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Abstract. Soil erosion and suspended sediment (SS) pose

risks to chemical and ecological water quality. Agricultural

activities may accelerate erosional fluxes from bare, poached

or compacted soils, and enhance connectivity through modi-

fied channels and artificial drainage networks. Storm-event

fluxes dominate SS transport in agricultural catchments;

therefore, high temporal-resolution monitoring approaches

are required, but can be expensive and technically challeng-

ing. Here, the performance of in situ turbidity sensors, con-

ventionally installed submerged at the river bankside, is com-

pared with installations where river water is delivered to sen-

sors ex situ, i.e. within instrument kiosks on the riverbank,

at two experimental catchments (Grassland B and Arable

B). The in situ and ex situ installations gave comparable re-

sults when calibrated against storm-period, depth-integrated

SS data, with total loads at Grassland B estimated at 12 800

and 15 400 t, and 22 600 and 24 900 t at Arable B, respec-

tively. The absence of spurious turbidity readings relating

to bankside debris around the in situ sensor and its greater

security make the ex situ sensor more robust. The ex situ

approach was then used to characterise SS dynamics and

fluxes in five intensively managed agricultural catchments

in Ireland which feature a range of landscape characteristics

and land use pressures. Average annual suspended sediment

concentration (SSC) was below the Freshwater Fish Direc-

tive (78/659/EEC) guideline of 25 mg L−1, and the contin-

uous hourly record demonstrated that exceedance occurred

less than 12 % of the observation year. Soil drainage class

and proportion of arable land were key controls determin-

ing flux rates, but all catchments reported a high degree of

inter-annual variability associated with variable precipitation

patterns compared to the long-term average. Poorly drained

soils had greater sensitivity to runoff and soil erosion, partic-

ularly in catchments with periods of bare soils. Well drained

soils were less sensitive to erosion even on arable land; how-

ever, under extreme rainfall conditions, all bare soils remain

a high sediment loss risk. Analysis of storm-period and sea-

sonal dynamics (over the long term) using high-resolution

monitoring would be beneficial to further explore the impact

of landscape, climate and land use characteristics on SS ex-

port.

1 Introduction

Excessive supply of fine sediments (<125 µm) and sediment-

associated pollutants are detrimental to aquatic ecosystems

(Wood and Armitage, 1997; Collins et al., 2011; Kemp et

al., 2011). Elevated suspended sediment (SS) concentrations

decrease light penetration and can reduce primary productiv-

ity. Deposition of sediments onto river channel beds also de-

grades habitat quality for benthic species and spawning fish

(Bilotta and Brazier, 2008). In the European Union, the Wa-

ter Framework Directive (WFD – OJEU, 2000) requires that
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water quality meet a “good” standard, but no binding envi-

ronmental standards yet exist for SS across member states

(Brils, 2008; Collins and Anthony, 2008). In rivers, the EU

Freshwater Fish Directive (FFD – OJEU, 2006) introduced

a mean annual threshold of 25 mg L−1, but this was subse-

quently repealed. Phosphorus (P) targets are, however, bind-

ing and because of its strong affinity for particulate transport,

catchment sediment fluxes are an essential area of research.

Agriculture is commonly linked with elevated rates of soil

erosion (Foster et al., 2011; Glendell and Brazier, 2014), but

the degree to which sediment exports from catchments can

be attributed to specific land-management practices is chal-

lenging to measure (Rowan et al., 2012). Catchments ex-

hibit complex responses to different land uses, (e.g. arable or

grazing practices) which are further influenced by climate,

landscape setting and topographic controls (Wass and Leeks,

1999). A comprehensive evaluation of the extent of erosion

and elevated sediment supply, therefore, requires a robust de-

termination of sediment flux (Navratil et al., 2011), knowl-

edge of the sources and fate of fine sediments within the sys-

tem (Walling, 2005), and an appreciation of the risks that el-

evated concentrations present to aquatic ecosystems (Bilotta

and Brazier, 2008). This evidence base can be used to bet-

ter inform integrated land, water and sediment management

strategies.

Sediment losses from agricultural areas are commonly at-

tributed to arable practices (Walling et al., 1999; Wass and

Leeks, 1999; Freebairn et al., 2009; Van Oost et al., 2009;

Duvert et al., 2010), especially where bare or freshly tilled

soils are exposed to rainfall-runoff processes (Regan et al.,

2012). Arable farming typically involves the mechanical re-

distribution of soil through ploughing and seed bed prepara-

tion, and via erosion from compacted and/or bare fields and

down-slope tramlines (Chambers and Garwood, 2000; With-

ers et al., 2006; Boardman et al., 2009; Silgram et al., 2010;

Regan et al., 2012; Soane et al., 2012). Over-grazed grass-

land soils are also an important sediment source (Bilotta et

al., 2010) and critical to the transport of particle-bound pol-

lutants, such as P (Haygarth et al., 2006). Poaching of soils

by livestock, particularly cattle wintered outside, results in

loss of soil structure and compaction around gates, drinking

troughs and, where access is not restricted, channel banks

(Trimble and Mendel, 1995; Evans et al., 2006).

Erosion risk is conditioned by physical catchment charac-

teristics (soil type and hydrology), and erodibility determined

by physiography (slope length, steepness and shape, ground

cover and soil management). Soil drainage class, for exam-

ple, is dictated by landscape position whereby well drained

soils, such as Brown Earths and Podzols commonly located

on hillslopes, contribute sediment predominantly through

sub-surface pathways such as relocation of fine surface sedi-

ments vertically and/or horizontally through the soil profile,

and preferential flow through macropores (Chapman et al.,

2001; Deasy et al., 2009). Conversely, poorly drained soils,

such as Gleys (surface and groundwater) and silt and clay

dominated alluvial soils in proximity to watercourses, are

at greater risk of overland-flow generation and surface soil

erosion due to reduced infiltration capacity. The installation

of surface and sub-surface drains can also alter natural flow

pathways (Ibrahim et al., 2013). Drainage installation and

maintenance, for example, can result in faster quick-flow, re-

sulting in an increased likelihood of more frequent, higher

magnitude and short duration sediment transfers associated

with storm runoff (Wiskow and van der Ploeg, 2003; Deasy

et al., 2009; Florsheim et al., 2011).

To accurately quantify sediment fluxes from complex

catchments, field monitoring programmes require three con-

siderations. Firstly, robust flow and suspended sediment con-

centration (SSC) data capable of accurately describing short-

term fluxes (Navratil et al., 2011). Secondly, the duration

of the measurements must be sufficiently long to be “rep-

resentative” of either stationary long-term averages (inclu-

sive of natural variability), or to reveal temporal trends of

increasing or decreasing loads or concentrations. Capturing

crucial high-magnitude, low-frequency events is, therefore,

vital to generating meaningful flux determinations (Walling

and Webb, 1988; Wass and Leeks, 1999). Thirdly, monitor-

ing programmes need to be operationally cost-effective.

Sediment load estimation based on SSC-discharge rating

curves has been widely superseded by catchment outlet and

near-continuous turbidity monitoring (Lewis, 2003; Jarstram

et al., 2010; Melland et al., 2012a). The latter requires tur-

bidity sensors, loggers and infrastructure that cope with is-

sues such as debris interference, bio-fouling, power outages

and equipment/data security (Wass and Leeks, 1999; Jordan

et al., 2007; Owen et al., 2012). Assessment of new monitor-

ing strategies, compared to traditional in situ turbidity-SSC

monitoring programmes, is essential to assess improvements

and limitations, and to validate their implementation.

There have been relatively few sediment flux investiga-

tions in Ireland (Melland et al., 2012a; Harrington and Har-

rington, 2013; Thompson et al., 2014). Initially regulated and

managed through the Nitrates Directive (OJEU, 1991, 2007),

the transfer of diffuse agricultural pollutants across the EU is

now primarily integrated into obligations under the WFD. In

Ireland, soil conservation issues also fall under the Nitrates

Directive regulations, but the impact of SS in rivers is com-

monly compared to the repealed FFD target due to the ab-

sence of explicit sediment targets within the WFD.

As part of an experiment to evaluate the Nitrates Directive

in Ireland, a common experimental design across six agri-

cultural catchments included high temporal-resolution mea-

surements of river nutrient and sediment exports (Wall et al.,

2011). Using these catchments and data, the aims of this

study were (1) to assess the efficacy of a novel ex situ SS

monitoring technique in two catchments and (2) to investi-

gate annual average sediment concentrations and loads in re-

lation to soil drainage class and land use in five monitored

catchments. One catchment situated in low-relief karst ter-

rain was omitted from this study due to intermittent runoff
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combined with very low SS concentrations (cf. Mellander et

al., 2012).

2 Study location

Suspended sediment monitoring was conducted in five catch-

ments (Table 1) across Ireland (Fig. 1). Catchments were se-

lected to represent the main intensive agricultural land use

types in Ireland and dominant hydrological pathways (sur-

face or sub-surface) at a scale where headwater to channel

hydrological process were detectable (Fealy et al., 2010).

The characteristics of individual catchments are summarised

as follows.

Grassland A catchment (7.9 km2) is located in south-

western Ireland (51◦38′ N, 8◦47′W). Catchment soils are

predominantly shallow well drained Brown Earths and Pod-

zols with loam dominating the texture of A- and B-horizons,

and smaller areas of Surface Water Gleys at the base of hill-

slopes. A coarse loamy drift with siliceous stone subsoil is

underlain by Devonian old red sandstones and mudstones

from the Toe Head and Castlehaven formations (Sleeman and

Pracht, 1995), which form an unconfined productive aquifer

(Mellander et al., 2014). Sub-surface water pathways are

therefore dominant. Land is predominantly grazed by cat-

tle for intensive dairy production and smaller areas of beef

production with an average catchment stocking rate of 1.98

livestock units (LU) ha−1; additionally, minor areas of arable

land use are present (Table 1).

Grassland B catchment (11.0 km2) is located in south-

eastern Ireland (52◦36′ N, 6◦20′W). Soil type is predomi-

nantly poorly drained Groundwater Gleys in the catchment

lowlands with a clay loam texture in A- and B-horizons re-

sulting from a clayey calcareous Irish Sea till subsoil. The

uplands contain smaller areas of well drained Brown Earths;

these soils are underlain by drift deposits with siliceous

stones. The underlying geology is permeable, dominated

by Ordovician volcanics and metasediments of the Campile

formation (Tietzsch-Tyler et al., 1994), which form a pro-

ductive aquifer with faults (Mellander et al., 2012). Artifi-

cial drainage is a key feature including open drains, defined

here as ditches, and closed, sub-surface piped drains (pre-

dominantly 80 mm diameter). Grassland B is considered to

be dominated by overland flow pathways (Mellander et al.,

2012; Shore et al., 2013) except for areas of well drained

soils featuring sub-surface transport pathways. Land is pre-

dominantly grass-based for dairy and beef cattle grazing, and

also sheep enterprises (Shore et al., 2013) with a stocking rate

of 1.04 LU ha−1. Arable crops such as spring barley are com-

mon on the well drained soils which are unmanaged between

harvest and ploughing for the following crop.

Grassland C catchment (3.3 km2) is located in north-

eastern Ireland (54◦01′ N, 6◦51′W). Soils are mainly deep

and moderately to poorly drained, characterised by a loam

A-horizon texture and clay loam B-horizon and areas of shal-

low well drained soils in the upper catchment areas underlain

predominately by Lower Palaeozoic shale tills. The geology

is Silurian metasediments and volcanics of the Shercock For-

mation (Geraghty et al., 1997), which create an unproduc-

tive aquifer. Overland flow and near-surface pathways are,

therefore, dominant here. Land use is principally grass based

for dairy cattle, sheep and beef cattle grazing (stocking rate

1.00 LU ha−1).

Arable A catchment (11.2 km2) is located in south-eastern

Ireland (52◦34′ N, 6◦36′W). Soils are predominantly shal-

low well drained Brown Earths with loam texture domi-

nating the A- and B-horizons, and limited areas of poorly

drained groundwater Gleys around the stream corridor to

the east of the catchment (Melland et al., 2012a). Sub-

soils predominantly comprise fine loamy drift with siliceous

stones over slate and silt stones of the Oaklands Forma-

tion (Tietzsch-Tyler et al., 1994), which produces a poorly

productive aquifer. The well drained soils result in below-

ground hydrological transfers, particularly bedrock fissure

flow (Mellander et al., 2012). Artificial drainage is limited

to the poorly drained soil areas and comprises open ditches

and sub-surface piped drainage. Land use is dominated by

spring barley (land is unmanaged between cropping cycles

and crop rotation is limited) with areas of permanent grass-

land for beef cattle and sheep grazing in more poorly drained

areas (Melland et al., 2012a) at 0.40 LU ha−1.

Arable B catchment (9.5 km2) is located in north-eastern

Ireland (53◦49′ N, 6◦27′W). The soil type is a complex pat-

tern of poorly to moderately drained soils (Melland et al.,

2012a). Loam soil texture dominates the A-horizon and clay

loams are dominant in the B-horizon. Subsoil is dominated

by fine till containing siliceous stones with fluvioglacial sed-

iments located near-channel. Soils are underlain by calcare-

ous greywacke and banded mudstone geology (McConnell et

al., 2001) and produce a poorly productive aquifer (Mellan-

der et al., 2012). Hydrologically, surface pathways dominate;

however, below-ground pathways may also be important, es-

pecially during winter (Melland et al., 2012a; Mellander et

al., 2012). Artificial drainage is dominant, particularly in the

poorly drained catchment areas. Arable land is dominated by

winter-sown cereals, but also comprises maize and potatoes.

These areas are unmanaged between cropping cycles; how-

ever, crop rotation is more common than at Arable A due to

the wider range of crop types. Additional areas of permanent

grassland are utilised for dairy cattle, beef cattle, and sheep

grazing (0.77 LU ha−1).

3 Materials and methods

3.1 Suspended sediment monitoring

Monitoring for SS at catchment outlets was initiated in 2009

for Grassland B, Arable A and Arable B catchments and

2010 for Grassland A and Grassland C catchments. All catch-
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Figure 1. Map of catchment monitoring locations and study catchments with topographic and field size information.

ments had identical instrumentation deployed for temporally

high-resolution nutrient, conductivity, temperature and tur-

bidity data capture using bankside analysers mains powered

at 230 V (Fig. 2; Wall et al., 2011; Jordan et al., 2012; Mel-

land et al., 2012b). Turbidity (T) data were collected us-

ing a turbidity sensor (Solitax, Hach-Lange, Germany; range

0–4000 NTU; factory calibrated to 1000 NTU) and SC1000

controller at 10 min intervals. The sensors were located out-

of-stream (ex situ) in a rapidly and continuously circulating

header tank with river water delivered from the channel by

an in-stream pump (30 m3 h−1) located on the channel bed.

The instrument tank was assumed well mixed as no partic-

ulate deposition occurred. Turbidity probes were fitted with

wipers to prevent biological fouling, and checked monthly

against deionised water (0 NTU) and a 20 NTU Formazin tur-

bidity standard. Synchronised discharge data (Q – m3 s−1)

were calculated from vented pressure-transducer stage mea-

surements (OTT Orpheus-mini; OTT Germany). Stage height

was converted to Q using velocity-area measurements (OTT

Acoustic Doppler Current meter; OTT Germany) collected

over non-standard flat-v weirs (custom made, Corbett Con-

crete, Ireland) and WISKI-SKED software (Grassland A,

R2
= 0.96, n= 272; Grassland B, R2

= 1, n= 166 (Mellan-

der et al., 2015); Grassland C, R2
= 0.95 and 0.97, n= 316;

Arable A, R2
= 1, n= 376 (Mellander et al., 2015); Arable

B, R2
= 0.94 and 1, n= 493). Both Grassland C and Arable

B had changing controls at higher discharges and WISKI-

SKED provided two parts to the curves with two R2 coeffi-

cients.

Turbidity units (NTU) were field-calibrated to SSC

(mg L−1) using a combination of regular low-flow samples

(at least fortnightly since programme initiation) and intensive

sampling during high magnitude flow events with elevated

SSCs. In all cases, water samples were collected from the

instrument tank either manually, or using a programmable

automatic water sampler (ISCO 6712; ISCO Inc. USA) with

a 1 m pumping tube (pump capacity ∼ 0.9 m s−1) at prede-

fined intervals of 30 or 60 min according to the specific storm

characteristics. High SSC data capture was further targeted

in Grassland B and Arable B using a turbidity-stratified sam-

pling programme, whereby collection of 1000 mL samples

was triggered when T measurements were within threshold

turbidity bands of 140 to 160 NTU, 240 to 260 NTU, 480 to

530 NTU and 700 to 800 NTU. This circumvented the need

to pre-set water samplers according to forecasted event char-

acteristics. Water samples were stored at 4 ◦C on return to

the laboratory before a sub-sample (minimum 100 mL) was

processed for SSC. Whatman GF/C glass-fibre filter papers

(1.2 µm) were pre-dried at 105 ◦C for 1 h, cooled in a desic-

cator and weighed before being used for vacuum filtration.

Sediment concentrations were calculated from the weight of

residue retained on the filter post-filtration once dried > 12 h

at 105 ◦C and cooled in a desiccator.

3.2 Method comparison

In order to compare the ex situ sampling methodology de-

scribed above with the conventional in situ monitoring ap-

proach, additional instrumentation to measure T was in-
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Figure 2. Picture of in situ and ex situ suspended sediment and

discharge instrumentation at Grassland B.

stalled in Grassland B and Arable B from September to

December 2012, and December 2012 to March 2013, re-

spectively. A turbidimeter (TIN) (Analite, McVan, Australia,

range 0–1000 NTU) fitted with a wiper blade to prevent bio-

logical fouling and automatic pumping sampler (ISCOIN) in-

take were positioned in situ, adjacent to the channel edge, in

proximity to the bankside analyser pump intake (1 m and 4 m

upstream, respectively, in both catchments), but sufficiently

distant not to affect, or to be affected by, the ex situ instru-

mentation. The turbidity sensor TIN and the ISCOIN intake

at Grassland B were approximately 20 cm above the chan-

nel bed and 15 cm from the bank edge. At Arable B, TIN

and the ISCOIN intake were positioned approximately 10 cm

from the bank edge and 10 cm above the channel bed. TIN

and ISCOIN sample collection was synchronised to replicate

the ex situ turbidity sensor (TOUT) and pumping sampler

(ISCOOUT) programme as described above. T-SSC rating

curves were developed for each sensor using water samples

collected at the respective positions (ISCOOUT and ISCOIN)

and applied to the raw turbidity set. Low-quality data cap-

ture attributed to spurious readings (a short-term increase in

T output not associated with a known environmental pro-

cess such as accompanying rise in Q or equipment mainte-

nance) and saturation of the TIN sensor or missing data at
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Table 2. Turbidity-suspended sediment calibration data-set summary and rating curve equations and fit parameters.

Catchment Data points Calibrated turbidity Maximum measured turbidity in NTU Calibration MSE

range (NTU) (number of data points outside equation

calibrated range)∗

Grassland A 247 0–725 1074 (n= 7) SSC=0.6636 T1.1045 495

Grassland B 443 1–577 1179 (n= 37) SSC= 0.5657 T1.1109 580

Grassland C 339 1–154 1225 (n= 207) SSC= 0.4341 T1.2148 38

Arable A 231 1–767 2730 (n= 30) SSC= 0.4119 T1.1456 891

Arable B 242 1–1853 1853 (n= 0) Where T < 432.2 1335

SSC= 1.1320 T

Where T > 432.2

SSC= 0.5288+0.6032T

∗ Number of data points at 10 min resolution.

TOUT due to delivery system blockages did not undergo cor-

rection such that comparisons between methodologies could

be made. Five storm-flow events were captured in Grassland

B and two in Arable B for T-SSC calibration. Due to the lo-

cation settings, the in situ automatic water sampler was fitted

with a 7 m long intake tube in both catchments.

Depth-integrated water samples were manually collected

(n= 171) from a bridge over each investigated channel dur-

ing flood events, using a depth-integrating SS sampler (US

DH-48, Rickly Hydrological; USA). These samples were

used firstly to investigate the cross-sectional variability in

sediment transportation, and secondly to provide a validation

data set to assess and compare the efficacy of estimated SSC

using in situ and ex situ T sensors. Samples were collected

using two strategies: (1) depth-integrated samples taken at

20 cm intervals across the channel width in rapid succes-

sion, and (2) samples taken at coarser widths with roughly

1 m intervals. All samples were processed for SSC as de-

scribed above. Due to the sampling approach used, consecu-

tive depth-integrated samples reflected the event trend (either

the rising or falling sedigraph limb) plus the cross-sectional

trend. The event effect was de-trended using SSC estimated

from the ex situ turbidimeter. The average change in SSC

during transect sampling at TOUT, or the event trend, was

9 % (range 1 % at 175 mg L−1 to 19 % at 442 mg L−1); the

average transect time was 22 min.

Where sufficient sample volume and sediment concentra-

tion existed, samples were analysed for particle size distri-

bution using laser diffraction (Malvern Mastersizer 2000G,

Malvern, UK). Samples were circulated for 2 min (pump

speed 2000 rpm, stirrer speed 800 rpm) before analysis with

no pre-treatment, i.e. physical or chemical dispersant, to

broadly replicate the “effective particle size” measured by

the turbidity sensor. To assess the effect of automatic sampler

tube length, laboratory prepared SSC samples were collected

using the two intake pump lengths (1 and 7 m) used in-field.

Ten 500 mL sub-samples (at 5, 10, 25, 50, 100, 250, 500, 750

and 1000 mg L−1) were collected from homogenised 10 L

mixtures using each pump length and processed for SSC.

A non-parametric Mann–Whitney U test was conducted to

compare SSC values collected at ISCOIN (SSC ISCOIN) and

ISCOOUT (SSC ISCOOUT), and particle size characteristics

at the two study sites.

3.3 Suspended sediment rating curve construction

Data pairs for T-SSC calibration for each individual site

(each catchment outlet over a complete time series) and

method comparison investigations were statistically assessed

using SAS 9.3 (SAS Institute Inc., USA). Two regression

equations, power (Eq. 1) and two-section linear split at a

threshold T′ (Eq. 2), were assessed using the mean square

error (MSE) of the SSC predictions.

Power SSC= aTb (1)

Split linear SSC= aT Where T < T′

SSC= c (b1− b2)+ b2T Where T > T′. (2)

The intercept was set at zero for all regressions and was con-

sidered not to compromise fit at the upper end of the data

set (cf. Thompson et al., 2014). Power relationships provided

the best fit in Grassland A, Grassland B, Grassland C and

Arable A, whereas the split linear relationship considerably

improved fit at Arable B (Table 2). Using the selected curves,

continuous turbidity measurements were computed to SSC

and, using discharge data, were converted to instantaneous

sediment load (SSL – t s−1) and yield (SSY – t km−2 yr−1).

4 Results and discussion

4.1 Method comparison

Data-set completeness was similar in both T records (98–

99 %); however, the timing and nature of spurious and/or

missing T data were dissimilar (Fig. 3). Spurious data at TIN

coincided with random peaks possibly relating to local debris

interference around the sensor, which is a frequent problem
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Figure 3. Raw turbidity output of TIN and TOUT sensors (converted

to SSC) and discharge at (a) Grassland B and (b) Arable B. Periods

of missing data are annotated by dashed lines.

in T analysis (Lewis and Eads, 2001). This effect was not

recorded at TOUT, suggesting that the ex situ approach was

less vulnerable to local in-stream debris interference (Jans-

son, 2002). Missing data at TIN during periods of high sed-

iment concentration were attributed to sensor saturation at

Arable B. The TOUT probe estimated 5 % of the total sedi-

ment load was delivered whilst TIN was saturated. Sporad-

ically, pump blockages occurred in TOUT at Arable B due

to extreme debris transport in the channel (Melland et al.,

2012b); data collection was ordinarily restored in less than

2 h. At TIN 6 % of the total load was delivered during this

period. The ex situ turbidity monitoring may be at greater

risk of delivery system blockages, especially during key pe-

riods of elevated turbidity and sediment transfer. These short

periods are critical for sediment transport as they are respon-

sible for the majority of the annual sediment load (Walling

and Webb, 1988; Lawler et al., 2006; Estrany et al., 2009;

Navratil et al., 2011). Other key issues such as bio-fouling

trends were not found in either data set, reflecting the sub-

weekly frequency of maintenance at these sites.

Estimated sediment metrics (Table 3) during both moni-

toring periods showed discrepancies between the two mea-

surement locations. Suspended sediment load estimated by

ex situ equipment was 83 % and 91 % of in situ at Grass-

land B and Arable B, respectively, and mean SSC at SSCOUT

was 85 % of SSCIN at both locations. Differences in raw T

output between the sensors were negated by calibration with

SSC; however, the SSC of water samples from in situ (SSC

ISCOIN) and ex situ (SSC ISCOOUT) measurement locations

showed consistent differences. Samples at SSC ISCOOUT

were 90 and 94 % of SSC ISCOIN at Grassland B and Arable

B catchments, respectively. The differences in SSC and loads

between the two approaches were not statistically significant,

as confirmed by the non-parametric Mann–Whitney U test

between SSC ISCOOUT and SSC ISCOIN (p > 0.05).

Figure 4. Suspended sediment concentration of samples collected

from known concentration mixtures (SSCtrue) using ISCO water

samplers with 1 and 7 m tube lengths.

Particle size analysis of event samples showed that the pro-

portion of silt and sand particles changed through the events,

whereas clay remained consistent. The greater density of

sand particles compared to silts and clays can impact SSC

and be oversampled by pumped samples such as the ISCOIN

approach (Horowitz, 2008). The percentage of sand (or sand-

sized aggregates) between SSC ISCOIN and SSC ISCOOUT

did not differ significantly (p > 0.05). Additionally, the ra-

tio of the sand-sized fraction between simultaneous samples

at ISCOIN and ISCOOUT showed no consistent evidence of

over- or under-collection by either collection method. The

hypothesis that inadequate sample collection could affect the

differences between SSCs at ISCOIN and ISCOOUT is un-

likely, as contrasts between the sand-sized fractions seemed

to be event specific.

Differences between SSC ISCOIN and SSC ISCOOUT

could not be directly attributed to diverging particle size of

the collected samples (p > 0.05), the pump length of the wa-

ter sample collection (p > 0.05; Fig. 4), or the position of the

sample intake within the cross section (Fig. 5). It is possible

that the proximity of the ISCOIN pump intake to the channel

bank could influence the relationship; however, differences

could additionally result from methodological dissimilarities

which could not be tested in isolation, i.e. the piped delivery

of river water to the ex situ instrument tank. The impact of

elevated SSCs from ISCOIN, compared to ISCOOUT on the

calibration of turbidity sensors TIN and TOUT, and the con-

sequential prediction of high-resolution turbidity-based SSC

record is discussed below.

4.2 Method validation

Samples collected from the channel cross section were used

to test the accuracy of predicted SSC using calibrated tur-

www.hydrol-earth-syst-sci.net/19/3349/2015/ Hydrol. Earth Syst. Sci., 19, 3349–3363, 2015



3356 S. C. Sherriff et al.: Suspended sediment dynamics in agricultural catchments

Table 3. Suspended sediment metrics estimated using in situ and ex situ turbidity-based SSC estimation methods.

Catchment Total load (t)a Mean concentration (mg L−1) Max concentration (mg L−1)

SSLOUT SSLIN SSCOUT SSCIN SSCOUT SSCIN

Grassland B 128± 28 154± 35 14 16 1010 1188

Arable B 225± 54 248± 52 29 34 2043 823b

a Confidence intervals are the coefficient of variance of the mean prediction.
b TIN sensor saturated at 1000 NTU.

Figure 5. Variability of instantaneous depth-integrated SSC mea-

surements across the channel cross section compared to the mean

transect SSC using a US DH-48 sediment sampler at (a) Grassland

B and (b) Arable B.

bidity sensors at in situ and ex situ locations. The average

SSC from each cross-sectional, depth-integrated set of mea-

surements was plotted onto the rating curve over the method

comparison monitoring period (Fig. 6). At Grassland B, mea-

sured SSCs largely plot within the 95 % confidence intervals

of predicted SSC using both methodologies using the simul-

taneous T values. This trend is repeated for the majority of

samples at Arable B; however, some data points plot outside

of the 95 % confidence intervals for both in situ and ex situ

method data sets. In the case that these out of range values

were consistently higher or lower than the predicted values,

this may suggest a systematic error due to sampling strat-

egy; however, both upper and lower confidence limits were

exceeded by the SSC values (Fig. 6c and d). Therefore, the

error associated with the measurement method was generally

less than that encapsulated within the 95 % prediction inter-

vals of the T to SSC calibration curve and, consequently, both

measurement approaches can be accepted as accurate for the

estimation of SS metrics in these catchments. The suitabil-

ity of ex situ water monitoring equipment installation must

consider programme-specific research objectives. Melland et

al. (2012b) stated that for policy evaluation studies including

multiple water quality parameters in addition to SSC, the im-

proved resolution, accuracy and precision, in particular for

hydrologically dynamic catchments, justified the increased

financial costs of initial installation of ex situ instrumenta-

tion.

4.3 Suspended sediment metrics in five agricultural

catchments

High-magnitude SSCs were of short duration in all five

catchments (e.g. Fig. 3 for Grassland B and Arable B), but

such periods are typically critical to cumulative annual SSY

(Fig. 7b – Walling and Webb, 1988; Navratil et al., 2011).

Grassland B and Arable B had a large proportion (80 % of

the monitoring period) of sediment transported at SSCs be-

tween 1 and 10 mg L−1, and shorter periods of concentra-

tions ≥ 10 mg L−1 for 15 and 20 % of the monitoring pe-

riod, respectively (Fig. 7). In the remaining catchments, low

concentrations of < 1 mg L−1 were more common and oc-

curred between 25 and 40 % of the time. High concentra-

tions (≥10 mg L−1) were limited to less than 10 % of the

monitoring period. Overall, however, the FFD average an-

nual SSC guideline was not exceeded in any monitoring

year in any of the catchments (Table 4). The highest mean

SSCs were recorded at Grassland B (up to 14 mg L−1) and

Arable B (up to 17 mg L−1) and the remaining catchments

reported very low values of < 6 mg L−1. Accordingly, the in-

stantaneous exceedance of the FFD guideline (Table 4) oc-

curred during extremely short time periods (1–11 % of sam-

pled time per year). The values here are similar to those re-

ported by Thompson et al. (2014) in two other intensively

managed grassland catchments in Ireland; 8 % exceedance

was reported in a moderately drained catchment in Co. Down

and 18 % exceedance in a poorly drained catchment in Co.

Louth. Although the instantaneous exceedance of the FFD

metric has been reported in other sediment studies (Glendell

et al., 2014; Peukert et al., 2014; Thompson et al., 2014),
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Figure 6. Turbidity-suspended sediment concentration rating curves, confidence intervals, calibration data and cross-sectional depth-

integrated suspended sediment concentration samples for (a) Grassland B TOUT, (b) Grassland B TIN, (c) Arable B TOUT, and (d) Arable B

TIN.

the transferability of this coarse threshold (compliance to

which requires an undefined annual sample number) to high-

resolution SS data is questionable.

Average SSYs in the five catchments were 9, 25, 12, 12

and 24 t km−2 yr−1 at Grassland A, Grassland B, Grassland

C, Arable A and Arable B, respectively. Figure 8 illustrates

average annual SSYs from Ireland, the United Kingdom

(UK) and the wider Atlantic climatic region of Europe (Van-

maercke et al., 2011). The variability of average SSYs may

be partly described by catchment size (x axis) but further-

more according to physical attributes such as soil type, which

controls soil erodibility. Values from catchments assessed in

this study align with existing data on SSY in Ireland (cf.

Huang and O’Connell, 2000; Jordan et al., 2002; Harring-

ton and Harrington, 2013; Thompson et al., 2014), and are

consistently low compared with the UK and Europe. Con-

sidering the agricultural intensity of these catchments (for

example, Grassland A is within the highest region of milk

yield in Ireland; Läppe and Hennessy, 2012), and that crop

yields across Ireland are internationally high (Melland et al.,

2012a), these values are particularly low.

Catchment observations suggest high landscape complex-

ity, comprising small and irregularly shaped fields, separated

by a dense network of hedgerows and vegetated ditches (Ta-

ble 1) reduced water and sediment connectivity potential be-

tween hillslopes and the channel network. Efficient drainage

can be considered to reduce the spatial extent and tempo-

ral stability of connected areas and, considering the over-

engineered nature of these ditch networks, encouraged sed-

iment deposition (Shore et al., 2014). Furthermore, lower

slope lengths reduce the hillslope erosion potential (Lal,

1988), and sediment trapping and soil erosion prevention by

root binding of hedgerows were observed. However, at the

catchment scale, greater efficiency of hillslope drainage can

increase the erosivity of streams, in turn accelerating erosion

from in-channel sources such as channel banks (Belmont et

al., 2011; Massoudieh et al., 2013).

In the UK, Cooper et al. (2008) suggested annual average

“target” and threshold “investigation” SSY values be based

upon drainage class and catchment terrain characteristics.

Grassland A and Arable A qualify as lowland well drained

catchments and, on average, fall well below target and inves-

tigation SSY of 20 and 50 t km−2 yr−1, respectively. Grass-

land B, Grassland C and Arable B, categorised as lowland

predominantly poorly drained catchments, on average, fall

below target and investigation thresholds of 40 and 70 t km−2

yr−1, respectively. Total SSY data for individual years (Ta-

ble 4), however, indicate variability and exceeded respective

SSY target values at Grassland B in 2009, Arable A in 2012

and Arable B in 2012.

Higher average SSC, intra-annual period of FFD ex-

ceedance, and average SSY in catchments Grassland B and

Arable B are suggested to result from poorer soil drainage.

During rainfall events, soils are rapidly saturated and crit-

ical overland flow pathways established, and consequently,

eroded particles within these connected areas are transported
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Figure 7. Frequency-duration graphs of (a) suspended sediment

concentration exceedance with time and (b) cumulative percentage

of suspended sediment yield with exceedance of suspended sedi-

ment concentration.

through the catchment (Mellander et al., 2012; Shore et al.,

2013). The SSC responses here suggest, as in other catch-

ments with impeded drainage, that high overland-flow po-

tential is also associated with a notable proportion of sed-

iment delivered at lower concentrations over a longer pe-

riod, through surface and sub-surface flow pathways such

as through macropores and tile drains (e.g. Deasy et al.,

2009; Melland et al., 2012a; Ibrahaim et al., 2013; Mellander

et al., 2015) resulting in increased average SSCs. In catch-

ments Grassland A and Arable A, sub-surface flow pathways

dominate, due to well drained soils reducing the likelihood

of overland flow and consequently surface soil losses. Fur-

thermore, at Arable A, Mellander et al. (2015) found that

weathered bedrock formed groundwater pathways, further

decreasing surface pathway initiation. Consequently, SSCs,

the intra-annual period of FFD exceedance, and SSYs were

low. Conversely, Grassland C more accurately reflects the

sediment characteristics of the well drained catchments de-
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Figure 8. Catchment size and suspended sediment yield of Eu-

ropean river catchments; study catchments displayed with inter-

annual range. Sources: Foster et al. (1986); Milliman and Syvit-

ski (1992); McManus and Duck (1996); Wass and Leeks (1999);

Huang and O’Connell (2000); Verstraeten and Poesen (2001); Jor-

dan et al. (2002); Walling et al. (2002); Harlow et al. (2006); Oeurng

et al. (2010); Zabaleta et al. (2007); Gay et al. (2014).

spite the moderately to poorly drained soils. Near-complete

cover of permanent pasture here was considered to suffi-

ciently reduce sediment source availability and transport of

sediment to the watercourse.

Generalisations can be made in relation to the overriding

controls on SSY across the monitored catchments (Fig. 9).

Inter-catchment comparisons here used data from hydrologi-

cal years 2010 to 2013, where data were available for all five

catchments. Sediment delivery was enhanced by the com-

bined effect of an overland-flow dominated transport system

(poorly drained soils) and, to a lesser extent, source avail-

ability (arable soils with potentially lengthy periods of bare

ground cover (Regan et al., 2012) or seasonally thinly vege-

tated grassland soils; cf. Bilotta et al., 2010). Catchments that

possess better drainage characteristics and/or permanent crop

cover have greater resilience to extreme sediment losses. In

catchments such as Arable A, where good drainage is com-

bined with high source availability, the risk associated with

sediment transport during extreme rainfall events and years

was, nevertheless, high. Similarly, poorly drained soils sta-

bilised by permanent pasture should be maintained and peri-

ods of bare cover should be avoided.

High inter-annual variability was evident, particularly with

regard to SSY (Table 4). The annual SSY coefficients of vari-

ation (CV %) were 67, 76, 79, 83 and 50 % in Grassland

A, Grassland B, Grassland C, Arable A and Arable B, re-

spectively. Notably, in the Grassland B and Arable B catch-

ments, the inter-annual SSY ranges of 42 and 26 t km−2 yr−1,

respectively, were greater than the average annual inter-

catchment SSY of approximately 24 t km−2 yr−1 for both

sites. The variability found within each of the five monitor-

Figure 9. Conceptual diagram of suspended sediment yield as

represented by iso-lines according to land use and dominant soil

drainage class. Catchment abbreviations: GA – Grassland A; GB –

Grassland B; GC – Grassland C; AA – Arable A; AB – Arable B.

ing catchments was comparable to the results of Vanmaercke

et al. (2012), who reported CV % ranging from 6 to 313 %

(median 75 %) in 726 catchments worldwide. The catchment

with the lowest inter-annual SSY (11 t km−2 yr−1), Grass-

land A, received the least variable rainfall input and total dis-

charge.

Inter-annual SSY variability results from strong season-

ality due to the timing and character of rainfall events, soil

moisture deficit and land management which conditions sed-

iment availability in critical source areas. Analysis of shorter-

term sediment losses, i.e. at seasonal, monthly and event

scales, would also provide empirical evidence to inform both

high-level policy considerations and local decision making.

Additionally, assessment of seasonal transfers are likely to

have greater ecological significance as mean annual thresh-

olds such as SSC (through the FFD), and SSY may underesti-

mate the seasonal fluctuations of risk of sediments to aquatic

ecosystems (Thompson et al., 2014). Sensitivity to sediment

is species-specific and dependent upon life stage (Collins et

al., 2011); therefore, shorter-term metrics such as the tim-

ing, magnitude, duration and frequency of sediment transfers

are important concepts to consider. Existing static thresholds

may, therefore, be considered ecologically irrelevant, partic-

ularly when utilised as an instantaneous threshold for high-

resolution data. Future discussion regarding sediment targets

requires an assessment of multiple species and habitat qual-

ity. This task is particularly complicated where ecological

condition is subject to multiple stressors such as nutrients

(Bilotta and Brazier, 2008), bed substrate quality (Kemp et
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al., 2011) and time lag of water quality response to pollutant

mitigation measures (Fenton et al., 2011; Vero et al., 2014).

Overall, annual average sediment metrics from small

catchments (∼ 10 km2) with dominant land uses representa-

tive of main land use types in Ireland reported here are in-

ternationally low. Considering the spatial dominance and in-

tensity of agricultural land use and high effective rainfall in

the study catchments, this is perhaps unexpected, particularly

considering the small scale of study. As previously discussed,

the complexity of landscape features (e.g. fields, hedgerows,

ditches) which are representative of the wider Irish agricul-

tural landscape (Deverell et al., 2009) can be expected to de-

crease the likelihood of field-scale soil erosion, and/or in-

crease the opportunity for interception and deposition of mo-

bile particles on land or within the hydrological network. The

Irish landscape may, therefore, improve the resilience of agri-

cultural soils to soil loss. However, even with modest SSY,

the potential for other specific risks to ecologically sensitive

habitats, from SS deposition in rivers for example, will need

a cautionary approach. Therefore, identification of the spe-

cific mechanisms promoting soil conservation or sediment

retention in multiple catchments with contrasting physical

and land use characteristics is important. This is particularly

relevant for water and agricultural policy, as the prevention of

environmental degradation and maintenance and/or sustain-

able intensification of agricultural production are simultane-

ously considered. Furthermore, other sediment sources, for

example, from channel banks and road networks, may con-

tribute significant proportions of the annual load (Rowan et

al., 2012; Collins et al., 2013; Sherriff et al., 2014), partic-

ularly where strategies to reduce sediment loss on the hills-

lope scale such as sub-surface drainage may accelerate losses

from channel sediment sources at the catchment scale. As-

sessment of such sources could be a useful insight to priori-

tise sediment management strategies (Wilson et al., 2008).

5 Conclusions

This study assessed the accuracy and reliability of an ex

situ, turbidity-based methodology to estimate suspended sed-

iment fluxes in multiple monitored catchments. Applying the

method, annual SSC, FFD exceedance and SSY data in five

catchments were further investigated in relation to physi-

cal catchment characteristics and land management. The key

findings are:

– Suspended sediment metrics between in situ and ex situ

methodologies were not significantly different from in-

stream cross-sectional, depth-integrated samples in two

monitoring catchments.

– The ex situ methodology reported less sensitivity to spu-

rious data peaks; however, periods of extreme large de-

bris transport increased the sensitivity of the ex situ in-

strumentation to short-term blockages.

– All catchments reported mean annual SSCs of less than

the FFD threshold of 25 mg L−1 and short-term ex-

ceedance of 1–11 % of sampled time.

– Inter-annual variability of SSY was strong due to the

timing and character of rainfall events in relation to land

management.

– Average annual SSYs in all five Irish catchments re-

ported here were low in comparison to similar catch-

ment and landscape settings elsewhere in Europe. Farm-

ing practices favouring relatively small fields, a high

density of field boundaries including ditches, with low

consequent connectivity are likely to explain this.

– Within the study catchments, SSY was higher in catch-

ments dominated by poorly drained soils than those

with well drained soils. Furthermore, on poorly drained

soils, catchments with a greater proportion of arable

land use reported the highest annual average SSY.

– Well drained soils dominated by arable crops did, how-

ever, show the potential to supply significant quantities

of sediment.

– Complexity of landscape features (hedgerows, drainage

ditches and irregular field sizes) may provide resilience

to hillslope soil erosion and/or sediment transport de-

spite spatial dominance and intensity of agriculture and

these will be important considerations for future man-

agement (such as sustainable intensification) and/or SS

mitigation in Ireland and elsewhere.

These findings illustrate that interactions between climate,

landscape and land use regulate the supply of sediments

from Irish agricultural catchments. Whilst the current SSYs

are low by international standards, key questions still re-

main regarding the impact of land use on the magnitude

and frequency characteristics of sediment transfers at shorter

timescales. Seasonal and storm-event scale sediment trans-

fers may better inform erosion risk due to better detection

of sediment pulses moving into the channel network par-

ticularly within ecologically sensitive periods. Further to

this, seasonal sediment provenance and field-scale soil loss

assessments within this land management and landscape

framework are crucial to quantify the contributions made

from specific agricultural and other sediment sources.
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