Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-771-2015
https://doi.org/10.5194/hess-19-771-2015
Research article
 | 
04 Feb 2015
Research article |  | 04 Feb 2015

Climate impact on floods: changes in high flows in Sweden in the past and the future (1911–2100)

B. Arheimer and G. Lindström

Related authors

Where can rewetting of forested peatland reduce extreme flows?
Maria Elenius, Charlotta Pers, Sara Schützer, and Berit Arheimer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-271,https://doi.org/10.5194/hess-2024-271, 2024
Revised manuscript under review for HESS
Short summary
Quantifying multi-year hydrological memory with Catchment Forgetting Curves
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022,https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Remote sensing-aided rainfall–runoff modeling in the tropics of Costa Rica
Saúl Arciniega-Esparza, Christian Birkel, Andrés Chavarría-Palma, Berit Arheimer, and José Agustín Breña-Naranjo
Hydrol. Earth Syst. Sci., 26, 975–999, https://doi.org/10.5194/hess-26-975-2022,https://doi.org/10.5194/hess-26-975-2022, 2022
Short summary
Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation
Berit Arheimer, Rafael Pimentel, Kristina Isberg, Louise Crochemore, Jafet C. M. Andersson, Abdulghani Hasan, and Luis Pineda
Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020,https://doi.org/10.5194/hess-24-535-2020, 2020
Short summary
A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers
Theano Iliopoulou, Cristina Aguilar, Berit Arheimer, María Bermúdez, Nejc Bezak, Andrea Ficchì, Demetris Koutsoyiannis, Juraj Parajka, María José Polo, Guillaume Thirel, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 73–91, https://doi.org/10.5194/hess-23-73-2019,https://doi.org/10.5194/hess-23-73-2019, 2019
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Economic valuation of subsurface water contributions to watershed ecosystem services using a fully integrated groundwater–surface-water model
Tariq Aziz, Steven K. Frey, David R. Lapen, Susan Preston, Hazen A. J. Russell, Omar Khader, Andre R. Erler, and Edward A. Sudicky
Hydrol. Earth Syst. Sci., 29, 1549–1568, https://doi.org/10.5194/hess-29-1549-2025,https://doi.org/10.5194/hess-29-1549-2025, 2025
Short summary
Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events
Eduardo Acuña Espinoza, Ralf Loritz, Frederik Kratzert, Daniel Klotz, Martin Gauch, Manuel Álvarez Chaves, and Uwe Ehret
Hydrol. Earth Syst. Sci., 29, 1277–1294, https://doi.org/10.5194/hess-29-1277-2025,https://doi.org/10.5194/hess-29-1277-2025, 2025
Short summary
CH-RUN: a deep-learning-based spatially contiguous runoff reconstruction for Switzerland
Basil Kraft, Michael Schirmer, William H. Aeberhard, Massimiliano Zappa, Sonia I. Seneviratne, and Lukas Gudmundsson
Hydrol. Earth Syst. Sci., 29, 1061–1082, https://doi.org/10.5194/hess-29-1061-2025,https://doi.org/10.5194/hess-29-1061-2025, 2025
Short summary
Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model
Mengjiao Zhang, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1033–1060, https://doi.org/10.5194/hess-29-1033-2025,https://doi.org/10.5194/hess-29-1033-2025, 2025
Short summary
Exploring the potential processes controlling changes in precipitation–runoff relationships in non-stationary environments
Tian Lan, Tongfang Li, Hongbo Zhang, Jiefeng Wu, Yongqin David Chen, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 29, 903–924, https://doi.org/10.5194/hess-29-903-2025,https://doi.org/10.5194/hess-29-903-2025, 2025
Short summary

Cited articles

Arheimer, B. and Lindström, G.: Implementing the EU Water Framework Directive in Sweden, in: Runoff Predictions in Ungauged Basins – Synthesis across Processes, Places and Scales, edited by: Bloeschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H., Cambridge University Press, Cambridge, UK, 353–359, 2013.
Arheimer, B. and Lindström, G.: Electricity vs Ecosystems – understanding and predicting hydropower impact on Swedish river flow. Evolving Water Resources Systems: Understanding, Predicting and Managing Water–Society Interactions, Proceedings of ICWRS2014, Bologna, Italy, 4–6 June 2014, IAHS Publ. No. 364, 2014.
Arheimer, B., Dahné J., and Donnelly, C.: Climate change impact on riverine nutrient load and land-based remedial measures of the Baltic Sea Action Plan, Ambio, 41, 600–612, 2012.
Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., and Nguyen, V. T. V.: Impacts of climate change on rainfall extremes and urban drainage systems: a review, Water Sci. Technol., 68, 16–28, https://doi.org/10.2166/wst.2013.251, 2013.
Bates, B. C., Kundzewicz, Z. W., Wu, S., Palutikof, J. (Eds.): Climate Change and Water, Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp., 2008.
Download
Short summary
Is the occurrence of floods changing in frequency or magnitude? We have analyzed 100 years of observed time series from 69 gauging sites and high-resolution modeling of climate change impact across Sweden for 140 years. The results indicate no significant trend in high flows in the past but some shifts in flood-generating processes at present and in the future. Rain-generated floods may have a more marked effect, and some specific rivers may be more affected by climate change than others.
Share