Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Download
Short summary
We modify the recommendations for flow predictions in ungauged catchments to address the challenges at the large scale. We use examples from the HYPE hydrological model set-up across 6000 subbasins for the Indian subcontinent. Multi-basin modelling reveals the spatial patterns of catchment functioning and dominant flow processes across the hydroclimatic gradient. The model set-up procedure according to the PUB recommendations brought insights into where the single model structure is inadequate.
Articles | Volume 19, issue 11
Hydrol. Earth Syst. Sci., 19, 4559–4579, 2015
https://doi.org/10.5194/hess-19-4559-2015
Hydrol. Earth Syst. Sci., 19, 4559–4579, 2015
https://doi.org/10.5194/hess-19-4559-2015

Research article 17 Nov 2015

Research article | 17 Nov 2015

Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case

I. G. Pechlivanidis and B. Arheimer

Related authors

From skill to value: isolating the influence of end user behavior on seasonal forecast assessment
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020,https://doi.org/10.5194/hess-24-5891-2020, 2020
Short summary
Benchmarking an operational hydrological model for providing seasonal forecasts in Sweden
Marc Girons Lopez, Louise Crochemore, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-542,https://doi.org/10.5194/hess-2020-542, 2020
Revised manuscript under review for HESS
Short summary
The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016,https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
The role and value of distributed precipitation data in hydrological models
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021,https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Flood spatial coherence, triggers, and performance in hydrological simulations: large-sample evaluation of four streamflow-calibrated models
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021,https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Flexible vector-based spatial configurations in land models
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020,https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Two-stage variational mode decomposition and support vector regression for streamflow forecasting
Ganggang Zuo, Jungang Luo, Ni Wang, Yani Lian, and Xinxin He
Hydrol. Earth Syst. Sci., 24, 5491–5518, https://doi.org/10.5194/hess-24-5491-2020,https://doi.org/10.5194/hess-24-5491-2020, 2020
Short summary
Predicting probabilities of streamflow intermittency across a temperate mesoscale catchment
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020,https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary

Cited articles

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, https://doi.org/10.1623/hysj.48.3.317.45290, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration, Guidelines for computing crop water requirements, in FAO Irrigation and drainage paper, Rome, 56, 1998.
Andreassian, V., Hall, A., Chahinian, N., and Schaake, J.: Large Sample Basin Experiment for Hydrological Model Parameterization: Results of the Model Parameter Experiment – MOPEX, IAHS Publication, Wallingford, 307, 2006.
Arheimer, B. and Brandt, M.: Modelling nitrogen transport and retention in the catchments of southern Sweden, Ambio, 27, 471–480, 1998.
Arheimer, B. and Lindström, G.: Implementing the EU Water Framework Directive in Sweden, in: Runoff Predictions in Ungauged Basins – Synthesis across processes, places and scales, edited by: Blöschl, G., Sivapalan, M., Wagener, T., and Viglione, A., 353–359, Cambridge University Press, Cambridge, UK, 2013.
Publications Copernicus
Download
Short summary
We modify the recommendations for flow predictions in ungauged catchments to address the challenges at the large scale. We use examples from the HYPE hydrological model set-up across 6000 subbasins for the Indian subcontinent. Multi-basin modelling reveals the spatial patterns of catchment functioning and dominant flow processes across the hydroclimatic gradient. The model set-up procedure according to the PUB recommendations brought insights into where the single model structure is inadequate.
Citation