearson 3 distribution, J. Am. Water Resour. Assoc., 24, 639–650, https://doi.org/10.1111/j.1752-1688.1988.tb00916.x, 1988.
Benson, M. A.: Uniform flood frequency estimating methods for federal agencies, Water Resour. Res., 4, 891–908, 1968.
Bertholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005.
Bowman, K. O. and Shenton, L. R.: Estimator: Method of Moments, in: Encyclopedia of statistical sciences, Wiley, New York, 2092–2098, 1998.
Download
Short summary
This paper presents the probabilistic approach to evaluate design floods in a changing climate, adapted in this case to the northern territories. For the Russian Arctic, the regions are delineated, where it is suggested to correct engineering hydrological calculations to account for climate change. An example of the calculation of a maximal discharge of 1 % exceedance probability for the Nadym River at Nadym is provided.