Articles | Volume 29, issue 3
https://doi.org/10.5194/hess-29-753-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-753-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating the Tone River eastward diversion project in Japan carried out 4 centuries ago
Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
Naota Hanasaki
Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
Related authors
No articles found.
Qing He, Naota Hanasaki, Akiko Matsumura, Edwin H. Sutanudjaja, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2952, https://doi.org/10.5194/egusphere-2025-2952, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work presents a global groundwater modeling framework at 5-arcminute resolution, developed through an offline coupling of the H08 water resource model and MODFLOW6. The model includes a single-layer aquifer and is designed to capture long-term mean groundwater dynamics under varying climate types. The manuscript describes the model structure, input datasets, and evaluation against available observations.
Xin Huang, Qing He, Naota Hanasaki, Rolf H. Reichle, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2004, https://doi.org/10.5194/egusphere-2025-2004, 2025
Preprint archived
Short summary
Short summary
This study demonstrates a new method using SMAP soil moisture products to identify irrigation effects, tested to be valid in an example region in California's Central Valley and showed great potential for application in arid/ semi-arid regions. The approach offers a simple, straightforward approach to monitoring irrigation signals without additional in-situ data or model tuning, providing a useful tool to extract irrigation water use data in observation-scarce regions.
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
Kedar Otta, Hannes Müller Schmied, Simon N. Gosling, and Naota Hanasaki
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-215, https://doi.org/10.5194/hess-2023-215, 2023
Revised manuscript not accepted
Short summary
Short summary
Reservoirs play important roles in hydrology and water resources management globally and are incorporated into many Global Hydrological Models. Their simulations are, however, poorly validated due to the lack of available long-term in-situ observation data globally. Here we investigated the applicability of the latest satellite-based reservoir storage estimations in the contiguous US. We found that those products are useful for validating reservoir storage simulations when they are normalized.
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
Jun'ya Takakura, Shinichiro Fujimori, Kiyoshi Takahashi, Naota Hanasaki, Tomoko Hasegawa, Yukiko Hirabayashi, Yasushi Honda, Toshichika Iizumi, Chan Park, Makoto Tamura, and Yasuaki Hijioka
Geosci. Model Dev., 14, 3121–3140, https://doi.org/10.5194/gmd-14-3121-2021, https://doi.org/10.5194/gmd-14-3121-2021, 2021
Short summary
Short summary
To simplify calculating economic impacts of climate change, statistical methods called emulators are developed and evaluated. There are trade-offs between model complexity and emulation performance. Aggregated economic impacts can be approximated by relatively simple emulators, but complex emulators are necessary to accommodate finer-scale economic impacts.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020, https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
Short summary
Incorporating bioenergy crops into the well-established global hydrological models is seldom seen today. Here, we successfully enhance a state-of-the-art global hydrological model H08 to simulate bioenergy crop yield. We found that unconstrained irrigation more than doubled the yield under rainfed conditions while simultaneously reducing the water use efficiency by 32 % globally. Our enhanced model provides a new tool for the future assessment of bioenergy–water tradeoffs.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Cited articles
AMeDAS – Automated Meteorological Data Acquisition System: Past Weather Data, AMeDAS [data set], https://www.data.jma.go.jp/obd/stats/etrn/ (last access: 20 April 2023), 2023.
Balasch, J.C., Pino, D., Ruiz-Bellet, J. L., Tuset, J., Barriendos, M., Castelltort, X., and Peña, J.C.: The extreme floods in the Ebro River basin since 1600 CE, Sci. Total Environ., 646, 645-660, https://doi.org/10.1016/j.scitotenv.2018.07.325, 2019.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K, Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing, Hydro. Earth Syst. Sci., 12, 1007–1025, https://doi.org/10.5194/hess-12-1007-2008, 2008a.
Hanasaki, N., Kanae, S., Oki, T., Masuda, K., Motoya, K, Shirakawa, N., Shen, Y., and Tanaka, K.: An integrated model for the assessment of global water resources – Part 2: Applications and assessments, Hydrol. Earth Syst. Sci., 12, 1027–1037, https://doi.org/10.5194/hess-12-1027-2008, 2008b.
Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi.org/10.5194/hess-22-789-2018, 2018.
Hanasaki, N., Matsuda, H., Fujiwara, M., Hirabayashi, Y., Seto, S., Kanae, S., and Oki, T.: Toward hyper-resolution global hydrological models including human activities: application to Kyushu Island, Japan, Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, 2022.
Hatono, M., Kiguchi, M., Yoshimura, K., Kanae, S., Kuraji, K., and Oki, T.: A 0.01-degree gridded precipitation dataset for Japan, 1926—2020, Sci. Data, 9, 422, https://doi.org/10.1038/s41597-022-01548-3, 2022.
Ibbitt, R., Takara, K., Desa, M. N. B. M., and Pawitan, H.: Catalogue of Rivers for South East Asia and the Pacific – Volume IV, The UNESCO-IHP Regional Steering Committee for Southeast Asia and the Pacific, https://unesdoc.unesco.org/ark:/48223/pf0000145288 (last access: 5 February 2025), 2002.
Inazaki, T., Ota, Y., and Maruyama, S.: The largest and longest project in Japan – Spanning over 400 years, J. Geogr. (Chigaku Zasshi) 123, 401–433, https://doi.org/10.5026/jgeography.123.401, 2014.
Kawada, T.: On the history of the Tone River basin, J. Hist. Soc. Jpn. (Shigaku Zasshi), 43, 367–389, 1893.
Koide, H.: Tone River and Yodo River – Historical Development in Eastern and Western Japan (Tonegawa to Yodogawa: higashi Nihon, nishi Nihon no rekishiteki tenkai), Chuokoronshinsha, Tokyo, 220 pp., ISBN 13:978-4121003843, 1975.
Kosuge, N.: The development of waterworks in Japan, HSDRJE-29/UNUP-240, The United Nations University, ISBN 92-808-0240-2, 1981.
Kubo, S.: Shifting of the Arakawa river in the Kanto Plain, central Japan, during the Late Holocene: a geomorphological approach, Geogr. Rev. Jpn. Ser. B, 84 71–80, https://doi.org/10.4157/geogrevjapanb.84.71, 2012.
Kurihara, R.: Flood control history of the Tone River, Kankaikoronsya, Tokyo, 331 pp., https://ndlsearch.ndl.go.jp/books/R100000039-I1058667 (last access: 5 February 2025), 1943.
Luo, P., Takara, K., Apip, He, B., and Nover, D.: Palaeoflood simulation of the Kamo River basin using a grid-cell distributed rainfall run-off model, J. Flood Risk Manage., 7, 182–192, https://doi.org/10.1111/jfr3.12038, 2014.
Masood, M., Yeh, P. J.-F., Hanasaki, N., and Takeuchi, K.: Model study of the impacts of future climate change on the hydrology of Ganges–Brahmaputra–Meghna basin, Hydrol. Earth Syst. Sci., 19, 747–770, https://doi.org/10.5194/hess-19-747-2015, 2015.
Mateo, C. M., Hanasaki, N., Komori, D., Tanaka, K., Kiguchi, M., Champathong, A., Sukhapunnaphan, T., Yamazaki, D., and Oki, T.: Assessing the impacts of reservoir operation to floodplain inundation by combining hydrological, reservoir management, and hydrodynamic models, Water Resour. Res., 50, 7245–7266, https://doi.org/10.1002/2013wr014845, 2014.
Matsumura, A. Mitsuhashi, T., Suga, K., Terashima, A., Kanayama, T., Ogawada, D., Yano, S., Hanasaki, N., and Oki, T.: Global Water Cycle Model H08 assessment of water supply and demand in a watershed considering the intake and drainage systems, J. Jpn. Soc. Civ. Eng. Ser. B1, 77, I_205–I_210, https://doi.org/10.2208/jscejhe.77.2_I_205, 2021.
MLIT – Ministry of Land, Infrastructure, Transport and Tourism: Rivers of Japan, https://www.mlit.go.jp/river/toukei_chousa/kasen/jiten/nihon_kawa/index.html (last access: 19 December 2023), 2023a.
MLIT – Ministry of Land, Infrastructure, Transport and Tourism: Water Information System, MLIT [data set], http://www1.river.go.jp/ (last access: 20 April 2023), 2023b.
MLIT – Ministry of Land, Infrastructure, Transport and Tourism: Introduction to the Tone River, https://www.ktr.mlit.go.jp/tonejo/tonejo00185.html (last access: 20 April 2023), 2023c.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models: Part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nemoto, Y., Nakayama, D., and Matsuyama, H.: Reevaluation of Shingen-tsutsumi based on inundation flow simulations with special focus on the flood control facilities along the Midai River, Geogr. Rev. Jpn. Ser. A, 84, 553–571, https://doi.org/10.4157/grj.84.553, 2011.
Nemoto, Y., Izumi, T., Nakayama, D., and Matsuyama, H.: Hydrologic study of artificial flooding tactics at Bicchutakamatsu Castle by Hideyoshi based on a flood-inundation simulation, subtitles, Geog. Rev. Jpn. Ser. A, 86, 315–337, https://doi.org/10.4157/grj.86.315, 2013.
Okuma, T.: Changes in the Tone River improvements and its floods (Tonegawa chisui no hensen to suigai), The University of Tokyo Press, Tokyo, 397 pp., ISBN 13:978-4130660532, 1981.
Sippel, P.: Japan's first urban water disaster: The Great Kanto Flood of 1742, Contemp. Hist. Res., 10, 1–34, 2014.
Trošelj, J. and Hanasaki, N.: Code and data of Simulating the Tone River Eastward Diversion Project in Japan Carried Out Four Centuries Ago, Zenodo [code and data set], https://doi.org/10.5281/zenodo.14362421, 2024.
Werther, L., Menn, T., Schmidt, J., and Müller, H.: Modelling pre-modern flow distances of inland waterways – A GIS study in southern Germany, Virt. Archaeol. Rev., 12, 42–56, https://doi.org/10.4995/var.2021.15245, 2021.
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
This study presents the first distributed hydrological simulation which confirms claims raised...