Articles | Volume 19, issue 8
https://doi.org/10.5194/hess-19-3349-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-19-3349-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Investigating suspended sediment dynamics in contrasting agricultural catchments using ex situ turbidity-based suspended sediment monitoring
S. C. Sherriff
CORRESPONDING AUTHOR
Johnstown Castle Research Centre, Teagasc, Wexford, Ireland
School of the Environment, University of Dundee, Dundee, DD1 4HN, Scotland, UK
J. S. Rowan
School of the Environment, University of Dundee, Dundee, DD1 4HN, Scotland, UK
A. R. Melland
National Centre for Engineering in Agriculture, University of Southern Queensland, Toowoomba, Australia
P. Jordan
School of Environmental Sciences, Ulster University, Coleraine, Co. Derry, BT52 1SA, UK
Agricultural Catchments Programme, Johnstown Castle Research Centre, Teagasc, Wexford, Ireland
O. Fenton
Johnstown Castle Research Centre, Teagasc, Wexford, Ireland
D. Ó hUallacháin
Johnstown Castle Research Centre, Teagasc, Wexford, Ireland
Related authors
No articles found.
Maelle Fresne, Phil Jordan, Per-Erik Mellander, Karen Daly, and Owen Fenton
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-248, https://doi.org/10.5194/hess-2020-248, 2020
Revised manuscript not accepted
Short summary
Short summary
We identifies the role of physical controls (soil properties, rainfall and groundwater level) on phosphorus transport to shallow groundwater at the hillslope scale. Spatial variations in phosphorus transport to groundwater were related to soil properties whereas temporal variations were related to rainfall and groundwater level. The findings provide a support for the localisation of critical zones of phosphorus loss to groundwater and where reduction of phosphorus sources should be prioritized.
Fortune Faith Gomo, Christopher Macleod, John Rowan, Jagadeesh Yeluripati, and Kairsty Topp
Proc. IAHS, 376, 15–23, https://doi.org/10.5194/piahs-376-15-2018, https://doi.org/10.5194/piahs-376-15-2018, 2018
M. M. R. Jahangir, K. G. Richards, M. G. Healy, L. Gill, C. Müller, P. Johnston, and O. Fenton
Hydrol. Earth Syst. Sci., 20, 109–123, https://doi.org/10.5194/hess-20-109-2016, https://doi.org/10.5194/hess-20-109-2016, 2016
Short summary
Short summary
Removal efficiency of carbon and nitrogen in constructed wetlands is inconsistent and does not reveal whether the removal processes are from physical attenuation or transformation to other reactive forms. Previous research did not consider "pollution swapping" driven by transformational processes. Herein the biogeochemical dynamics and fate of carbon and nitrogen and their potential impact on the environment, as well as novel ways in which these knowledge gaps may be eliminated, are explored.
M. Huebsch, F. Grimmeisen, M. Zemann, O. Fenton, K. G. Richards, P. Jordan, A. Sawarieh, P. Blum, and N. Goldscheider
Hydrol. Earth Syst. Sci., 19, 1589–1598, https://doi.org/10.5194/hess-19-1589-2015, https://doi.org/10.5194/hess-19-1589-2015, 2015
Short summary
Short summary
Two different in situ spectrophotometers, which were used in the field to determine highly time resolved nitrate-nitrogen (NO3-N) concentrations at two distinct spring discharge sites, are compared: a double and a multiple wavelength spectrophotometer. The objective of the study was to review the hardware options, determine ease of calibration, accuracy, influence of additional substances and to assess positive and negative aspects of the two sensors as well as troubleshooting and trade-offs.
J. M. Campbell, P. Jordan, and J. Arnscheidt
Hydrol. Earth Syst. Sci., 19, 453–464, https://doi.org/10.5194/hess-19-453-2015, https://doi.org/10.5194/hess-19-453-2015, 2015
Short summary
Short summary
High-resolution phosphorus and flow data were used to gauge the effects of diffuse (soil P) and point source (septic tank system) mitigation measures in two flashy headwater river catchments. Over 4 years the data indicated an overall increase in P concentration in defined high flow ranges and low flow P concentration showed little change. The work indicates fractured responses to catchment management advice and mitigation which were also affected by variations in seasonal hydrometeorology.
M. Huebsch, O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum
Hydrol. Earth Syst. Sci., 18, 4423–4435, https://doi.org/10.5194/hess-18-4423-2014, https://doi.org/10.5194/hess-18-4423-2014, 2014
C. Baxter, J. S. Rowan, B. M. McKenzie, and R. Neilson
Biogeosciences, 10, 7133–7145, https://doi.org/10.5194/bg-10-7133-2013, https://doi.org/10.5194/bg-10-7133-2013, 2013
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Instruments and observation techniques
Phosphorus supply and floodplain design govern phosphorus reduction capacity in remediated agricultural streams
Transpiration rates from mature Eucalyptus grandis × E. nitens clonal hybrid and Pinus elliottii plantations near the Two Streams Research Catchment, South Africa
Phenophase-based comparison of field observations to satellite-based actual evaporation estimates of a natural woodland: miombo woodland, southern Africa
Patterns and drivers of water quality changes associated with dams in the Tropical Andes
δ13C, CO2 ∕ 3He and 3He ∕ 4He ratios reveal the presence of mantle gas in the CO2-rich groundwaters of the Ardennes massif (Spa, Belgium)
Advances in the hydraulic interpretation of water wells using flowmeter logs
Continuous monitoring of a soil aquifer treatment system's physico-chemical conditions to optimize operational performance
Building a methodological framework and toolkit for news media dataset tracking of conflict and cooperation dynamics on transboundary rivers
Investigating the environmental response to water harvesting structures: a field study in Tanzania
The importance of city trees for reducing net rainfall: comparing measurements and simulations
Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method
Hydrogeological controls on spatial patterns of groundwater discharge in peatlands
Monitoring surface water quality using social media in the context of citizen science
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
Learning about water resource sharing through game play
High-resolution monitoring of nutrients in groundwater and surface waters: process understanding, quantification of loads and concentrations, and management applications
Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning
The use of semi-structured interviews for the characterisation of farmer irrigation practices
High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport
Vulnerability of groundwater resources to interaction with river water in a boreal catchment
Drivers of spatial and temporal variability of streamflow in the Incomati River basin
Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments
Comparison of sampling methodologies for nutrient monitoring in streams: uncertainties, costs and implications for mitigation
Geophysical methods to support correct water sampling locations for salt dilution gauging
Water management simulation games and the construction of knowledge
Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium
Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise
Potentials and limits of urban rainwater harvesting in the Middle East
Hydrologic feasibility of artificial forestation in the semi-arid Loess Plateau of China
Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring
Modern comprehensive approach to monitor the morphodynamic evolution of a restored river corridor
The effect of physical water quality and water level changes on the occurrence and density of Anopheles mosquito larvae around the shoreline of the Koka reservoir, central Ethiopia
Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets
Relative impacts of key drivers on the response of the water table to a major alley farming experiment
Lukas Hallberg, Faruk Djodjic, and Magdalena Bieroza
Hydrol. Earth Syst. Sci., 28, 341–355, https://doi.org/10.5194/hess-28-341-2024, https://doi.org/10.5194/hess-28-341-2024, 2024
Short summary
Short summary
Floodplains can be constructed along agricultural streams with the purpose of increasing water residence time, thereby reducing instream erosion and intercepting nutrient export. In this paper we show how this remediation measure can reduce phosphorus concentrations by up to 30 % through optimized floodplain designs and placement. These reductions were primarily facilitated by protection against erosion rather than by the promotion of deposition on floodplains.
Nkosinathi David Kaptein, Colin S. Everson, Alistair David Clulow, Michele Lynn Toucher, and Ilaria Germishuizen
Hydrol. Earth Syst. Sci., 27, 4467–4484, https://doi.org/10.5194/hess-27-4467-2023, https://doi.org/10.5194/hess-27-4467-2023, 2023
Short summary
Short summary
Water-use studies comparing pine and Eucalyptus are limited. This study used internationally recognized methods to measure water use by Eucalyptus and pine over two seasons. Results showed that, over one season, pine used more water than Eucalyptus, which was contrary to previous long-term studies. However, the Eucalyptus site was found to be water stressed. This study concluded that the observed water stress and reduced transpiration rates must be included in hydrological models.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
R. Scott Winton, Silvia López-Casas, Daniel Valencia-Rodríguez, Camilo Bernal-Forero, Juliana Delgado, Bernhard Wehrli, and Luz Jiménez-Segura
Hydrol. Earth Syst. Sci., 27, 1493–1505, https://doi.org/10.5194/hess-27-1493-2023, https://doi.org/10.5194/hess-27-1493-2023, 2023
Short summary
Short summary
Dams are an important and rapidly growing means of energy generation in the Tropical Andes of South America. To assess the impacts of dams in the region, we assessed differences in the upstream and downstream water quality of all hydropower dams in Colombia. We found evidence of substantial dam-induced changes in water temperature, dissolved oxygen concentration and suspended sediments. Dam-induced changes in Colombian waters violate regulations and are likely impacting aquatic life.
Agathe Defourny, Pierre-Henri Blard, Laurent Zimmermann, Patrick Jobé, Arnaud Collignon, Frédéric Nguyen, and Alain Dassargues
Hydrol. Earth Syst. Sci., 26, 2637–2648, https://doi.org/10.5194/hess-26-2637-2022, https://doi.org/10.5194/hess-26-2637-2022, 2022
Short summary
Short summary
The Belgian city of Spa is known worldwide for its ferruginous and naturally sparkling groundwater springs that gave their name to the bathing tradition commonly called
spa. However, the origin of the dissolved CO2 they contain was still a matter of debate. Thanks to new analysis on groundwater samples, particularly carbon and helium isotopes together with dissolved gases, this study has demonstrated that the volcanic origin of the CO2 is presumably from the neighboring Eifel volcanic fields.
Jesús Díaz-Curiel, Bárbara Biosca, Lucía Arévalo-Lomas, María Jesús Miguel, and Natalia Caparrini
Hydrol. Earth Syst. Sci., 26, 2617–2636, https://doi.org/10.5194/hess-26-2617-2022, https://doi.org/10.5194/hess-26-2617-2022, 2022
Short summary
Short summary
A methodology is developed for a new hydraulic characterization of continental hydrological basins. For this purpose, the division of wells into flow stretches with different hydraulic behaviour is made according to the results of the flowmeter, supposing that the hypothesis hydraulic heads of the deepest flow stretches of the well do not necessarily match the head shown by the overall well.
Tuvia Turkeltaub, Alex Furman, Ron Mannheim, and Noam Weisbrod
Hydrol. Earth Syst. Sci., 26, 1565–1578, https://doi.org/10.5194/hess-26-1565-2022, https://doi.org/10.5194/hess-26-1565-2022, 2022
Short summary
Short summary
The quality control and optimization of soil aquifer treatment (SAT) performance is challenging due to the multiple factors and costs involved. We installed in situ subsurface monitoring sensors that provided continuous high-resolution monitoring of the biochemical and physical conditions of an active SAT system. Data analysis facilitated the determination of the optimal drying and wetting stages, which are critical for suitable SAT management.
Liying Guo, Jing Wei, Keer Zhang, Jiale Wang, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 26, 1165–1185, https://doi.org/10.5194/hess-26-1165-2022, https://doi.org/10.5194/hess-26-1165-2022, 2022
Short summary
Short summary
Data support is crucial for the research of conflict and cooperation on transboundary rivers. Conventional, manual constructions of datasets cannot meet the requirements for fast updates in the big data era. This study brings up a revised methodological framework, based on the conventional method, and a toolkit for the news media dataset tracking of conflict and cooperation dynamics on transboundary rivers. A dataset with good tradeoffs between data relevance and coverage is generated.
Jessica A. Eisma and Venkatesh M. Merwade
Hydrol. Earth Syst. Sci., 24, 1891–1906, https://doi.org/10.5194/hess-24-1891-2020, https://doi.org/10.5194/hess-24-1891-2020, 2020
Short summary
Short summary
Sand dams capture and store water for use during the dry season in rural communities. A year long field study of three sand dams in Tanzania showed that sand dams are not a suitable habitat for aquatic insects. They capture plenty of water, but most is evaporated during the first few months of the dry season. Sand dams positively impact vegetation and minimally impact erosion. Community water security can be increased by sand dams, but site characteristics and construction are important factors.
Vincent Smets, Charlotte Wirion, Willy Bauwens, Martin Hermy, Ben Somers, and Boud Verbeiren
Hydrol. Earth Syst. Sci., 23, 3865–3884, https://doi.org/10.5194/hess-23-3865-2019, https://doi.org/10.5194/hess-23-3865-2019, 2019
Short summary
Short summary
The impact of city trees for intercepting rainfall is quantified using measurements and modeling tools. The measurements show that an important amount of rainfall is intercepted, limiting the amount of water reaching the ground. Models are used to extrapolate the measurement results. The performance of two specialized interception models and one water balance model is evaluated. Our results show that the performance of the water balance model is similar to the specialized interception models.
Benjamin Mary, Luca Peruzzo, Jacopo Boaga, Myriam Schmutz, Yuxin Wu, Susan S. Hubbard, and Giorgio Cassiani
Hydrol. Earth Syst. Sci., 22, 5427–5444, https://doi.org/10.5194/hess-22-5427-2018, https://doi.org/10.5194/hess-22-5427-2018, 2018
Danielle K. Hare, David F. Boutt, William P. Clement, Christine E. Hatch, Glorianna Davenport, and Alex Hackman
Hydrol. Earth Syst. Sci., 21, 6031–6048, https://doi.org/10.5194/hess-21-6031-2017, https://doi.org/10.5194/hess-21-6031-2017, 2017
Short summary
Short summary
This research examines what processes drive the location and strength of groundwater springs within a peatland environment. Using temperature and geophysical methods, we demonstrate that the relationship between regional groundwater flow gradients and the basin shape below the peatland surface control where groundwater springs occur. Understanding this relationship will support effective restoration efforts, as groundwater spring locations are important to overall peatland function and ecology.
Hang Zheng, Yang Hong, Di Long, and Hua Jing
Hydrol. Earth Syst. Sci., 21, 949–961, https://doi.org/10.5194/hess-21-949-2017, https://doi.org/10.5194/hess-21-949-2017, 2017
Short summary
Short summary
Do you feel angry if the river in your living place is polluted by industries? Do you want to do something to save your environment? Just log in to http://www.thuhjjc.com and use the Tsinghua Environment Monitoring Platform (TEMP) to photograph the water pollution actives and make your report. This study established a social media platform to monitor and report surface water quality. The effectiveness of the platform was demonstrated by the 324 water quality reports across 30 provinces in China.
Matteo Giuliani, Andrea Castelletti, Roman Fedorov, and Piero Fraternali
Hydrol. Earth Syst. Sci., 20, 5049–5062, https://doi.org/10.5194/hess-20-5049-2016, https://doi.org/10.5194/hess-20-5049-2016, 2016
Short summary
Short summary
The unprecedented availability of user-generated data on the Web is opening new opportunities for enhancing real-time monitoring and modeling of environmental systems based on data that are public, low-cost, and spatiotemporally dense. In this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images. The value of the obtained virtual snow indexes is assessed for a real-world water management problem.
Tracy Ewen and Jan Seibert
Hydrol. Earth Syst. Sci., 20, 4079–4091, https://doi.org/10.5194/hess-20-4079-2016, https://doi.org/10.5194/hess-20-4079-2016, 2016
Short summary
Short summary
Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be explored. We look at how games can be used to teach about water resource sharing, by both playing and developing water games. An evaluation of the web-based game Irrigania found Irrigania to be an effective and easy tool to incorporate into curriculum, and a course on developing water games encouraged students to think about water resource sharing in a more critical and insightful way.
Frans C. van Geer, Brian Kronvang, and Hans Peter Broers
Hydrol. Earth Syst. Sci., 20, 3619–3629, https://doi.org/10.5194/hess-20-3619-2016, https://doi.org/10.5194/hess-20-3619-2016, 2016
Short summary
Short summary
The paper includes a review of the current state of high-frequency monitoring in groundwater and surface waters as an outcome of a special issue of HESS and four sessions at EGU on this topic. The focus of the paper is to look at how high-frequency monitoring can be used as a valuable support to assess the management efforts under various EU directives. We conclude that we in future will see a transition from research to implementation in operational monitoring use of high-frequency sensors.
Matthew D. Berg, Franco Marcantonio, Mead A. Allison, Jason McAlister, Bradford P. Wilcox, and William E. Fox
Hydrol. Earth Syst. Sci., 20, 2295–2307, https://doi.org/10.5194/hess-20-2295-2016, https://doi.org/10.5194/hess-20-2295-2016, 2016
Short summary
Short summary
Rangelands, from grasslands to woodlands, cover much of the earth. These areas face great pressure to meet growing water needs. Data on large-scale dynamics that drive water planning remain rare. Our watershed-scale results challenge simplistic hydrological assumptions. Streamflow was resilient to dramatic landscape changes. These changes did shape sediment yield, affecting water storage. Understanding these processes is vital to projections of rangeland water resources in a changing world.
Jimmy O'Keeffe, Wouter Buytaert, Ana Mijic, Nicholas Brozović, and Rajiv Sinha
Hydrol. Earth Syst. Sci., 20, 1911–1924, https://doi.org/10.5194/hess-20-1911-2016, https://doi.org/10.5194/hess-20-1911-2016, 2016
Short summary
Short summary
Semi-structured interviews provide an effective and efficient way of collecting qualitative and quantitative data on water use practices. Interviews are organised around a topic guide, which helps lead the conversation while allowing sufficient opportunity to identify issues previously unknown to the researcher. The use of semi-structured interviews could significantly and quickly improve insight on water resources, leading to more realistic future management options and increased water security.
J. C. Rozemeijer, A. Visser, W. Borren, M. Winegram, Y. van der Velde, J. Klein, and H. P. Broers
Hydrol. Earth Syst. Sci., 20, 347–358, https://doi.org/10.5194/hess-20-347-2016, https://doi.org/10.5194/hess-20-347-2016, 2016
Short summary
Short summary
Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. For a grassland field in the Netherlands, we measured the changes in the field water and solute balance after introducing controlled drainage. We concluded that controlled drainage reduced the drain discharge and increased the groundwater storage in the field, but did not have clear positive effects for water quality.
A. Rautio, A.-L. Kivimäki, K. Korkka-Niemi, M. Nygård, V.-P. Salonen, K. Lahti, and H. Vahtera
Hydrol. Earth Syst. Sci., 19, 3015–3032, https://doi.org/10.5194/hess-19-3015-2015, https://doi.org/10.5194/hess-19-3015-2015, 2015
Short summary
Short summary
Based on low-altitude aerial infrared surveys, around 370 groundwater–surface water interaction sites were located. Longitudinal temperature patterns, stable isotopes and dissolved silica composition of the studied rivers differed. Interaction sites identified in the proximity of 12 municipal water plants during low-flow seasons should be considered as potential risk areas during flood periods and should be taken under consideration in river basin management under changing climatic situations.
A. M. L. Saraiva Okello, I. Masih, S. Uhlenbrook, G. P. W. Jewitt, P. van der Zaag, and E. Riddell
Hydrol. Earth Syst. Sci., 19, 657–673, https://doi.org/10.5194/hess-19-657-2015, https://doi.org/10.5194/hess-19-657-2015, 2015
Short summary
Short summary
We studied long-term daily records of rainfall and streamflow of the Incomati River basin in southern Africa. We used statistical analysis and the Indicators of Hydrologic Alteration tool to describe the spatial and temporal variability flow regime. We found significant declining trends in October flows, and low flow indicators; however, no significant trend was found in rainfall. Land use and flow regulation are larger drivers of temporal changes in streamflow than climatic forces in the basin.
J. M. Campbell, P. Jordan, and J. Arnscheidt
Hydrol. Earth Syst. Sci., 19, 453–464, https://doi.org/10.5194/hess-19-453-2015, https://doi.org/10.5194/hess-19-453-2015, 2015
Short summary
Short summary
High-resolution phosphorus and flow data were used to gauge the effects of diffuse (soil P) and point source (septic tank system) mitigation measures in two flashy headwater river catchments. Over 4 years the data indicated an overall increase in P concentration in defined high flow ranges and low flow P concentration showed little change. The work indicates fractured responses to catchment management advice and mitigation which were also affected by variations in seasonal hydrometeorology.
J. Audet, L. Martinsen, B. Hasler, H. de Jonge, E. Karydi, N. B. Ovesen, and B. Kronvang
Hydrol. Earth Syst. Sci., 18, 4721–4731, https://doi.org/10.5194/hess-18-4721-2014, https://doi.org/10.5194/hess-18-4721-2014, 2014
Short summary
Short summary
The mitigation of excess nitrogen and phosphorus in river waters requires costly measures. Therefore it is essential to use reliable monitoring methods to select adequate mitigation strategies. Here we show that more development is needed before passive samplers can be considered as reliable alternative for sampling nutrients in stream. We also showed that although continuous sampling is expensive, its reliability precludes unnecessarily high implementation costs of mitigation measures.
C. Comina, M. Lasagna, D. A. De Luca, and L. Sambuelli
Hydrol. Earth Syst. Sci., 18, 3195–3203, https://doi.org/10.5194/hess-18-3195-2014, https://doi.org/10.5194/hess-18-3195-2014, 2014
M. Rusca, J. Heun, and K. Schwartz
Hydrol. Earth Syst. Sci., 16, 2749–2757, https://doi.org/10.5194/hess-16-2749-2012, https://doi.org/10.5194/hess-16-2749-2012, 2012
J. Rozemeijer, C. Siderius, M. Verheul, and H. Pomarius
Hydrol. Earth Syst. Sci., 16, 2405–2415, https://doi.org/10.5194/hess-16-2405-2012, https://doi.org/10.5194/hess-16-2405-2012, 2012
F. Jørgensen, W. Scheer, S. Thomsen, T. O. Sonnenborg, K. Hinsby, H. Wiederhold, C. Schamper, T. Burschil, B. Roth, R. Kirsch, and E. Auken
Hydrol. Earth Syst. Sci., 16, 1845–1862, https://doi.org/10.5194/hess-16-1845-2012, https://doi.org/10.5194/hess-16-1845-2012, 2012
J. Lange, S. Husary, A. Gunkel, D. Bastian, and T. Grodek
Hydrol. Earth Syst. Sci., 16, 715–724, https://doi.org/10.5194/hess-16-715-2012, https://doi.org/10.5194/hess-16-715-2012, 2012
T. T. Jin, B. J. Fu, G. H. Liu, and Z. Wang
Hydrol. Earth Syst. Sci., 15, 2519–2530, https://doi.org/10.5194/hess-15-2519-2011, https://doi.org/10.5194/hess-15-2519-2011, 2011
T. A. Endreny and M. M. Soulman
Hydrol. Earth Syst. Sci., 15, 2119–2126, https://doi.org/10.5194/hess-15-2119-2011, https://doi.org/10.5194/hess-15-2119-2011, 2011
N. Pasquale, P. Perona, P. Schneider, J. Shrestha, A. Wombacher, and P. Burlando
Hydrol. Earth Syst. Sci., 15, 1197–1212, https://doi.org/10.5194/hess-15-1197-2011, https://doi.org/10.5194/hess-15-1197-2011, 2011
B. M. Teklu, H. Tekie, M. McCartney, and S. Kibret
Hydrol. Earth Syst. Sci., 14, 2595–2603, https://doi.org/10.5194/hess-14-2595-2010, https://doi.org/10.5194/hess-14-2595-2010, 2010
T. Raziei, I. Bordi, L. S. Pereira, and A. Sutera
Hydrol. Earth Syst. Sci., 14, 1919–1930, https://doi.org/10.5194/hess-14-1919-2010, https://doi.org/10.5194/hess-14-1919-2010, 2010
S. L. Noorduijn, K. R. J. Smettem, R. Vogwill, and A. Ghadouani
Hydrol. Earth Syst. Sci., 13, 2095–2104, https://doi.org/10.5194/hess-13-2095-2009, https://doi.org/10.5194/hess-13-2095-2009, 2009
Cited articles
Belmont, P., Gran, K. B., Schottler, S. P., Wilcock, P. R., Day, S. S., Jennings, C., Lauer, J. W., Viparelli, E., Willenbring, J. K., Engstrom, D. R., and Parker, G.: Large shift in source of fine sediment in the Upper Mississippi River, Environ. Sci. Technol., 45, 8804–8810, 2011.
Bilotta, G. S. and Brazier, R. E.: Understanding the influence of suspended solids on water quality and aquatic biota, Water Res., 42, 2849–2861, 2008.
Bilotta, G. S., Krueger, T., Brazier, R. E., Butler, P., Freer, J., Hawkins, J. M. B., Haygarth, P. M., Macleod, C. J. A., and Quinton, J. N.: Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland, J. Environ. Monit., 12, 731–739, 2010.
Boardman, J., Shepheard, M. L., Walker, E., and Foster, I. D. L.: Soil erosion and risk-assessment for on- and off-farm impacts: A test case using the Midhurst area, West Sussex, UK, J. Environ. Manage., 90, 2578–2588, 2009.
Borselli, L., Cassi, P., and Torri, D.: Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical experiment, Catena, 75, 268–277, 2008.
Brils, J.: Sediment Monitoring and the European Water Framework Directive, Annali dell'Istituto Superiore di Sanita 44, 218–223, 2008.
Chambers, B. J., and Garwood, T. W. D.: Monitoring of water erosion on arable farms in England and Wales, 1990–1994, Soil Use Manag., 16, 93–99, 2000.
Collins, A. L. and Anthony, S. G.: Assessing the likelihood of catchments across England and Wales meeting `good ecological status' due to sediment contributions from agricultural sources, Environ. Sci. Policy, 11, 163–170, 2008.
Collins, A. L., Naden, P. S., Sear, D. A., Jones, J. I., Foster, I. D. L., and Morrow, K.: Sediment targets for informing river catchment management: international experience and prospects, Hydrol. Process., 25, 2112–2129, 2011.
Collins, A. L., Williams, L. J., Zhang, Y. S., Marius, M., Dungait, J. A. J., Smallman, D. J., Dixon, E. R., Stringfellow, A., Sear, D. A., Jones, J. I., and Naden, P. S.: Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England, Sci. Total Environ., 456–457, 181–195, 2013.
Cooper, D., Naden, P., Old, G., and Laizé, C.: Development of guideline sediment targets to support management of sediment inputs into aquatic systems, Natural England Research Report NERR008, CEH Wallingford, 96 pp., 2008.
Deasy, C., Brazier, R. E., Heathwaite, A. L., and Hodgkinson, R.: Pathways of runoff and sediment transfer in small agricultural catchments, Hydrol. Process., 23, 1349–1358, 2009.
Deverell, R., McDonnell, K., and Devlin, G.: The impact of field size on the environment and energy crop production efficiency for a sustainable indigenous bioenergy supply chain in the Republic of Ireland, Sustainability, 1, 994–1011, 2009.
Duvert, C., Gratiot, N., Evrard, O., Navratil, O., Némery, J., Prat, C., and Esteves, M.: Drivers of erosion and suspended sediment transport in three headwater catchments of the Mexican Central Highlands, Geomorphology, 123, 243–256, 2010.
Estrany, J., Garcia, C., and Batalla, R. J.: Suspended sediment transport in a small Mediterranean agricultural catchment, Earth Surf. Process. Landf., 34, 929–940, 2009.
Evans, D. J., Gibson, C. E., and Rossell, R. S.: Sediment loads and sources in heavily modified Irish catchments: A move towards informed management strategies, Geomorphology, 79, 93–113, 2006.
Fealy, R. M., Buckley, C., Mechan, S., Melland, A. R., Mellander, P.-E., Shortle, G., Wall, D., and Jordan, P.: The Irish Agricultural Catchment Programme: catchment selection using spatial multi-criteria decision analysis, Soil Use Manage., 26, 225–236, 2010.
Fenton, O., Schulte, R. P. O., Jordan, P., Lalor, S. T. J., and Richards, K. G.: Time lag: a methodology for estimation of vertical and horizontal travel and flushing timescales to nitrate threshold concentrations in Irish aquifers, Environ. Sci. Policy, 14, 419–431, 2011.
Florsheim, J. L., Pellerin, B. A., Oh, N. H., Ohara, N., Bachand, P. A. M., Bachand, S. M., Bergamaschi, B. A., Hernes, P. J., and Kavvas, M. L.: From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed, Geomorphology, 132, 272–286, 2011.
Foster, I. D. L., Dearing, J. A., and Appleby, P. G.: Historical trends in catchment sediment yields: a case study from lake-sediment records in Warwickshire, UK, Hydrol. Sci. J., 31, 427–443, 1986.
Foster, I., Collins, A., Naden, P., Sear, D., Jones, J., and Zhang, Y.: The potential for paleolimnology to determine historic sediment delivery to rivers, J. Paleolimnol., 45, 287–306, 2011.
Freebairn, D. M., Wockner, G. H., Hamilton, N. A., and Rowland, P.: Impact of soil conditions on hydrology and water quality for a brown clay in the north-eastern cereal zone of Australia, Aust. J. Soil Res., 47, 389–402, 2009.
Gay, A., Cerdan, O., Delmas, M., and Desmet, M.: Variability of suspended sediment yields within the Loire river basin (France), J. Hydrol., 519, 1225–1237, 2014.
Geraghty, M., Farrelly, I., Claringbold, K., Jordan, C., Meehan, R., and Hudson, M.: Geology of Monaghan-Carlingford. A geological description to accompany the Bedrock Geology 1:100,000 Scale Map Series, Sheet 8/9, Monaghan-Carlingford, Geological Survey of Ireland: Dublin, Ireland, 1997.
Glendell, M. and Brazier, R. E.: Accelerated export of sediment and carbon from a landscape under intensive agriculture, Sci. Total Environ., 476–477, 643–656, 2014.
Glendell, M., Extence, C., Chadd, R., and Brazier, R. E.: Testing the pressure-specific invertebrate index (PSI) as a tool for determining ecologically relevant targets for reducing sedimentation in streams, Freshwater Biol., 59, 353–367, 2014.
Grangeon, T., Legout, C., Esteves, M., Gratiot, N., and Navratil, O.: Variability of the particle size of suspended sediment during highly concentrated flood events in a small mountainous catchment, J. Soils Sed., 12, 1549–1558, 2012.
Harlow, A., Webb, B. W., and Walling, D. E.: Sediment yields in the Exe Basin: a longer-term perspective, Sediment Dynamics and the Hydromorphology of Fluvial Systems, Dundee, UK, 12–20, 2006.
Harrington, S. T. and Harrington, J. R.: An assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue, Ireland, Geomorphology, 185, 27–38, 2013.
Haygarth, P. M., Bilotta, G. S., Bol, R., Brazier, R. E., Butler, P. J., Freer, J., Gimbert, L. J., Granger, S. J., Krueger, T., Macleod, C. J. A., Naden, P., Old, G., Quinton, J. N., Smith, B., and Worsfold, P.: Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: an overview of key issues, Hydrol. Process., 20, 4407–4413, 2006.
Horowitz, A. J.: Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes, Sci. Total Environ., 400, 315–343, 2008.
Huang, C. C. and O'Connell, M.: Recent land-use and soil-erosion history within a small catchment in Connemara, western Ireland: evidence from lake sediments and documentary sources, Catena, 41, 293–335, 2000.
Ibrahim, T. G., Fenton, O., Richards, K. G., Fealy, R. M., and Healy, M. G.: Spatial and temporal variations of nutrient loads in overland flow and subsurface drainage from a marginal land site in south-east Ireland, Biol. Environ., 113B, 169–186, 2013.
Jansson, M. B.: Determining sediment source areas in a tropical river basin, Costa Rica, Catena, 47, 63–84, 2002.
Jastram, J. D., Zipper, C. E., Zelazny, L. W., and Hyer, K. E.: Increasing Precision of Turbidity-Based Suspended Sediment Concentration and Load Estimates, J. Environ. Qual., 39, 1306–1316, 2010.
Jordan, P., Rippey, B., and John, A. N.: The 20th century whole-basin trophic history of an inter-drumlin lake in an agricultural catchment, Sci. Total Environ., 297, 161–173, 2002.
Jordan, P., Arnscheidt, A., McGrogan, H., and McCormick, S.: Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser, Hydrol. Earth Syst. Sci., 11, 372–381, https://doi.org/10.5194/hess-11-372-2007, 2007.
Jordan, P., Melland, A. R., Mellander, P. E., Shortle, G., and Wall, D.: The seasonality of phosphorus transfers from land to water: Implications for trophic impacts and policy evaluation, Sci. Total Environ., 434, 101–109, 2012.
Kemp, P., Sear, D., Collins, A., Naden, P., and Jones, I.: The impacts of fine sediment on riverine fish, Hydrol. Process., 25, 1800–1821, 2011.
Lal, R.: Effects of slope length, slope gradient, tillage methods and cropping systems on runoff and soil erosion on a tropical Alfisol: preliminary results, Proceedings of the Porto Alegre Symposium, December 1988, edited by: Bordas, M. P. and Walling, D. E., IAHS Publ., 174, 79–88, 1988.
Läppe, D. and Hennessy, T.: The capacity to expand milk production in Ireland following the removal of milk quotas, Irish J. Agr. Food Res., 51, 1–11, 2012.
Lawler, D. M., Petts, G. E., Foster, I. D. L., and Harper, S.: Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK, Sci. Total Environ., 360, 109–126, 2006.
Lewis, J.: Turbidity-controlled sampling for suspended sediment load estimation, edited by: Bogen, J., Fergus, T., and Walling, D. E., Proceedings of the Oslo Symposium, June 2002, IAHS Publication 337, 13–20, 2003.
Lewis, J., and Eads, R.: Turbidity threshold sampling for suspended sediment load estimation, in: Proceedings of the seventh federal interagency sedimentation conference, Technical committee of the subcommittee on sedimentation, Reno, 25-29th March 2001, 8 pp., 2001.
Massoudieh, A., Gellis, A., Banks, W. S., and Wieczorek, M. E.: Suspended sediment source apportionment in Chesapeake Bay watershed using Bayesian chemical mass balance receptor modeling, Hydrol. Process., 27, 3363–3374, 2013.
McManus, J. and Duck, R. W.: Regional variations of fluvial sediment yield in eastern Scotland, edited by: Walling, D. E. and Webb, B. W., Proceedings of the Exeter Symposium, July 1996, IAHS Publication 236, 157–161, 1996.
McConnell B., Philcox, M., and Geraghty, M..: Geology of Meath: A geological description to accompany the bedrock geology 1:100,000 scale map series, Sheet 13, Meath. Geological Survey of Ireland: Dublin, Ireland, 2001.
Melland, A. R., Mellander, P. E., Murphy, P. N. C., Wall, D. P., Mechan, S., Shine, O., Shortle, G., and Jordan, P.: Stream water quality in intensive cereal cropping catchments with regulated nutrient management, Environ. Sci. Policy, 24, 58–70, 2012a.
Melland, A. R., Ryan, D., Shortle, G., and Jordan, P.: A cost:benefit evaluation of in-situ high temporal resolution stream nutrient monitoring, World Congress on Water, Climate and Energy, Dublin, 13–18 May 2012b.
Mellander, P.-E., Melland, A. R., Jordan, P., Wall, D. P., Murphy, P. N. C., and Shortle, G.: Quantifying nutrient transfer pathways in agricultural catchments using high temporal resolution data, Environ. Sci. Policy, 24, 44–57, 2012.
Mellander, P.-E., Melland, A. R., Murphy, P. N. C., Wall, D. P., Shortle, G., and Jordan, P.: Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments, J. Agr. Sci., 152, 107–124, 2014.
Milliman, J. D. and Syvitski, J. P. M.: Geomorphic/Tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, J. Geol., 100, 525–544, 1992.
Navratil, O., Esteves, M., Legout, C., Gratiot, N., Nemery, J., Willmore, S., and Grangeon, T.: Global uncertainty analysis of suspended sediment monitoring using turbidimeter in a small mountainous river catchment, J. Hydrol., 398, 246–259, 2011.
Oeurng, C., Sauvage, S., and Sánchez-Pérez, J.-M.: Dynamics of suspended sediment transport and yield in a large agricultural catchment, southwest France, Earth Surf. Process. Landf., 35, 1289–1301, 2010.
OJEU: Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources, EU, Brussels, 1991.
OJEU: Establishing a Framework for Community Action in the Field of Water Policy (Water Framework Directive), 2000/60/EC, EU, Brussels, 2000.
OJEU: Council Directive 2006/44/EC of the 6 September 2006 on the quality of fresh waters needing protection or improvement in order to support fish life, EU, Brussels, 2006.
OJEU: Commission Decision 2007/697/EC of 22 October 2007 granting a derogation requested by Ireland pursuant to Council Directive 91/676/EEC concerning the protection of water against pollution caused by nitrates from agricultural sources, EU, Brussels, 2007.
Owen, G. J., Perks, M. T., Benskin, C. M. H., Wilkinson, M. E., Jonczyk, J., and Quinn, P. F.: Monitoring agricultural diffuse pollution through a dense monitoring network in the River Eden Demonstration Test Catchment, Cumbria, UK, Area, 44, 443–453, 2012.
Peukert, S., Griffith, B. A., Murray, P. J., Macleod, C. J. A., and Brazier, R. E.: Intensive Management in Grasslands Causes Diffuse Water Pollution at the Farm Scale, J. Environ. Qual., 43, 2009–2023, 2014.
Regan, J. T., Fenton, O., and Healy, M. G.: A review of phosphorus and sediment release from Irish tillage soils, the methods used to quantify losses and the current state of mitigation practice, Biol. Environ., 112B, 1–25, 2012.
Rowan, J. S., Black, S., and Franks, S. W.: Sediment fingerprinting as an environmental forensics tool explaining cyanobacteria blooms in lakes, Appl. Geogr., 32, 832–843, 2012.
Sherriff, S. C., Rowan, J. R., Franks, S. W., Walden, J., Melland, A. R., Jordan, P., and ÓhUallacháin, D.: Sediment Fingerprinting, TResearch, Summer 2014, 40–41, 2014.
Shore, M., Murphy, P. N. C., Jordan, P., Mellander, P. E., Kelly-Quinn, M., Cushen, M., Mechan, S., Shine, O., and Melland, A. R.: Evaluation of a surface hydrological connectivity index in agricultural catchments, Environ. Model. Softw., 47, 7–15, 2013.
Shore, M., Jordan, P., Mellander, P.-E., Kelly-Quinn, M., and Melland, A. R.: An agricultural drainage channel classification system for phosphorus management, Agr. Ecosystems Environ., 199, 207–215, 2014.
Silgram, M., Jackson, D. R., Bailey, A., Quinton, J., and Stevens, C.: Hillslope scale surface runoff, sediment and nutrient losses associated with tramline wheelings, Earth Surf. Process. Landf., 35, 699–706, 2010.
Sleeman, A. G. and Pracht, M.: Geology of South Cork, Sheet 25, Geological Survey of Ireland: Dublin, Ireland, 1995.
Soane, B. D., Ball, B. C., Arvidsson, J., Basch, G., Moreno, F., and Roger-Estrade, J.: No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment, Soil Till. Res., 118, 66–87, 2012.
Thompson, J., Cassidy, R., Doody, D. G., and Flynn, R.: Assessing suspended sediment dynamics in relation to ecological thresholds and sampling strategies in two Irish headwater catchments, Sci. Total Environ., 468–469, 345–357, 2014.
Tietzsch-Tyler, D., Sleeman, A. G., McConnell, B. J., Daly, E. P., Flegg A. M., O'Connor P. J., and Warren W. P.: Geology of Carlow-Wexford, Sheet 19. Geological Survey of Ireland: Dublin, Ireland, 1994.
Trimble, S. W. and Mendel, A. C.: The cow as a geomorphic agent – A critical review, Geomorphol., 13, 233–253, 1995.
Van Oost, K., Cerdan, O., and Quine, T. A.: Accelerated sediment fluxes by water and tillage erosion on European agricultural land, Earth Surf. Process. Landf., 34, 1625–1634, 2009.
Vanmaercke, M., Poesen, J., Verstraeten, G., de Vente, J., and Ocakoglu, F.: Sediment yield in Europe: Spatial patterns and scale dependency, Geomorphol., 130, 142–161, 2011.
Vanmaercke, M., Poesen, J., Radoane, M., Govers, G., Ocakoglu, F., and Arabkhedri, M.: How long should we measure? An exploration of factors controlling the inter-annual variation of catchment sediment yield, J. Soils Sed., 12, 603–619, 2012.
Vero, S. E., Ibrahim, T. G., Creamer, R. E., Grant, J., Healy, M. G., Henry, T., Kramers, G., Richards, K. G., and Fenton, O.: Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates, J. Contam. Hydrol., 170, 53–67, 2014.
Verstraeten, G. and Poesen, J.: Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate, Geomorphology, 40, 123–144, 2001.
Wall, D., Jordan, P., Melland, A. R., Mellander, P. E., Buckley, C., Reaney, S. M., and Shortle, G.: Using the nutrient transfer continuum concept to evaluate the European Union Nitrates Directive National Action Programme, Env. Sci. Policy, 14, 664–674, 2011.
Walling, D. E.: Tracing suspended sediment sources in catchments and river systems, Sci. Total Environ., 344, 159–184, 2005.
Walling, D. E. and Webb, B. W.: The reliability of rating curve estimates of suspended sediment yield: some further comments, Sediment budgets, Porto Alegre, 337–350, 1988.
Walling, D. E., Owens, P. N., and Leeks, G. J. L.: Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK, Hydrol. Process., 13, 955–975, 1999.
Walling, D. E., Russell, M. A., Hodgkinson, R. A., and Zhang, Y.: Establishing sediment budgets for two small lowland agricultural catchments in the UK, Catena, 47, 323–353, 2002.
Wass, P. D. and Leeks, G. J. L.: Suspended sediment fluxes in the Humber catchment, UK, Hydrol. Process., 13, 935–953, 1999.
Wilson, C. G., Kuhnle, R. A., Bosch, D. D., Steiner, J. L., Starks, P. J., Tomer, M. D., and Wilson, G. V.: Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds, J. Soil Water Conserv, 63, 523–532, 2008.
Wiskow, E. and van der Ploeg, R. R.: Calculation of drain spacings for optimal rainstorm flood control, J. Hydrol., 272, 163–174, 2003.
Withers, P. J. A., Hodgkinson, R. A., Bates, A., and Withers, C. M.: Some effects of tramlines on surface runoff, sediment and phosphorus mobilization on an erosion-prone soil, Soil Use Manage., 22, 245–255, 2006.
Wood, P. J. and Armitage, P. D.: Biological effects of fine sediment in the lotic environment, Environ. Manage., 21, 203–217, 1997.
Zabaleta, A., Martínez, M., Uriarte, J. A., and Antigüedad, I.: Factors controlling suspended sediment yield during runoff events in small headwater catchments of the Basque Country, Catena, 71, 179–190, 2007.