Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Download
Short summary
Is the occurrence of floods changing in frequency or magnitude? We have analyzed 100 years of observed time series from 69 gauging sites and high-resolution modeling of climate change impact across Sweden for 140 years. The results indicate no significant trend in high flows in the past but some shifts in flood-generating processes at present and in the future. Rain-generated floods may have a more marked effect, and some specific rivers may be more affected by climate change than others.
Articles | Volume 19, issue 2
Hydrol. Earth Syst. Sci., 19, 771–784, 2015
https://doi.org/10.5194/hess-19-771-2015
Hydrol. Earth Syst. Sci., 19, 771–784, 2015
https://doi.org/10.5194/hess-19-771-2015

Research article 04 Feb 2015

Research article | 04 Feb 2015

Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100)

B. Arheimer and G. Lindström

Related authors

Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation
Berit Arheimer, Rafael Pimentel, Kristina Isberg, Louise Crochemore, Jafet C. M. Andersson, Abdulghani Hasan, and Luis Pineda
Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020,https://doi.org/10.5194/hess-24-535-2020, 2020
Short summary
A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019,https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary
A geostatistical data-assimilation technique for enhancing macro-scale rainfall–runoff simulations
Alessio Pugliese, Simone Persiano, Stefano Bagli, Paolo Mazzoli, Juraj Parajka, Berit Arheimer, René Capell, Alberto Montanari, Günter Blöschl, and Attilio Castellarin
Hydrol. Earth Syst. Sci., 22, 4633–4648, https://doi.org/10.5194/hess-22-4633-2018,https://doi.org/10.5194/hess-22-4633-2018, 2018
Short summary
Wildfire impact on Boreal hydrology: empirical study of the Västmanland fire 2014 (Sweden)
Rafael Pimentel and Berit Arheimer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-387,https://doi.org/10.5194/hess-2018-387, 2018
Revised manuscript not accepted
Short summary
Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space
Fernando Jaramillo, Neil Cory, Berit Arheimer, Hjalmar Laudon, Ype van der Velde, Thomas B. Hasper, Claudia Teutschbein, and Johan Uddling
Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018,https://doi.org/10.5194/hess-22-567-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
The role and value of distributed precipitation data in hydrological models
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021,https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021,https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Flexible vector-based spatial configurations in land models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020,https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Two-stage variational mode decomposition and support vector regression for streamflow forecasting
Ganggang Zuo, Jungang Luo, Ni Wang, Yani Lian, and Xinxin He
Hydrol. Earth Syst. Sci., 24, 5491–5518, https://doi.org/10.5194/hess-24-5491-2020,https://doi.org/10.5194/hess-24-5491-2020, 2020
Short summary
Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020,https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary

Cited articles

Arheimer, B. and Lindström, G.: Implementing the EU Water Framework Directive in Sweden, in: Runoff Predictions in Ungauged Basins – Synthesis across Processes, Places and Scales, edited by: Bloeschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H., Cambridge University Press, Cambridge, UK, 353–359, 2013.
Arheimer, B. and Lindström, G.: Electricity vs Ecosystems – understanding and predicting hydropower impact on Swedish river flow. Evolving Water Resources Systems: Understanding, Predicting and Managing Water–Society Interactions, Proceedings of ICWRS2014, Bologna, Italy, 4–6 June 2014, IAHS Publ. No. 364, 2014.
Arheimer, B., Dahné J., and Donnelly, C.: Climate change impact on riverine nutrient load and land-based remedial measures of the Baltic Sea Action Plan, Ambio, 41, 600–612, 2012.
Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., and Nguyen, V. T. V.: Impacts of climate change on rainfall extremes and urban drainage systems: a review, Water Sci. Technol., 68, 16–28, https://doi.org/10.2166/wst.2013.251, 2013.
Bates, B. C., Kundzewicz, Z. W., Wu, S., Palutikof, J. (Eds.): Climate Change and Water, Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp., 2008.
Publications Copernicus
Download
Short summary
Is the occurrence of floods changing in frequency or magnitude? We have analyzed 100 years of observed time series from 69 gauging sites and high-resolution modeling of climate change impact across Sweden for 140 years. The results indicate no significant trend in high flows in the past but some shifts in flood-generating processes at present and in the future. Rain-generated floods may have a more marked effect, and some specific rivers may be more affected by climate change than others.
Citation