Articles | Volume 19, issue 11
Hydrol. Earth Syst. Sci., 19, 4559–4579, 2015
Hydrol. Earth Syst. Sci., 19, 4559–4579, 2015

Research article 17 Nov 2015

Research article | 17 Nov 2015

Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case

I. G. Pechlivanidis and B. Arheimer

Related authors

Benchmarking an operational hydrological model for providing seasonal forecasts in Sweden
Marc Girons Lopez, Louise Crochemore, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci., 25, 1189–1209,,, 2021
Short summary
From skill to value: isolating the influence of end user behavior on seasonal forecast assessment
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902,,, 2020
Short summary
The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799,,, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: RAT – a robustness assessment test for calibrated and uncalibrated hydrological models
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027,,, 2021
Short summary
Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915,,, 2021
Short summary
Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models
Etienne Guilpart, Vahid Espanmanesh, Amaury Tilmant, and François Anctil
Hydrol. Earth Syst. Sci., 25, 4611–4629,,, 2021
Short summary
Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling
Herath Mudiyanselage Viraj Vidura Herath, Jayashree Chadalawada, and Vladan Babovic
Hydrol. Earth Syst. Sci., 25, 4373–4401,,, 2021
Short summary
Development and evaluation of 0.05° terrestrial water storage estimates using Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and assimilation of GRACE data
Natthachet Tangdamrongsub, Michael F. Jasinski, and Peter J. Shellito
Hydrol. Earth Syst. Sci., 25, 4185–4208,,, 2021
Short summary

Cited articles

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337,, 2003.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration, Guidelines for computing crop water requirements, in FAO Irrigation and drainage paper, Rome, 56, 1998.
Andreassian, V., Hall, A., Chahinian, N., and Schaake, J.: Large Sample Basin Experiment for Hydrological Model Parameterization: Results of the Model Parameter Experiment – MOPEX, IAHS Publication, Wallingford, 307, 2006.
Arheimer, B. and Brandt, M.: Modelling nitrogen transport and retention in the catchments of southern Sweden, Ambio, 27, 471–480, 1998.
Arheimer, B. and Lindström, G.: Implementing the EU Water Framework Directive in Sweden, in: Runoff Predictions in Ungauged Basins – Synthesis across processes, places and scales, edited by: Blöschl, G., Sivapalan, M., Wagener, T., and Viglione, A., 353–359, Cambridge University Press, Cambridge, UK, 2013.
Short summary
We modify the recommendations for flow predictions in ungauged catchments to address the challenges at the large scale. We use examples from the HYPE hydrological model set-up across 6000 subbasins for the Indian subcontinent. Multi-basin modelling reveals the spatial patterns of catchment functioning and dominant flow processes across the hydroclimatic gradient. The model set-up procedure according to the PUB recommendations brought insights into where the single model structure is inadequate.