Articles | Volume 21, issue 5
https://doi.org/10.5194/hess-21-2559-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-21-2559-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Assessment of extreme flood events in a changing climate for a long-term planning of socio-economic infrastructure in the Russian Arctic
Finnish Meteorological Institute, P.O. Box 503, 0010 Helsinki, Finland
Russian State Hydrometeorological University, Malookhtinsky prospect 98, 195196 Saint Petersburg, Russia
Ekaterina Kourzeneva
Finnish Meteorological Institute, P.O. Box 503, 0010 Helsinki, Finland
Viktor Kovalenko
Russian State Hydrometeorological University, Malookhtinsky prospect 98, 195196 Saint Petersburg, Russia
Timo Vihma
Finnish Meteorological Institute, P.O. Box 503, 0010 Helsinki, Finland
Related authors
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
Short summary
Antarctica consists mostly of frozen water, and it makes the continent sensitive to warming due to enhancing a transition/exchange of water from solid (ice and snow) to liquid (lakes and rivers) form. Therefore, it is important to know how fast water is exchanged in the Antarctic lakes. The study gives first estimates of scales for water exchange for five lakes located in the Larsemann Hills oasis. Two methods are suggested to evaluate the timescale for the lakes depending on their type.
Elena Shevnina and Andrey Silaev
Geosci. Model Dev., 12, 2767–2780, https://doi.org/10.5194/gmd-12-2767-2019, https://doi.org/10.5194/gmd-12-2767-2019, 2019
Short summary
Short summary
The paper provides a theory and assumptions behind an advance of frequency analysis (AFA) approach in long-term hydrological forecasting. In this paper, a new core of the probabilistic hydrological model MARkov Chain System (MARCSHYDRO) was introduced, together with the code and an example of a climate-scale prediction of an exceedance probability curve of river runoff with low computational costs.
Elena Shevnina, Karoliina Pilli-Sihvola, Riina Haavisto, Timo Vihma, and Andrey Silaev
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-473, https://doi.org/10.5194/hess-2018-473, 2018
Manuscript not accepted for further review
Short summary
Short summary
Projections of a potential hydropower production were evaluated in terms of probability of water resources available in the future. The future projections of annual river runoff were evaluated on average, as well as on low and high exceedance probabilities under several climate change scenarios. The main idea of the modelling method used is to simulate statistical estimators of annual river runoff (mean, variation and skewness) instead of runoff time series.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
Di Chen, Qizhen Sun, and Timo Vihma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2359, https://doi.org/10.5194/egusphere-2024-2359, 2024
Preprint archived
Short summary
Short summary
We investigates the variations and trends in Arctic sea ice during summer and autumn, focusing on the impacts of sea surface temperature (SST) and surface air temperature (SAT). Both SST and SAT significantly influence Arctic sea ice concentration. SST affects both interannual variations and decadal trends, while SAT primarily influences interannual variations. Additionally, SAT's impact on sea ice concentration leads by seven months, due to a stronger warming trend in winter than in summer.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
EGUsphere, https://doi.org/10.5194/egusphere-2024-1759, https://doi.org/10.5194/egusphere-2024-1759, 2024
Short summary
Short summary
To better understand the local, regional, and global impacts of the recent rapid sea-ice decline in the Arctic, one of the key issues is to quantify the effects of sea-ice concentration on the surface radiative fluxes. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in the sensitivity of the surface radiative fluxes to sea-ice concentration.
Tereza Uhlíková, Timo Vihma, Alexey Yu Karpechko, and Petteri Uotila
The Cryosphere, 18, 957–976, https://doi.org/10.5194/tc-18-957-2024, https://doi.org/10.5194/tc-18-957-2024, 2024
Short summary
Short summary
A prerequisite for understanding the local, regional, and hemispherical impacts of Arctic sea-ice decline on the atmosphere is to quantify the effects of sea-ice concentration (SIC) on the sensible and latent heat fluxes in the Arctic. We analyse these effects utilising four data sets called atmospheric reanalyses, and we evaluate uncertainties in these effects arising from inter-reanalysis differences in SIC and in the sensitivity of the latent and sensible heat fluxes to SIC.
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
EGUsphere, https://doi.org/10.5194/egusphere-2023-2436, https://doi.org/10.5194/egusphere-2023-2436, 2023
Preprint archived
Short summary
Short summary
In contrary to the current understanding, there can be a strong connection between ENSO and the South Atlantic Subtropical Dipole (SASD). It is highly probable that the robust inverse correlation between ENSO and SASD will persist in the future. The ENSO-SASD correlation exhibits substantial multi-decadal variability over the course of a century. The change in the ENSO-SASD relation can be linked to changes in ENSO regime and convective activities over the central South Pacific Ocean.
Tiina Nygård, Lukas Papritz, Tuomas Naakka, and Timo Vihma
Weather Clim. Dynam., 4, 943–961, https://doi.org/10.5194/wcd-4-943-2023, https://doi.org/10.5194/wcd-4-943-2023, 2023
Short summary
Short summary
Despite the general warming trend, wintertime cold-air outbreaks in Europe have remained nearly as extreme and as common as decades ago. In this study, we identify six principal cold anomaly types over Europe in 1979–2020. We show the origins of various physical processes and their contributions to the formation of cold wintertime air masses.
Lejiang Yu, Shiyuan Zhong, Timo Vihma, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 23, 345–353, https://doi.org/10.5194/acp-23-345-2023, https://doi.org/10.5194/acp-23-345-2023, 2023
Short summary
Short summary
Previous studies have noted a significant relationship between the Subtropical Indian Ocean Dipole and the South Atlantic Ocean Dipole indices, but little is known about the stability of their relationship. We found a significant positive correlation between the two indices prior to the year 2000 but an insignificant correlation afterwards.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Janosch Michaelis, Amelie U. Schmitt, Christof Lüpkes, Jörg Hartmann, Gerit Birnbaum, and Timo Vihma
Earth Syst. Sci. Data, 14, 1621–1637, https://doi.org/10.5194/essd-14-1621-2022, https://doi.org/10.5194/essd-14-1621-2022, 2022
Short summary
Short summary
A major goal of the Springtime Atmospheric Boundary Layer Experiment (STABLE) aircraft campaign was to observe atmospheric conditions during marine cold-air outbreaks (MCAOs) originating from the sea-ice-covered Arctic ocean. Quality-controlled measurements of several meteorological variables collected during 15 vertical aircraft profiles and by 22 dropsondes are presented. The comprehensive data set may be used for validating model results to improve the understanding of future trends in MCAOs.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Bin Cheng, Yubing Cheng, Timo Vihma, Anna Kontu, Fei Zheng, Juha Lemmetyinen, Yubao Qiu, and Jouni Pulliainen
Earth Syst. Sci. Data, 13, 3967–3978, https://doi.org/10.5194/essd-13-3967-2021, https://doi.org/10.5194/essd-13-3967-2021, 2021
Short summary
Short summary
Climate change strongly impacts the Arctic, with clear signs of higher air temperature and more precipitation. A sustainable observation programme has been carried out in Lake Orajärvi in Sodankylä, Finland. The high-quality air–snow–ice–water temperature profiles have been measured every winter since 2009. The data can be used to investigate the lake ice surface heat balance and the role of snow in lake ice mass balance and parameterization of snow-to-ice transformation in snow/ice models.
Elena Shevnina, Ekaterina Kourzeneva, Yury Dvornikov, and Irina Fedorova
The Cryosphere, 15, 2667–2682, https://doi.org/10.5194/tc-15-2667-2021, https://doi.org/10.5194/tc-15-2667-2021, 2021
Short summary
Short summary
Antarctica consists mostly of frozen water, and it makes the continent sensitive to warming due to enhancing a transition/exchange of water from solid (ice and snow) to liquid (lakes and rivers) form. Therefore, it is important to know how fast water is exchanged in the Antarctic lakes. The study gives first estimates of scales for water exchange for five lakes located in the Larsemann Hills oasis. Two methods are suggested to evaluate the timescale for the lakes depending on their type.
Elena Shevnina and Andrey Silaev
Geosci. Model Dev., 12, 2767–2780, https://doi.org/10.5194/gmd-12-2767-2019, https://doi.org/10.5194/gmd-12-2767-2019, 2019
Short summary
Short summary
The paper provides a theory and assumptions behind an advance of frequency analysis (AFA) approach in long-term hydrological forecasting. In this paper, a new core of the probabilistic hydrological model MARkov Chain System (MARCSHYDRO) was introduced, together with the code and an example of a climate-scale prediction of an exceedance probability curve of river runoff with low computational costs.
Wenfeng Huang, Bin Cheng, Jinrong Zhang, Zheng Zhang, Timo Vihma, Zhijun Li, and Fujun Niu
Hydrol. Earth Syst. Sci., 23, 2173–2186, https://doi.org/10.5194/hess-23-2173-2019, https://doi.org/10.5194/hess-23-2173-2019, 2019
Short summary
Short summary
Up to now, little has been known on ice thermodynamics and lake–atmosphere interaction over the Tibetan Plateau during ice-covered seasons due to a lack of field data. Here, model experiments on ice thermodynamics were conducted in a shallow lake using HIGHTSI. Water–ice heat flux was a major source of uncertainty for lake ice thickness. Heat and mass budgets were estimated within the vertical air–ice–water system. Strong ice sublimation occurred and was responsible for water loss during winter.
Lejiang Yu, Shiyuan Zhong, and Timo Vihma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-38, https://doi.org/10.5194/tc-2019-38, 2019
Manuscript not accepted for further review
Short summary
Short summary
Arctic sea ice cover has been decreasing in recent decades. The reason for the decrease remains unclear. In this study, we examine the contributions of the North Pacific SST anomalies to the decrease. There are global warming and Pacific Decadal Oscillation (PDO) modesof the North Pacific SST variability in boreal summer and autumn. The global warming mode explains 44.9% and 50.1% of the Arctic sea ice loss in boreal summer and autumn, respectively. There are 22.0% and 22.2% for PDO mode.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Elena Shevnina, Karoliina Pilli-Sihvola, Riina Haavisto, Timo Vihma, and Andrey Silaev
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-473, https://doi.org/10.5194/hess-2018-473, 2018
Manuscript not accepted for further review
Short summary
Short summary
Projections of a potential hydropower production were evaluated in terms of probability of water resources available in the future. The future projections of annual river runoff were evaluated on average, as well as on low and high exceedance probabilities under several climate change scenarios. The main idea of the modelling method used is to simulate statistical estimators of annual river runoff (mean, variation and skewness) instead of runoff time series.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
P. Hari, T. Petäjä, J. Bäck, V.-M. Kerminen, H. K. Lappalainen, T. Vihma, T. Laurila, Y. Viisanen, T. Vesala, and M. Kulmala
Atmos. Chem. Phys., 16, 1017–1028, https://doi.org/10.5194/acp-16-1017-2016, https://doi.org/10.5194/acp-16-1017-2016, 2016
Short summary
Short summary
This manuscript introduces a conceptual design of a global, hierarchical observation network which provides tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. Each ecosystem type on the globe has its own characteristic features that need to be taken into consideration. The hierarchical network is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity.
R. Pirazzini, P. Räisänen, T. Vihma, M. Johansson, and E.-M. Tastula
The Cryosphere, 9, 2357–2381, https://doi.org/10.5194/tc-9-2357-2015, https://doi.org/10.5194/tc-9-2357-2015, 2015
Short summary
Short summary
We illustrate a method to measure the size distribution of a snow particle metric from macro photos of snow particles. This snow particle metric corresponds well to the optically equivalent effective radius. Our results evidence the impact of grain shape on albedo, indicate that more than just one particle metric distribution is needed to characterize the snow scattering properties at all optical wavelengths, and suggest an impact of surface roughness on the shortwave infrared albedo.
R. Döscher, T. Vihma, and E. Maksimovich
Atmos. Chem. Phys., 14, 13571–13600, https://doi.org/10.5194/acp-14-13571-2014, https://doi.org/10.5194/acp-14-13571-2014, 2014
Short summary
Short summary
The article reviews progress in understanding of the Arctic sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric drivers of sea ice change. Large-scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Ocean heat fluxes are clearly impacting the ice margins. Little indication exists for a direct decisive influence of the warming ocean on the central Arctic sea ice cover.
A. Tetzlaff, C. Lüpkes, G. Birnbaum, J. Hartmann, T. Nygård, and T. Vihma
The Cryosphere, 8, 1757–1762, https://doi.org/10.5194/tc-8-1757-2014, https://doi.org/10.5194/tc-8-1757-2014, 2014
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
I. Välisuo, T. Vihma, and J. C. King
The Cryosphere, 8, 1519–1538, https://doi.org/10.5194/tc-8-1519-2014, https://doi.org/10.5194/tc-8-1519-2014, 2014
T. Nygård, T. Valkonen, and T. Vihma
Atmos. Chem. Phys., 14, 1959–1971, https://doi.org/10.5194/acp-14-1959-2014, https://doi.org/10.5194/acp-14-1959-2014, 2014
C. E. Chung, H. Cha, T. Vihma, P. Räisänen, and D. Decremer
Atmos. Chem. Phys., 13, 11209–11219, https://doi.org/10.5194/acp-13-11209-2013, https://doi.org/10.5194/acp-13-11209-2013, 2013
L. Jakobson, T. Vihma, E. Jakobson, T. Palo, A. Männik, and J. Jaagus
Atmos. Chem. Phys., 13, 11089–11099, https://doi.org/10.5194/acp-13-11089-2013, https://doi.org/10.5194/acp-13-11089-2013, 2013
A. Tetzlaff, L. Kaleschke, C. Lüpkes, F. Ament, and T. Vihma
The Cryosphere, 7, 153–166, https://doi.org/10.5194/tc-7-153-2013, https://doi.org/10.5194/tc-7-153-2013, 2013
Related subject area
Subject: Engineering Hydrology | Techniques and Approaches: Stochastic approaches
Uncertainty estimation of regionalised depth–duration–frequency curves in Germany
FarmCan: a physical, statistical, and machine learning model to forecast crop water deficit for farms
Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system
Characteristics and process controls of statistical flood moments in Europe – a data-based analysis
Objective functions for information-theoretical monitoring network design: what is “optimal”?
Stochastic simulation of streamflow and spatial extremes: a continuous, wavelet-based approach
Numerical investigation on the power of parametric and nonparametric tests for trend detection in annual maximum series
Spatially dependent flood probabilities to support the design of civil infrastructure systems
Technical note: Stochastic simulation of streamflow time series using phase randomization
Multivariate hydrologic design methods under nonstationary conditions and application to engineering practice
Ensemble modeling of stochastic unsteady open-channel flow in terms of its time–space evolutionary probability distribution – Part 1: theoretical development
Ensemble modeling of stochastic unsteady open-channel flow in terms of its time–space evolutionary probability distribution – Part 2: numerical application
Characterizing the spatial variations and correlations of large rainstorms for landslide study
Dealing with uncertainty in the probability of overtopping of a flood mitigation dam
Flood frequency analysis of historical flood data under stationary and non-stationary modelling
Selection of intense rainfall events based on intensity thresholds and lightning data in Switzerland
Towards modelling flood protection investment as a coupled human and natural system
A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation
Examination of homogeneity of selected Irish pooling groups
Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models
Design flood hydrographs from the relationship between flood peak and volume
Introducing empirical and probabilistic regional envelope curves into a mixed bounded distribution function
HESS Opinions "A random walk on water"
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 2075–2097, https://doi.org/10.5194/hess-27-2075-2023, https://doi.org/10.5194/hess-27-2075-2023, 2023
Short summary
Short summary
Design rainfall volumes at different duration and frequencies are necessary for the planning of water-related systems and facilities. As the procedure for deriving these values is subjected to different sources of uncertainty, here we explore different methods to estimate how precise these values are for different duration, locations and frequencies in Germany. Combining local and spatial simulations, we estimate tolerance ranges from approx. 10–60% for design rainfall volumes in Germany.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
David Lun, Alberto Viglione, Miriam Bertola, Jürgen Komma, Juraj Parajka, Peter Valent, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 5535–5560, https://doi.org/10.5194/hess-25-5535-2021, https://doi.org/10.5194/hess-25-5535-2021, 2021
Short summary
Short summary
We investigate statistical properties of observed flood series on a European scale. There are pronounced regional patterns, for instance: regions with strong Atlantic influence show less year-to-year variability in the magnitude of observed floods when compared with more arid regions of Europe. The hydrological controls on the patterns are quantified and discussed. On the European scale, climate seems to be the dominant driver for the observed patterns.
Hossein Foroozand and Steven V. Weijs
Hydrol. Earth Syst. Sci., 25, 831–850, https://doi.org/10.5194/hess-25-831-2021, https://doi.org/10.5194/hess-25-831-2021, 2021
Short summary
Short summary
In monitoring network design, we have to decide what to measure, where to measure, and when to measure. In this paper, we focus on the question of where to measure. Past literature has used the concept of information to choose a selection of locations that provide maximally informative data. In this paper, we look in detail at the proper mathematical formulation of the information concept as an objective. We argue that previous proposals for this formulation have been needlessly complicated.
Manuela I. Brunner and Eric Gilleland
Hydrol. Earth Syst. Sci., 24, 3967–3982, https://doi.org/10.5194/hess-24-3967-2020, https://doi.org/10.5194/hess-24-3967-2020, 2020
Short summary
Short summary
Stochastically generated streamflow time series are used for various water management and hazard estimation applications. They provide realizations of plausible but yet unobserved streamflow time series with the same characteristics as the observed data. We propose a stochastic simulation approach in the frequency domain instead of the time domain. Our evaluation results suggest that the flexible, continuous simulation approach is valuable for a diverse range of water management applications.
Vincenzo Totaro, Andrea Gioia, and Vito Iacobellis
Hydrol. Earth Syst. Sci., 24, 473–488, https://doi.org/10.5194/hess-24-473-2020, https://doi.org/10.5194/hess-24-473-2020, 2020
Short summary
Short summary
We highlight the need for power evaluation in the application of null hypothesis significance tests for trend detection in extreme event analysis. In a wide range of conditions, depending on the underlying distribution of data, the test power may reach unacceptably low values. We propose the use of a parametric approach, based on model selection criteria, that allows one to choose the null hypothesis, to select the level of significance, and to check the test power using Monte Carlo experiments.
Phuong Dong Le, Michael Leonard, and Seth Westra
Hydrol. Earth Syst. Sci., 23, 4851–4867, https://doi.org/10.5194/hess-23-4851-2019, https://doi.org/10.5194/hess-23-4851-2019, 2019
Short summary
Short summary
While conventional approaches focus on flood designs at individual locations, there are many situations requiring an understanding of spatial dependence of floods at multiple locations. This research describes a new framework for analyzing flood characteristics across civil infrastructure systems, including conditional and joint probabilities of floods. This work leads to a new flood estimation paradigm, which focuses on the risk of the entire system rather than each system element in isolation.
Manuela I. Brunner, András Bárdossy, and Reinhard Furrer
Hydrol. Earth Syst. Sci., 23, 3175–3187, https://doi.org/10.5194/hess-23-3175-2019, https://doi.org/10.5194/hess-23-3175-2019, 2019
Short summary
Short summary
This study proposes a procedure for the generation of daily discharge data which considers temporal dependence both within short timescales and across different years. The simulation procedure can be applied to individual and multiple sites. It can be used for various applications such as the design of hydropower reservoirs, the assessment of flood risk or the assessment of drought persistence, and the estimation of the risk of multi-year droughts.
Cong Jiang, Lihua Xiong, Lei Yan, Jianfan Dong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 23, 1683–1704, https://doi.org/10.5194/hess-23-1683-2019, https://doi.org/10.5194/hess-23-1683-2019, 2019
Short summary
Short summary
We present the methods addressing the multivariate hydrologic design applied to the engineering practice under nonstationary conditions. A dynamic C-vine copula allowing for both time-varying marginal distributions and a time-varying dependence structure is developed to capture the nonstationarities of multivariate flood distribution. Then, the multivariate hydrologic design under nonstationary conditions is estimated through specifying the design criterion by average annual reliability.
Alain Dib and M. Levent Kavvas
Hydrol. Earth Syst. Sci., 22, 1993–2005, https://doi.org/10.5194/hess-22-1993-2018, https://doi.org/10.5194/hess-22-1993-2018, 2018
Short summary
Short summary
A new method is proposed to solve the stochastic unsteady open-channel flow system in only one single simulation, as opposed to the many simulations usually done in the popular Monte Carlo approach. The derivation of this new method gave a deterministic and linear Fokker–Planck equation whose solution provided a powerful and effective approach for quantifying the ensemble behavior and variability of such a stochastic system, regardless of the number of parameters causing its uncertainty.
Alain Dib and M. Levent Kavvas
Hydrol. Earth Syst. Sci., 22, 2007–2021, https://doi.org/10.5194/hess-22-2007-2018, https://doi.org/10.5194/hess-22-2007-2018, 2018
Short summary
Short summary
A newly proposed method is applied to solve a stochastic unsteady open-channel flow system (with an uncertain roughness coefficient) in only one simulation. After comparing its results to those of the Monte Carlo simulations, the new method was found to adequately predict the temporal and spatial evolution of the probability density of the flow variables of the system. This revealed the effectiveness, strength, and time efficiency of this new method as compared to other popular approaches.
Liang Gao, Limin Zhang, and Mengqian Lu
Hydrol. Earth Syst. Sci., 21, 4573–4589, https://doi.org/10.5194/hess-21-4573-2017, https://doi.org/10.5194/hess-21-4573-2017, 2017
Short summary
Short summary
Rainfall is the primary trigger of landslides. However, the rainfall intensity is not uniform in space, which causes more landslides in the area of intense rainfall. The primary objective of this paper is to quantify spatial correlation characteristics of three landslide-triggering large storms in Hong Kong. The spatial maximum rolling rainfall is represented by a trend surface and a random field of residuals. The scales of fluctuation of the residuals are found between 5 km and 30 km.
Eleni Maria Michailidi and Baldassare Bacchi
Hydrol. Earth Syst. Sci., 21, 2497–2507, https://doi.org/10.5194/hess-21-2497-2017, https://doi.org/10.5194/hess-21-2497-2017, 2017
Short summary
Short summary
In this research, we explored how the sampling uncertainty of flood variables (flood peak, volume, etc.) can reflect on a structural variable, which in our case was the maximum water level (MWL) of a reservoir controlled by a dam. Next, we incorporated additional information from different sources for a better estimation of the uncertainty in the probability of exceedance of the MWL. Results showed the importance of providing confidence intervals in the risk assessment of a structure.
M. J. Machado, B. A. Botero, J. López, F. Francés, A. Díez-Herrero, and G. Benito
Hydrol. Earth Syst. Sci., 19, 2561–2576, https://doi.org/10.5194/hess-19-2561-2015, https://doi.org/10.5194/hess-19-2561-2015, 2015
Short summary
Short summary
A flood frequency analysis using a 400-year historical flood record was carried out using a stationary model (based on maximum likelihood estimators) and a non-stationary model that incorporates external covariates (climatic and environmental). The stationary model was successful in providing an average discharge around which value flood quantiles estimated by non-stationary models fluctuate through time.
L. Gaál, P. Molnar, and J. Szolgay
Hydrol. Earth Syst. Sci., 18, 1561–1573, https://doi.org/10.5194/hess-18-1561-2014, https://doi.org/10.5194/hess-18-1561-2014, 2014
P. E. O'Connell and G. O'Donnell
Hydrol. Earth Syst. Sci., 18, 155–171, https://doi.org/10.5194/hess-18-155-2014, https://doi.org/10.5194/hess-18-155-2014, 2014
A. I. Requena, L. Mediero, and L. Garrote
Hydrol. Earth Syst. Sci., 17, 3023–3038, https://doi.org/10.5194/hess-17-3023-2013, https://doi.org/10.5194/hess-17-3023-2013, 2013
S. Das and C. Cunnane
Hydrol. Earth Syst. Sci., 15, 819–830, https://doi.org/10.5194/hess-15-819-2011, https://doi.org/10.5194/hess-15-819-2011, 2011
B. A. Botero and F. Francés
Hydrol. Earth Syst. Sci., 14, 2617–2628, https://doi.org/10.5194/hess-14-2617-2010, https://doi.org/10.5194/hess-14-2617-2010, 2010
L. Mediero, A. Jiménez-Álvarez, and L. Garrote
Hydrol. Earth Syst. Sci., 14, 2495–2505, https://doi.org/10.5194/hess-14-2495-2010, https://doi.org/10.5194/hess-14-2495-2010, 2010
B. Guse, Th. Hofherr, and B. Merz
Hydrol. Earth Syst. Sci., 14, 2465–2478, https://doi.org/10.5194/hess-14-2465-2010, https://doi.org/10.5194/hess-14-2465-2010, 2010
D. Koutsoyiannis
Hydrol. Earth Syst. Sci., 14, 585–601, https://doi.org/10.5194/hess-14-585-2010, https://doi.org/10.5194/hess-14-585-2010, 2010
Cited articles
Archeimer, B. and Lindström, G.: Climate impact on floods: changes in high flow in Sweden in the past and the future (1911–2100), Hydrol. Earth Syst. Sci., 19, 771–784, https://doi.org/10.5194/hess-19-771-2015, 2015.
Ashkar, F. and Bobée, B.: Confidence intervals for flood events under a Pearson 3 or log Pearson 3 distribution, J. Am. Water Resour. Assoc., 24, 639–650, https://doi.org/10.1111/j.1752-1688.1988.tb00916.x, 1988.
Benson, M. A.: Uniform flood frequency estimating methods for federal agencies, Water Resour. Res., 4, 891–908, 1968.
Bertholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005.
Bowman, K. O. and Shenton, L. R.: Estimator: Method of Moments, in: Encyclopedia of statistical sciences, Wiley, New York, 2092–2098, 1998.
Bulletin 17-B: Guideline for determining flood flow frequency, US Geological Survey, Virginia, 1982.
Catalogue of Climatology of USSR: Serie 3: multi-year data, Gidrometeoizdat, Leningrad, 1989.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate Change: Projections, Commitments and Irreversibility, in: Climate Change: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, 1029–1136, 2013.
Collins, W. J., Bellouin N., Doutriaux-Boucher, M., Gedney N., Hinton, T., Jones, C. D., Liddicoat, S., O'Connor, M. G. F., Rae, J., Senior, C., Totterdell, I., Woodward, S., Reichler, T., and Kim, J.: Evaluation of the HadGEM2 model, Technical Note no. HCTN 74, Met Office Hadley Centre, Exeter, UK, 2008.
Dankers, R. and Feyen, L.: Climate change impact on food hazard in Europe: an assessment based on high-resolution climate simulations, J. Geophys. Res.-Atmos., 113, D19105, https://doi.org/10.1029/2007JD009719, 2008.
Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A., Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu, J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J. M., Schwarzkopf, D., Shevliakova, E., Sirutis, J. J., Spelman, M. J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, F., and Zhang, R.: GFDL's CM2 global coupled climate models. Part 1: Formulation and simulation characteristics, J. Climate, 19, 643–674, https://doi.org/10.1175/JCLI3629.1, 2006.
Domínguez, E. and Rivera, H.: A Fokker–Planck–Kolmogorov equation approach for the monthly affluence forecast of Betania hydropower reservoir, J. Hydroinform., 12, 486–501, https://doi.org/10.2166/hydro.2010.083, 2010.
Ducré-Robitaille, J.-F., Vincent, L. A., and Boulet, G.: Comparison of techniques for detection of discontinuities in temperature series, Int. J. Climatol., 23, 1087–1101, https://doi.org/10.1002/joc.924, 2003.
Elderton, S. W. P. and Johnson, N. L.: Systems of Frequency Curves, Cambridge University Press, London, 1969.
Fowler, H. J., Blenkinsop, S., and Tebaldi, C.: Linking climate change modeling to impacts studies: recent advances in down-scaling techniques for hydrological modelling, Int. J. Climatol., 27, 1547–1578, 2007.
Gazprom: http://www.gazprom.com/about/production/projects/mega-yamal, last aaccess: 25 April 2017.
Giorgetta, M., Jungclaus, J., Reick, C., Legutke, S., Bader, J., Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R., Segschneider, J., Six, K., Stockhause, M., Timmreck, C., Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J. Adv. Model. Earth Syst., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013.
Govorkova, V. A., Katsov, V. M., Meleshko, V. P., Pavlova, T. V., and Shkol'nik, I. M.: Climate of Russia in the 21st Century. Part 2. Verification of atmosphere–ocean general circulation models CMIP3 for projections of future climate changes, Russ. Meteorol. Hydrol., 33, 467–477, https://doi.org/10.3103/S106837390809001X, 2008.
Hirabayashi, S., Kanae, S., Emori, T., Oki, T. and Kimoto, M.: Global projections of changing risks of foods and droughts in a changing climate, Hydrolog. Sci. J., 53, 754–773, https://doi.org/10.1623/hysj.53.4.754, 2008.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change, Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/nclimate1911, 2013.
Hofierka, J., Parajka, J., Mitasova, H., and Mitas, L.: Multivariate interpolation of precipitation using regularized spline with tension, Trans. GIS, 6, 135–150, https://doi.org/10.1111/1467-9671.00101, 2002.
IPCC: The Physical Basis, Annex I: Atlas of Global and Regional Climate Projections, Cambridge University Press, New York, 2013.
Ivanov, V. and Yankina, V.: Water resources of the Arctic: the past and future aims of research, Problem Arct. Antarct., 66, 118–128, 1991.
Johns, T. C., Gregory, J. M., Ingram, W. J., Johnson, C. E., Jones, A., Lowe, J. A., Mitchell, J. F. B., Roberts, D. L., Sexton, B. M. H., Stevenson, D. S., Tett, S. F. B., and Woodage, M. J.: Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios, Clim. Dynam., 20, 583–612, https://doi.org/10.1007/s00382-002-0296-y, 2003.
Kharin, V. V., Zwiers, F. W., Zhang, X., and Wehner, M.: Changes in temperature and precipitation extremes in the CMIP5 ensemble, Climatic Change, 119, 345–357, https://doi.org/10.1007/s10584-013-0705-8, 2013.
Kite, G. W.: Frequency and risk analysis in hydrology, Water Resources Publications, Fort Collins, Colorado, 1977.
Kovalenko, V. V.: Modeling of hydrological processes, Gidrometizdat, Saint-Peterburg, 1993.
Kovalenko, V. V.: Using a probability model for steady long-term estimation of modal values of long-term river runoff characteristics, Russ. Meteorol. Hydrol., 39, 57–62, https://doi.org/10.3103/S1068373914010099, 2014.
Kovalenko, V. V., Victorova, N. V., Gaydukova, E. V., Gromova, M. A., Khaustov, V. A., and Shevnina, E. V.: Guideline to estimate a multi-year runoff regime under non-steady climate to design hydraulic contractions, RSHU, Saint-Petersburg, 2010.
Krasting, J. P., Broccoli, A. J., Dixon, K. W., and Lanzante J. R.: Future Changes in Northern Hemisphere Snowfall, J. Climate, 26, 7813–7828, https://doi.org/10.1175/JCLI-D-12-00832.1, 2013.
Kritsky, S. N. and Menkel, M. F.: On the methods of studying the random variations of river flow, Gidrometeoizdat, Leningrad, 1946.
Kuchment, L. S. and Gelfan, A. N.: Assessment of extreme flood characteristics based on a dynamic-stochastic model of runoff generation and the probable maximum discharge, J. Flood Risk Manage., 4, 115–127, https://doi.org/10.1111/j.1753-318X.2011.01096.x, 2011.
Kuznetsov, I. V. (Ed.): Multi-year book of basic hydrological characteristics, Gidrometeoizdat, Leningrad, 1966.
Laine, A., Nakamura, H., Nishii, K., and Miyasaka T.: A diagnostic study of future evaporation changes projected in CMIP5 climate models, Clim. Dynam., 42, 2745–2761, https://doi.org/10.1007/s00382-014-2087-7, 2014.
Lawrence, D. and Haddeland, I.: Uncertainty in hydrological modeling of climate change impacts in four Norwegian catchments, Hydrol. Res., 42, 457–471, https://doi.org/10.2166/nh.2011.010, 2011.
Lehner, B., Döll, P., Alcamo, J., Henrichs, H., and Kaspar, F.: Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis, Climatic Change, 75, 273–299, https://doi.org/10.1007/s10584-006-6338-4, 2006.
Lins, H. F. and Cohn, T. A.: Stationarity: Wanted Dead or Alive?, J. Am. Water Resour. Assoc., 47, 475–480, https://doi.org/10.1111/j.1752-1688.2011.00542.x, 2011.
Mackenzie gas project: http://www.mackenziegasproject.com, last aaccess: 2 February 2017.
Madsen, H., Lawrence, D., Lang, M., Martinkova, M.,, and Kjeldsen, T. R.: A review of applied methods in Europe for flood-frequency analysis in a changing environment, NERC/Centre for Ecology & Hydrology on behalf of COST, available at: http://nora.nerc.ac.uk/501751/ (last aaccess: 2 February 2017), 2013.
Meehl, G. A. and Bony, S.: Introduction to CMIP5, CLIVAR Exchanges Newslett., 56, 2–5, 2011.
Meleshko, V. P., Katsov, V. M., Govorkova, V. A., Sporyshev, P. V., Shkol'nik, I. M., and Shneerov, B. E.: Climate of Russia in the 21st century. Part 3. Future climate changes calculated with an ensemble of coupled atmosphere–ocean general circulation CMIP3 models, Russ. Meteorol. Hydrol., 33, 541–552, https://doi.org/10.3103/S106837390809001X, 2008.
Milly, P., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Stationarity is dead: whither water management, Science, 319, 573–574, https://doi.org/10.1126/science.1151915, 2008.
Montanari, A. and Koutsoyiannis, D.: Modeling and mitigating natural hazards: Stationarity is immortal!, Water Resour. Res., 50, 9748–9756, https://doi.org/10.1002/2014WR016092, 2014.
Nikanorov, A. M., Ivanov, V. V., and Bryzgalo, V. A.: The rivers of the Russian Arctic, the current conditions under the human impact, NOC, Rostov-on-Don, 2007.
Pachauri, R. K. and Reisinger, A. (Eds.): Synthesis Report, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, 2007.
Petrowiki: http://petrowiki.org/Prudhoe_Bay_field, last access: 25 April 2017.
Prowse, T., Bring, A., Mård, J., Carmack, E., Holland, M., Instanes, A., Vihma, T., and Wrona, F. J.: Arctic Freshwater Synthesis: Summary of key emerging issues, J. Geophys. Res.-Biogeo., 120, 1887–1893, https://doi.org/10.1002/2015JG003128, 2015.
Pugachev, V. S., Kazakov, I. E., and Evlanov, L. G.: Basics of statistical theory of automatic system, Mashinostroenie, Moscow, 229–234, 1974.
Radionov, V. F. and Fetterer, F.: Meteorological Data from the Russian Arctic 1961–2000, National Snow and Ice Data Center, Boulder, USA, 2003.
Räisänen, J. and Palmer, T. N.: A probability and decision-model analysis of a multi model ensemble of climate change situations, J. Climate, 14, 3212–3226, https://doi.org/10.1175/1520-0442(2001)014<3212:APADMA>2.0.CO;2, 2001.
Razuvayev, V. N., Apasova, E.G., Martuganov, R. A., Steurer, P., and Vose, R.: CD-ROM daily temperature and precipitation data for 223 U.S.S.R. stations, ORNL/CDIAC, Oak Ridge National laboratory, Tennessee, 1993.
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgett, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM5. Part I: Model description, Rep. 349, Max Planck Institute for Meteorology, Hamburg, 2003.
Rogdestvenskiy, A. V.: Map of the variation coefficient of the spring flood flow depth (map #8), in: Atlas of a hydrological maps and nomograms, Gidrometeoizdat, Leningrad, 1986.
Rogdestvenskiy, A. V.: Spatial and temporal variations of river flow in USSR, Gidrometeizdat, Leningrad, 1988.
Rogdestvenskiy, A. V. and Saharyuk, A. V.: Generalization of Student and Fisher criteria for correlated in time and space hydrological timeseries, Lett. State Hydrolog. Inst., 282, 51–71, 1981.
Serinaldi, F. and Kilsby, C. G.: Stationarity is undead: Uncertainty dominates the distribution of extremes, Adv. Water Resour., 77, 17–36, https://doi.org/10.1016/j.advwatres.2014.12.013, 2015.
Shevnina, E. V.: The relationships between an annual and winter precipitation amount and flooding runoff on the rivers over the Russian Arctic, Scient. Rep. Russ. State Hydrometeorol. Univers., 20, 6–12, 2011.
Shevnina, E. V.: The stochastic model validation using observed timeseries: multi-year statistics of spring flood flow depth, Problem Arct. Antarct., 93, 40–50, 2012.
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2, Future climate projections, J. Geophys. Res.-Atmos., 118, 2473–2493, https://doi.org/10.1002/jgrd.50188, 2013.
SP33-101-2003: Guideline to estimate the basic hydrological characteristics, Gosstroy, Moscow, 2004.
Spence, C. and Burke, A.: Estimates of Canadian Arctic Archipelago Runoff from Observed Hydrometric Data, J. Hydrol., 362, 247–259, https://doi.org/10.1016/j.jhydrol.2008.08.019, 2008.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Tebaldi, C. and Knutti, R.: The use of the multi-model ensemble in probabilistic climate projections Philos. T. Roy. Soc. A, 365, 2053–2057, https://doi.org/10.1098/rsta.2007.2076, 2007.
Thomas, W. J.: A Uniform Technique for Flood Frequency Analysis, J. Water Resour. Pl. Manage., 111, 321–337, https://doi.org/10.1061/(ASCE)0733-9496(1985)111:3(321), 1985.
Toreti, A., Naveau, P., Zampieri, M., Schindler, A., Scoccimarro, E., Xoplaki, E., Dijkstra, H. A., Gualdi, S., and Luterbacher, J.: Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models, Geophys. Res. Lett., 40, 4887–4892, https://doi.org/10.1002/grl.50940, 2013.
Veijalainen, N., Lotsari, E., Alho, P., Vehviläinen, B., and Käyhkö, J.: National scale assessment of climate change impacts on flooding in Finland, J. Hydrol., 391, 333–350, https://doi.org/10.1016/j.jhydrol.2010.07.035, 2010.
Verzano, K.: Climate change impacts on flood related hydrological processes: further development and application of a global scale hydrological model, Reports on Earth system science 71, Max Planck Institute for Meteorology, Hamburg, 2009.
Viktorova, N. V. and Gromova, M. N.: Long-term forecasting of characteristics of minimal river runoff discharges in Russia in case of possible climate change, Russ. Meteorol. Hydrol., 33, 388–393, https://doi.org/10.3103/S1068373908060071, 2008.
Vodogretskiy, V.: Map of the mean values of the spring flood flow depth (map #6), in: Atlas of a hydrological maps and nomograms, Gidrometeoizdat, Leningrad, 1986.
von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S., Plummer, D., Verseghy, D., Reader, M. C., Ma, X., Lazare, M., and Solheim, L.: The Canadian Fourth Generation Atmospheric Global Climate Model (CanAM4). Part I: Representation of Physical Processes, Atmos.-Ocean, 51, 104–125, https://doi.org/10.1080/07055900.2012.755610, 2013.
Short summary
This paper presents the probabilistic approach to evaluate design floods in a changing climate, adapted in this case to the northern territories. For the Russian Arctic, the regions are delineated, where it is suggested to correct engineering hydrological calculations to account for climate change. An example of the calculation of a maximal discharge of 1 % exceedance probability for the Nadym River at Nadym is provided.
This paper presents the probabilistic approach to evaluate design floods in a changing climate,...