Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-771-2015
https://doi.org/10.5194/hess-19-771-2015
Research article
 | 
04 Feb 2015
Research article |  | 04 Feb 2015

Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100)

B. Arheimer and G. Lindström

Related authors

Where can rewetting of forested peatland reduce extreme flows?
Maria Elenius, Charlotta Pers, Sara Schützer, and Berit Arheimer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-271,https://doi.org/10.5194/hess-2024-271, 2024
Preprint under review for HESS
Short summary
Quantifying multi-year hydrological memory with Catchment Forgetting Curves
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022,https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999, https://doi.org/10.5194/hess-26-975-2022,https://doi.org/10.5194/hess-26-975-2022, 2022
Short summary
Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation
Berit Arheimer, Rafael Pimentel, Kristina Isberg, Louise Crochemore, Jafet C. M. Andersson, Abdulghani Hasan, and Luis Pineda
Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020,https://doi.org/10.5194/hess-24-535-2020, 2020
Short summary
A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019,https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024,https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024,https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024,https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary
A large-sample modelling approach towards integrating streamflow and evaporation data for the Spanish catchments
Patricio Yeste, Matilde García-Valdecasas Ojeda, Sonia R. Gámiz-Fortis, Yolanda Castro-Díez, Axel Bronstert, and María Jesús Esteban-Parra
Hydrol. Earth Syst. Sci., 28, 5331–5352, https://doi.org/10.5194/hess-28-5331-2024,https://doi.org/10.5194/hess-28-5331-2024, 2024
Short summary
Seasonal variation in land cover estimates reveals sensitivities and opportunities for environmental models
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024,https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary

Cited articles

Arheimer, B. and Lindström, G.: Implementing the EU Water Framework Directive in Sweden, in: Runoff Predictions in Ungauged Basins – Synthesis across Processes, Places and Scales, edited by: Bloeschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H., Cambridge University Press, Cambridge, UK, 353–359, 2013.
Arheimer, B. and Lindström, G.: Electricity vs Ecosystems – understanding and predicting hydropower impact on Swedish river flow. Evolving Water Resources Systems: Understanding, Predicting and Managing Water–Society Interactions, Proceedings of ICWRS2014, Bologna, Italy, 4–6 June 2014, IAHS Publ. No. 364, 2014.
Arheimer, B., Dahné J., and Donnelly, C.: Climate change impact on riverine nutrient load and land-based remedial measures of the Baltic Sea Action Plan, Ambio, 41, 600–612, 2012.
Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., and Nguyen, V. T. V.: Impacts of climate change on rainfall extremes and urban drainage systems: a review, Water Sci. Technol., 68, 16–28, https://doi.org/10.2166/wst.2013.251, 2013.
Bates, B. C., Kundzewicz, Z. W., Wu, S., Palutikof, J. (Eds.): Climate Change and Water, Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp., 2008.
Download
Short summary
Is the occurrence of floods changing in frequency or magnitude? We have analyzed 100 years of observed time series from 69 gauging sites and high-resolution modeling of climate change impact across Sweden for 140 years. The results indicate no significant trend in high flows in the past but some shifts in flood-generating processes at present and in the future. Rain-generated floods may have a more marked effect, and some specific rivers may be more affected by climate change than others.