Articles | Volume 19, issue 2
Hydrol. Earth Syst. Sci., 19, 711–728, 2015
https://doi.org/10.5194/hess-19-711-2015
Hydrol. Earth Syst. Sci., 19, 711–728, 2015
https://doi.org/10.5194/hess-19-711-2015
Research article
04 Feb 2015
Research article | 04 Feb 2015

How does bias correction of regional climate model precipitation affect modelled runoff?

J. Teng et al.

Related authors

Does non-stationarity induced by multiyear drought invalidate the paired-catchment method?
Yunfan Zhang, Lei Cheng, Lu Zhang, Shujing Qin, Liu Liu, Pan Liu, and Yanghe Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-166,https://doi.org/10.5194/hess-2022-166, 2022
Revised manuscript under review for HESS
Short summary
Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought: a community perspective
Keirnan Fowler, Murray Peel, Margarita Saft, Tim Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-147,https://doi.org/10.5194/hess-2022-147, 2022
Preprint under review for HESS
Short summary
Robust historical evapotranspiration trends across climate regimes
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021,https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
A Markov chain method for weighting climate model ensembles
Max Kulinich, Yanan Fan, Spiridon Penev, Jason P. Evans, and Roman Olson
Geosci. Model Dev., 14, 3539–3551, https://doi.org/10.5194/gmd-14-3539-2021,https://doi.org/10.5194/gmd-14-3539-2021, 2021
Short summary
The application of Budyko framework to irrigation districts in China under various climatic conditions
Hang Chen, Zailin Huo, Lu Zhang, Jing Cui, Yingying Shen, and Zhenzhong Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-80,https://doi.org/10.5194/hess-2021-80, 2021
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Assessing the influence of water sampling strategy on the performance of tracer-aided hydrological modeling in a mountainous basin on the Tibetan Plateau
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022,https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Flood forecasting with machine learning models in an operational framework
Sella Nevo, Efrat Morin, Adi Gerzi Rosenthal, Asher Metzger, Chen Barshai, Dana Weitzner, Dafi Voloshin, Frederik Kratzert, Gal Elidan, Gideon Dror, Gregory Begelman, Grey Nearing, Guy Shalev, Hila Noga, Ira Shavitt, Liora Yuklea, Moriah Royz, Niv Giladi, Nofar Peled Levi, Ofir Reich, Oren Gilon, Ronnie Maor, Shahar Timnat, Tal Shechter, Vladimir Anisimov, Yotam Gigi, Yuval Levin, Zach Moshe, Zvika Ben-Haim, Avinatan Hassidim, and Yossi Matias
Hydrol. Earth Syst. Sci., 26, 4013–4032, https://doi.org/10.5194/hess-26-4013-2022,https://doi.org/10.5194/hess-26-4013-2022, 2022
Short summary
Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022,https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
High-resolution satellite products improve hydrological modeling in northern Italy
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022,https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Analysis of high streamflow extremes in climate change studies: how do we calibrate hydrological models?
Bruno Majone, Diego Avesani, Patrick Zulian, Aldo Fiori, and Alberto Bellin
Hydrol. Earth Syst. Sci., 26, 3863–3883, https://doi.org/10.5194/hess-26-3863-2022,https://doi.org/10.5194/hess-26-3863-2022, 2022
Short summary

Cited articles

Argüeso, D., Evans, J. P., and Fita, L.: Precipitation bias correction of very high resolution regional climate models, Hydrol. Earth Syst. Sci., 17, 4379–4388, https://doi.org/10.5194/hess-17-4379-2013, 2013.
Bennett, J. C., Ling, F. L. N., Post, D. A., Grose, M. R., Corney, S. P., Graham, B., Holz, G. K., Katzfey, J. J., and Bindoff, N. L.: High-resolution projections of surface water availability for Tasmania, Australia, Hydrol. Earth Syst. Sci., 16, 1287–1303, https://doi.org/10.5194/hess-16-1287-2012, 2012.
Bennett, J. C., Grose, M. R., Corney, S. P., White, C. J., Holz, G. K., Katzfey, J. J., Post, D. A., and Bindoff, N. L.: Performance of an empirical bias-correction of a high-resolution climate data set, Int. J. Climatol., 34, 2189–2204, https://doi.org/10.1002/joc.3830, 2014.
Berg, P., Feldmann, H., and Panitz, H. J.: Bias correction of high resolution regional climate model data, J. Hydrol., 448–449, 80–92, https://doi.org/10.1016/j.jhydrol.2012.04.026, 2012.
Boe, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007.
Download
Short summary
This paper assesses four bias correction methods applied to RCM-simulated precipitation, and their follow-on impact on modelled runoff. The differences between the methods are small, mainly due to the substantial corrections required and inconsistent errors over time. The methods cannot overcome limitations of the RCM in simulating precipitation sequence, which affects runoff generation. Furthermore, bias correction can introduce additional uncertainty to change signals in modelled runoff.