Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-711-2015
https://doi.org/10.5194/hess-19-711-2015
Research article
 | 
04 Feb 2015
Research article |  | 04 Feb 2015

How does bias correction of regional climate model precipitation affect modelled runoff?

J. Teng, N. J. Potter, F. H. S. Chiew, L. Zhang, B. Wang, J. Vaze, and J. P. Evans

Related authors

Comparison of BARRA and ERA5 in replicating mean and extreme precipitation over Australia
Kevin K. W. Cheung, Fei Ji, Nidhi Nishant, Jin Teng, James Bennett, and De Li Liu
Hydrol. Earth Syst. Sci., 29, 3527–3543, https://doi.org/10.5194/hess-29-3527-2025,https://doi.org/10.5194/hess-29-3527-2025, 2025
Short summary
Very high spatial and temporal resolution rainfall data for accurate flood inundation modelling
Chi Nguyen, Jai Vaze, Cherry May R. Mateo, Michael F. Hutchinson, and Jin Teng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-228,https://doi.org/10.5194/hess-2024-228, 2024
Revised manuscript under review for HESS
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
A distributed hybrid physics–AI framework for learning corrections of internal hydrological fluxes and enhancing high-resolution regionalized flood modeling
Ngo Nghi Truyen Huynh, Pierre-André Garambois, Benjamin Renard, François Colleoni, Jérôme Monnier, and Hélène Roux
Hydrol. Earth Syst. Sci., 29, 3589–3613, https://doi.org/10.5194/hess-29-3589-2025,https://doi.org/10.5194/hess-29-3589-2025, 2025
Short summary
Adaptation of root zone storage capacity to climate change and its effects on future streamflow in Alpine catchments: towards non-stationary model parameters
Magali Ponds, Sarah Hanus, Harry Zekollari, Marie-Claire ten Veldhuis, Gerrit Schoups, Roland Kaitna, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 3545–3568, https://doi.org/10.5194/hess-29-3545-2025,https://doi.org/10.5194/hess-29-3545-2025, 2025
Short summary
Finding process-behavioural parameterisations of a hydrological model using a multi-step process-based calibration and evaluation scheme
Moritz M. Heuer, Hadysa Mohajerani, and Markus C. Casper
Hydrol. Earth Syst. Sci., 29, 3503–3525, https://doi.org/10.5194/hess-29-3503-2025,https://doi.org/10.5194/hess-29-3503-2025, 2025
Short summary
Merits and limits of SWAT-GL: application in contrasting glaciated catchments
Timo Schaffhauser, Florentin Hofmeister, Gabriele Chiogna, Fabian Merk, Ye Tuo, Julian Machnitzke, Lucas Alcamo, Jingshui Huang, and Markus Disse
Hydrol. Earth Syst. Sci., 29, 3227–3256, https://doi.org/10.5194/hess-29-3227-2025,https://doi.org/10.5194/hess-29-3227-2025, 2025
Short summary
Hydrological regime index for non-perennial rivers
Pablo Fernando Dornes and Rocío Noelia Comas
Hydrol. Earth Syst. Sci., 29, 2901–2923, https://doi.org/10.5194/hess-29-2901-2025,https://doi.org/10.5194/hess-29-2901-2025, 2025
Short summary

Cited articles

Argüeso, D., Evans, J. P., and Fita, L.: Precipitation bias correction of very high resolution regional climate models, Hydrol. Earth Syst. Sci., 17, 4379–4388, https://doi.org/10.5194/hess-17-4379-2013, 2013.
Bennett, J. C., Ling, F. L. N., Post, D. A., Grose, M. R., Corney, S. P., Graham, B., Holz, G. K., Katzfey, J. J., and Bindoff, N. L.: High-resolution projections of surface water availability for Tasmania, Australia, Hydrol. Earth Syst. Sci., 16, 1287–1303, https://doi.org/10.5194/hess-16-1287-2012, 2012.
Bennett, J. C., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K., Katzfey, J. J., Post, D. A., and Bindoff, N. L.: Performance of an empirical bias-correction of a high-resolution climate data set, Int. J. Climatol., 34, 2189–2204, https://doi.org/10.1002/joc.3830, 2014.
Berg, P., Feldmann, H., and Panitz, H. J.: Bias correction of high resolution regional climate model data, J. Hydrol., 448–449, 80–92, https://doi.org/10.1016/j.jhydrol.2012.04.026, 2012.
Boe, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007.
Download
Short summary
This paper assesses four bias correction methods applied to RCM-simulated precipitation, and their follow-on impact on modelled runoff. The differences between the methods are small, mainly due to the substantial corrections required and inconsistent errors over time. The methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Furthermore, bias correction can introduce additional uncertainty to change signals in modelled runoff.
Share