Articles | Volume 29, issue 21
https://doi.org/10.5194/hess-29-6201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-6201-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
User priorities for hydrological monitoring infrastructures supporting research and innovation
Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
Alejandro Dussaillant
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, United Kingdom
Gemma Coxon
School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, United Kingdom
Simon De Stercke
Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
Gareth H. Old
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, United Kingdom
Matthew Fry
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, United Kingdom
Jonathan G. Evans
UK Centre for Ecology & Hydrology, Wallingford, OX10 8BB, United Kingdom
Wouter Buytaert
Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
Related authors
No articles found.
John Robotham, Emily Trill, James Blake, Ponnambalam Rameshwaran, Peter Scarlett, Gareth Old, and Joanna Clark
Earth Syst. Sci. Data, 17, 4277–4291, https://doi.org/10.5194/essd-17-4277-2025, https://doi.org/10.5194/essd-17-4277-2025, 2025
Short summary
Short summary
There is currently limited evidence about how land-based “natural flood management” measures affect soil properties. We therefore measured soil physical and hydraulic properties (n = 1300) at seven field sites (Thames catchment, UK). The sites cover a range of geologies, land use, and management. Dataset applications include hydrological and land surface modelling and validation of remote sensing observations. The dataset also provides a baseline against which future soil changes may be compared.
Yanchen Zheng, Gemma Coxon, Mostaquimur Rahman, Ross Woods, Saskia Salwey, Youtong Rong, and Doris E. Wendt
Geosci. Model Dev., 18, 4247–4271, https://doi.org/10.5194/gmd-18-4247-2025, https://doi.org/10.5194/gmd-18-4247-2025, 2025
Short summary
Short summary
Groundwater is vital for people and ecosystems, but most physical models lack the representation of surface–groundwater interactions, leading to inaccurate streamflow predictions in groundwater-rich areas. This study presents DECIPHeR-GW v1, which links surface and groundwater systems to improve predictions of streamflow and groundwater levels. Tested across England and Wales, DECIPHeR-GW shows high accuracy, especially in southeast England, making it a valuable tool for large-scale water management.
Sudhanshu Dixit, Sumit Sen, Tahmina Yasmin, Kieran Khamis, Debashish Sen, Wouter Buytaert, and David Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2025-2081, https://doi.org/10.5194/egusphere-2025-2081, 2025
Short summary
Short summary
Flash floods are becoming more frequent in mountainous regions due to heavier rainstorms. To protect people and property, we are working to better understand local hydrology and improve the efficiency of early warning systems for urban flooding in Lesser Himalayas. By combining community knowledge, low-cost technology, we can enhance understanding of flood dynamics and strengthen preparedness in mountains. This work is a step toward building resilience by bridging science and community insight.
Doris Elise Wendt, Gemma Coxon, Saskia Salwey, and Francesca Pianosi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1645, https://doi.org/10.5194/egusphere-2025-1645, 2025
Short summary
Short summary
Groundwater is a highly-used water source, which drought management is complicated. We introduce a socio-hydrological water resource model (SHOWER) to aid drought management in groundwater-rich managed environments. Results show which and when drought management interventions influence surface water and groundwater storage, with integrated interventions having most effect on reducing droughts. This encourages further exploration to reduce water shortages and improve future drought resilience.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
The Cryosphere, 19, 685–712, https://doi.org/10.5194/tc-19-685-2025, https://doi.org/10.5194/tc-19-685-2025, 2025
Short summary
Short summary
We combine two globally capable glacier evolution models to include processes that are typically neglected but thought to control tropical glacier retreat (e.g. sublimation). We apply the model to Peru's Vilcanota-Urubamba Basin. The model captures observed glacier mass changes,but struggles with surface albedo dynamics. Projections show glacier mass shrinking to 17 % or 6 % of 2000 levels by 2100 under moderate- and high-emission scenarios, respectively.
Jerom P. M. Aerts, Jannis M. Hoch, Gemma Coxon, Nick C. van de Giesen, and Rolf W. Hut
Hydrol. Earth Syst. Sci., 28, 5011–5030, https://doi.org/10.5194/hess-28-5011-2024, https://doi.org/10.5194/hess-28-5011-2024, 2024
Short summary
Short summary
For users of hydrological models, model suitability often hinges on how well simulated outputs match observed discharge. This study highlights the importance of including discharge observation uncertainty in hydrological model performance assessment. We highlight the need to account for this uncertainty in model comparisons and introduce a practical method suitable for any observational time series with available uncertainty estimates.
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024, https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
Short summary
Reservoirs are essential for water resource management and can significantly impact downstream flow. However, representing reservoirs in hydrological models can be challenging, particularly across large scales. We design a new and simple method for simulating river flow downstream of water supply reservoirs using only open-access data. We demonstrate the approach in 264 reservoir catchments across Great Britain, where we can significantly improve the simulation of reservoir-impacted flow.
Yanchen Zheng, Gemma Coxon, Ross Woods, Daniel Power, Miguel Angel Rico-Ramirez, David McJannet, Rafael Rosolem, Jianzhu Li, and Ping Feng
Hydrol. Earth Syst. Sci., 28, 1999–2022, https://doi.org/10.5194/hess-28-1999-2024, https://doi.org/10.5194/hess-28-1999-2024, 2024
Short summary
Short summary
Reanalysis soil moisture products are a vital basis for hydrological and environmental research. Previous product evaluation is limited by the scale difference (point and grid scale). This paper adopts cosmic ray neutron sensor observations, a novel technique that provides root-zone soil moisture at field scale. In this paper, global harmonized CRNS observations were used to assess products. ERA5-Land, SMAPL4, CFSv2, CRA40 and GLEAM show better performance than MERRA2, GLDAS-Noah and JRA55.
Kathryn A. Leeming, John P. Bloomfield, Gemma Coxon, and Yanchen Zheng
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-202, https://doi.org/10.5194/hess-2023-202, 2023
Preprint withdrawn
Short summary
Short summary
In this work we characterise annual patterns in baseflow, the component of streamflow that comes from subsurface storage. Our research identified early-, mid-, and late-seasonality of baseflow across catchments in Great Britain over two time blocks: 1976–1995 and 1996–2015, and found that many catchments have earlier seasonal patterns of baseflow in the second time period. These changes are linked to changes in climate signals: snow-melt in highland catchments and effective rainfall changes.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023, https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Short summary
Floods continue to be a wicked problem that require developing early warning systems with plausible assumptions of risk behaviour, with more targeted conversations with the community at risk. Through this paper we advocate the use of a SMART approach to encourage bottom-up initiatives to develop inclusive and purposeful early warning systems that benefit the community at risk by engaging them at every step of the way along with including other stakeholders at multiple scales of operations.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Sarah Shannon, Anthony Payne, Jim Freer, Gemma Coxon, Martina Kauzlaric, David Kriegel, and Stephan Harrison
Hydrol. Earth Syst. Sci., 27, 453–480, https://doi.org/10.5194/hess-27-453-2023, https://doi.org/10.5194/hess-27-453-2023, 2023
Short summary
Short summary
Climate change poses a potential threat to water supply in glaciated river catchments. In this study, we added a snowmelt and glacier melt model to the Dynamic fluxEs and ConnectIvity for Predictions of HydRology model (DECIPHeR). The model is applied to the Naryn River catchment in central Asia and is found to reproduce past change discharge and the spatial extent of seasonal snow cover well.
Mathew Lipson, Sue Grimmond, Martin Best, Winston T. L. Chow, Andreas Christen, Nektarios Chrysoulakis, Andrew Coutts, Ben Crawford, Stevan Earl, Jonathan Evans, Krzysztof Fortuniak, Bert G. Heusinkveld, Je-Woo Hong, Jinkyu Hong, Leena Järvi, Sungsoo Jo, Yeon-Hee Kim, Simone Kotthaus, Keunmin Lee, Valéry Masson, Joseph P. McFadden, Oliver Michels, Wlodzimierz Pawlak, Matthias Roth, Hirofumi Sugawara, Nigel Tapper, Erik Velasco, and Helen Claire Ward
Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, https://doi.org/10.5194/essd-14-5157-2022, 2022
Short summary
Short summary
We describe a new openly accessible collection of atmospheric observations from 20 cities around the world, capturing 50 site years. The observations capture local meteorology (temperature, humidity, wind, etc.) and the energy fluxes between the land and atmosphere (e.g. radiation and sensible and latent heat fluxes). These observations can be used to improve our understanding of urban climate processes and to test the accuracy of urban climate models.
Rosanna A. Lane, Gemma Coxon, Jim Freer, Jan Seibert, and Thorsten Wagener
Hydrol. Earth Syst. Sci., 26, 5535–5554, https://doi.org/10.5194/hess-26-5535-2022, https://doi.org/10.5194/hess-26-5535-2022, 2022
Short summary
Short summary
This study modelled the impact of climate change on river high flows across Great Britain (GB). Generally, results indicated an increase in the magnitude and frequency of high flows along the west coast of GB by 2050–2075. In contrast, average flows decreased across GB. All flow projections contained large uncertainties; the climate projections were the largest source of uncertainty overall but hydrological modelling uncertainties were considerable in some regions.
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022, https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Short summary
Transpiration fluxes by vegetation are reduced under heat stress to conserve water. However, in situ observations over northern India show that the strength of the inverse association between transpiration and atmospheric vapor pressure deficit is weakening in the presence of heavy aerosol loading. This finding not only implicates the significant role of aerosols in modifying the evaporative fraction (EF) but also warrants an in-depth analysis of the aerosol–plant–temperature–EF continuum.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Veerle Vanacker, Armando Molina, Miluska A. Rosas, Vivien Bonnesoeur, Francisco Román-Dañobeytia, Boris F. Ochoa-Tocachi, and Wouter Buytaert
SOIL, 8, 133–147, https://doi.org/10.5194/soil-8-133-2022, https://doi.org/10.5194/soil-8-133-2022, 2022
Short summary
Short summary
The Andes region is prone to natural hazards due to its steep topography and climatic variability. Anthropogenic activities further exacerbate environmental hazards and risks. This systematic review synthesizes the knowledge on the effectiveness of nature-based solutions. Conservation of natural vegetation and implementation of soil and water conservation measures had significant and positive effects on soil erosion mitigation and topsoil organic carbon concentrations.
Magdalena Szczykulska, David Boorman, James Blake, and Jonathan G. Evans
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-564, https://doi.org/10.5194/hess-2021-564, 2021
Preprint withdrawn
Short summary
Short summary
In this note, a revised incoming neutron intensity correction factor for soil moisture monitoring using cosmic-ray neutron sensors (CRNSs) is presented. The correction takes into account the incoming neutron flux differences at the reference neutron monitoring and soil moisture sites. When applied to the COSMOS-UK soil moisture data, it reduces the otherwise unexplained trend present in the data at wetter sites. It has implications for better soil moisture quantification using the CRNS method.
Thomas Lees, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 25, 5517–5534, https://doi.org/10.5194/hess-25-5517-2021, https://doi.org/10.5194/hess-25-5517-2021, 2021
Short summary
Short summary
We used deep learning (DL) models to simulate the amount of water moving through a river channel (discharge) based on the rainfall, temperature and potential evaporation in the previous days. We tested the DL models on catchments across Great Britain finding that the model can accurately simulate hydrological systems across a variety of catchment conditions. Ultimately, the model struggled most in areas where there is chalky bedrock and where human influence on the catchment is large.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Hollie M. Cooper, Emma Bennett, James Blake, Eleanor Blyth, David Boorman, Elizabeth Cooper, Jonathan Evans, Matthew Fry, Alan Jenkins, Ross Morrison, Daniel Rylett, Simon Stanley, Magdalena Szczykulska, Emily Trill, Vasileios Antoniou, Anne Askquith-Ellis, Lucy Ball, Milo Brooks, Michael A. Clarke, Nicholas Cowan, Alexander Cumming, Philip Farrand, Olivia Hitt, William Lord, Peter Scarlett, Oliver Swain, Jenna Thornton, Alan Warwick, and Ben Winterbourn
Earth Syst. Sci. Data, 13, 1737–1757, https://doi.org/10.5194/essd-13-1737-2021, https://doi.org/10.5194/essd-13-1737-2021, 2021
Short summary
Short summary
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring field-scale soil moisture. Each site includes soil and hydrometeorological sensors providing data including air temperature, humidity, net radiation, neutron counts, snow water equivalent, and potential evaporation. These data can provide information for science, industry, and agriculture by improving existing understanding and data products in fields such as water resources, space sciences, and biodiversity.
Cited articles
Adams, R. J., Smart, P., and Huff, A. S.: Shades of Grey: Guidelines for Working with the Grey Literature in Systematic Reviews for Management and Organizational Studies, International Journal of Management Reviews, 19, 432–454, https://doi.org/10.1111/ijmr.12102, 2017.
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and Mendoza, P. A.: Large-sample hydrology: Recent progress, guidelines for new datasets and grand challenges, Hydrological Sciences Journal, 65, 712–725, https://doi.org/10.1080/02626667.2019.1683182, 2020.
Averyt, K., Derner, J. D., Dilling, L., Guerrero, R., Joyce, L., McNeeley, S., McNie, E., Morisette, J., Ojima, D., O'Malley, R., Peck, D., Ray, A. J., Reeves, M., and Travis, W.: Regional Climate Response Collaboratives: Multi-Institutional Support for Climate Resilience, Bulletin of the American Meteorological Society, 99, 891–898, https://doi.org/10.1175/BAMS-D-17-0183.1, 2018.
Baron, J. S., Specht, A., Garnier, E., Bishop, P., Campbell, C. A., Davis, F. W., Fady, B., Field, D., Gross, L. J., Guru, S. M., Halpern, B. S., Hampton, S. E., Leavitt, P. R., 40 Meagher, T. R., Ometto, J., Parker, J. N., Price, R., Rawson, C. H., Rodrigo, A., Sheble, L. A., and Winter, M.: Synthesis Centers as Critical Research Infrastructure, BioScience, 67, 750–759, https://doi.org/10.1093/biosci/bix053, 2017.
Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O., Brázdil, R., Coeur, D., Demarée, G., Llasat, M. C., Macdonald, N., Retsö, D., Roald, L., Schmocker-Fackel, P., Amorim, I., Bělínová, M., Benito, G., Bertolin, C., Camuffo, D., Cornel, D., Doktor, R., Elleder, L., Enzi, S., Garcia, J. C., Glaser, R., Hall, J., Haslinger, K., Hofstätter, M., Komma, J., Limanówka, D., Lun, D., Panin, A., Parajka, J., Petrić, H., Rodrigo, F. S., Rohr, C., Schönbein, J., Schulte, L., Silva, L. P., Toonen, W. H. J., Valent, P., Waser, J., and Wetter, O.: Current European flood-rich period exceptional compared with past 500 years, Nature, 583, 560–566, https://doi.org/10.1038/s41586-020-2478-3, 2020.
Brantley, S. L., McDowell, W. H., Dietrich, W. E., White, T. S., Kumar, P., Anderson, S. P., Chorover, J., Lohse, K. A., Bales, R. C., Richter, D. D., Grant, G., and Gaillardet, J.: Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth, Earth Surface Dynamics, 5(4), 841–860, https://doi.org/10.5194/esurf-5-841-2017, 2017.
Braud, I., Chaffard, V., Coussot, C., Galle, S., Juen, P., Alexandre, H., Baillion, P., Battais, A., Boudevillain, B., Branger, F., Brissebrat, G., Cailletaud, R., Cochonneau, G., Decoupes, R., Desconnets, J.-C., Dubreuil, A., Fabre, J., Gabillard, S., Gérard, M.-F., Grellet, S., Herrmann, A., Laarman, O., Lajeunesse, E., Le Hénaff, G., Lobry, O., Mauclerc, A., Paroissien, J.-B., Pierret, M.-C., Silvera, N., and Squividant, H.: Building the information system of the French Critical Zone Observatories network: Theia/OZCAR-IS, Hydrological Sciences Journal, 67, 2401–2419, https://doi.org/10.1080/02626667.2020.1764568, 2020.
Brewer, M. J., Hollingshead, A., Dissen, J., Jones, N., and Webster, L. F.: User Needs for Weather and Climate Information: 2019 NCEI Users' Conference, Bulletin of the American Meteorological Society, 101, E645–E649, https://doi.org/10.1175/BAMS-D-19-0323.1, 2020.
Buytaert, W., Zulkafli, Z., Grainger, S., Acosta, L., Alemie, T. C., Bastiaensen, J., De Bièvre, B., Bhusal, J., Clark, J., Dewulf, A., Foggin, M., Hannah, D. M., Hergarten, C., Isaeva, A., Karpouzoglou, T., Pandeya, B., Paudel, D., Sharma, K., Steenhuis, T., Tilahun, S., Van Hecken, G., and Zhumanova, M.: Citizen science in hydrology and water resources: Opportunities for knowledge generation, ecosystem service management, and sustainable development, Frontiers in Earth Science, 2, https://doi.org/10.3389/feart.2014.00026, 2014.
Calderwood, A. J., Pauloo, R. A., Yoder, A. M., and Fogg, G. E.: Low-Cost, Open Source Wireless Sensor Network for Real-Time, Scalable Groundwater Monitoring, Water, 12(4), 1066, https://doi.org/10.3390/w12041066, 2020.
Cantor, A., Kiparsky, M., Hubbard, S. S., Kennedy, R., Pecharroman, L. C., Guivetchi, K., Darling, G., McCready, C., and Bales, R.: Making a Water Data System Responsive to Information Needs of Decision Makers, Frontiers in Climate, 3, https://doi.org/10.3389/fclim.2021.761444, 2021.
Chan, K., Schillereff, D. N., Baas, A. C. W., Chadwick, M. A., Main, B., Mulligan, M., O'Shead, F. T., Pearce, R., Smith, T. E. L., van Soesbergen, A., Tebbs, E., and Thompson, J.: Low-cost electronic sensors for environmental research: Pitfalls and opportunities. Progress in Physical Geography: Earth and Environment, 45, https://doi.org/10.1177/0309133320956567, 2020.
Collins, K., Hannaford, J., Haines, S., Bachmair, S., Crossman, N., Stephens, L., and Svoboda, M.: Drought: Understanding and reducing vulnerability through monitoring and early warning systems, Report of the DrIVER workshop, 17 March 2015, Open University, https://oro.open.ac.uk/46097/ (last access: 10 November 2025), 2016.
Contzen, N., Kollmann, J., and Mosler, H.-J.: The importance of user acceptance, support, and behaviour change for the implementation of decentralized water technologies, Nature Water, 1, 2, https://doi.org/10.1038/s44221-022-00015-y, 2023.
Creswell, J.: Research designs: Qualitative, quantitative, and mixed methods approaches, Sage, Thousand Oaks, USA, ISBN 978-1-4129-6556-9, 2009.
Dahlhaus, P., Murphy, A., MacLeod, A., Thompson, H., McKenna, K., and Ollerenshaw, A.: Making the invisible visible: The impact of federating groundwater data in Victoria, Australia, Journal of Hydroinformatics, 18, 238–255, https://doi.org/10.2166/hydro.2015.169, 2015.
Dallo, I., and Marti, M.: Why should I use a multi-hazard app? Assessing the public's information needs and app feature preferences in a participatory process, International Journal of Disaster Risk Reduction, 57, 102197, https://doi.org/10.1016/j.ijdrr.2021.102197, 2021.
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
Eberts, S. M., Wagner, C. R., and Woodside, M. D.: Water priorities for the Nation – The U. S. Geological Survey Next Generation Water Observing System, U. S. Geological Survey Fact Sheet, 2019–3046, https://doi.org/10.3133/fs20193046, 2019.
FDRI: Scoping a Floods and Droughts Research Infrastructure (FDRI): Report for the FDRI community, FDRI, https://nora.nerc.ac.uk/id/eprint/532545 (last access: 11 November 2025), 2022.
FDRI: Floods and Droughts Research Infrastructure (FDRI), https://fdri.org.uk/, last access: 29 October 2025.
Fileni, F., Fowler, H. J., Lewis, E., McLay, F., and Yang, L.: A quality-control framework for sub-daily flow and level data for hydrological modelling in Great Britain, Hydrology Research, 54, 1357–1367, https://doi.org/10.2166/nh.2023.045, 2023.
Fleming, A., Fielke, S., Jakku, E., Malakar, Y., Snow, S., Dickson, S., Hay, R., Prakash, M., Tijs, S., and Cornish, G.: Co-designing Climate Services for Agriculture – reflecting on successes, setbacks and early lessons learned, Reis, 19, 24–34, 2024.
Fogarty, C., Veness, W., Dussaillant, A., and Buytaert, W.: Mapping hydro-ecological citizen science activities to inform research infrastructure design (Chess Catchment, UK), Hydrology Research, nh2025028, https://doi.org/10.2166/nh.2025.028, 2025.
Funk, C., Shukla, S., Thiaw, W. M., Rowland, J., Hoell, A., McNally, A., Husak, G., Novella, N., Budde, M., Peters-Lidard, C., Adoum, A., Galu, G., Korecha, D., Magadzire, T., Rodriguez, M., Robjhon, M., Bekele, E., Arsenault, K., Peterson, P., Harrison, L., Fuhrman, S., Davenport, F., Landsfeld, M., Pedreros, D., Jacob, J. P., Reynolds, C., Becker-Reshef, I., and Verdin, J.: Recognizing the Famine Early Warning Systems Network: Over 30 Years of Drought Early Warning Science Advances and Partnerships Promoting Global Food Security, Bulletin of the American Meteorological Society, 100, 1011–1027, https://doi.org/10.1175/BAMS-D-17-0233.1, 2019.
Gale, C. B. and Tindimugaya, C.: Review: Challenges and opportunities for sustainable groundwater management in Africa, Hydrogeology Journal, 27, 1099–1110, https://doi.org/10.1007/s10040-018-1892-1, 2019.
Galletta, A.: Mastering the Semi-Structured Interview and Beyond: From Research Design to Analysis and Publication, NYU Press, https://doi.org/10.18574/nyu/9780814732939.001.0001, 2013.
Garrick, D. E., Hall, J. W., Dobson, A., Damania, R., Grafton, R. Q., Hope, R., Hepburn, C., Bark, R., Boltz, F., De Stefano, L., O'Donnell, E., Matthews, N., and Money, A.: Valuing water for sustainable development, Science, 358, 1003–1005, https://doi.org/10.1126/science.aao4942, 2017.
Gumucio, T., Greatrex, H., Macfarlane, A., Philp, T., and Scatliffe, S.: How to use qualitative research to assess triggers of weather-induced disasters & inform weather risk management design, The Pennsylvania State University, https://github.com/PSU-AXA-Somalia/Documents/blob/main/PSU_AXAXL_QualitativeUserGuide.pdf (last access: 10 November 2025), 2021.
Haddaway, N. R., Collins, A. M., Coughlin, D., and Kirk, S.: The Role of Google Scholar in Evidence Reviews and Its Applicability to Grey Literature Searching, PLOS ONE, 10, e0138237, https://doi.org/10.1371/journal.pone.0138237, 2015.
Hamel, P., Bremer, L. L., Ponette-González, A. G., Acosta, E., Fisher, J. R. B., Steele, B., Cavassani, A. T., Klemz, C., Blainski, E., and Brauman, K. A.: The value of hydrologic information for watershed management programs: The case of Camboriú, Brazil, Science of The Total Environment, 705, 135871, https://doi.org/10.1016/j.scitotenv.2019.135871, 2020.
Harrison, S. E., Potter, S. H., Prasanna, R., Doyle, E. E. H., and Johnston, D.: Identifying the Impact-Related Data Uses and Gaps for Hydrometeorological Impact Forecasts and Warnings, Weather, Climate, and Society, 14, 155–176, https://doi.org/10.1175/WCAS-D-21-0093.1, 2022.
Henriksen, H. J., Roberts, M. J., van der Keur, P., Harjanne, A., Egilson, D., and Alfonso, L.: Participatory early warning and monitoring systems: A Nordic framework for web-based flood risk management, International Journal of Disaster Risk Reduction, 31, 1295–1306, https://doi.org/10.1016/j.ijdrr.2018.01.038, 2018.
Holzer, J. M., Adamescu, C. M., Cazacu, C., Díaz-Delgado, R., Dick, J., Méndez, P. F., Santamaría, L., and Orenstein, D. E.: Evaluating transdisciplinary science to open research-implementation spaces in European social-ecological systems, Biological Conservation, 238, 108228, https://doi.org/10.1016/j.biocon.2019.108228, 2019.
IGRAC: National Groundwater Monitoring Programmes. A global overview of quantitative groundwater monitoring networks, https://www.un-igrac.org/resource/national-groundwater-monitoring-programmes-global-overview-quantitative-groundwater (last access: 10 November 2025), 2020.
IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009325844, 2022.
Jensen, K. H. and Refsgaard, J. C.: HOBE: The Danish Hydrological Observatory, Vadose Zone Journal, 17, 180059, https://doi.org/10.2136/vzj2018.03.0059, 2018.
Jones, A. S., Horsburgh, J. S., Reeder, S. L., Ramírez, M., and Caraballo, J.: A data management and publication workflow for a large-scale, heterogeneous sensor network, Environmental Monitoring and Assessment, 187, 348, https://doi.org/10.1007/s10661-015-4594-3, 2015.
Kiese, R., Fersch, B., Baessler, C., Brosy, C., Butterbach-Bahl, K., Chwala, C., Dannenmann, M., Fu, J., Gasche, R., Grote, R., Jahn, C., Klatt, J., Kunstmann, H., Mauder, M., Rödiger, T., Smiatek, G., Soltani, M., Steinbrecher, R., Völksch, I., Werhahn, J., Wolf, B., Zeeman, M., and Schmid, H. P.: The TERENO Pre-Alpine Observatory: Integrating Meteorological, Hydrological, and Biogeochemical Measurements and Modeling, Vadose Zone Journal, 17, 180060, https://doi.org/10.2136/vzj2018.03.0060, 2018.
Kmoch, A., Klug, H., Ritchie, A. B. H., Schmidt, J., and White, P. A.: A Spatial Data Infrastructure Approach for the Characterization of New Zealand's Groundwater Systems, Transactions in GIS, 20, 626–641, https://doi.org/10.1111/tgis.12171, 2016.
Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., Shalev, G., and Matias, Y.: Caravan – A global community dataset for large-sample hydrology, Scientific Data, 10, 61, https://doi.org/10.1038/s41597-023-01975-w, 2023.
Kruczkiewicz, A., Braun, M., McClain, S., Greatrex, H., Padilla, L., Hoffman-Hernandez, L., Siahaan, K., Nielsen, M., Llamanzares, B., and Flamig, Z.: Flood risk and monitoring data for preparedness and response, in: Global Drought and Flood, edited by: Singh, V. P., Yadav, S., and Yadava, R. N., American Geophysical Union (AGU), Washington, DC, USA, 289–306, https://doi.org/10.1002/9781119427339.ch16, 2021.
Lamb, R., Longfield, S., Manson, S., Cloke, H. L., Pilling, C., Reynard, N., Sheppard, O., Asadullah, A., Vaughan, M., Fowler, H. J., and Beven, K. J.: The future of flood hydrology in the UK, Hydrology Research, 53, 1286–1303, https://doi.org/10.2166/nh.2022.053, 2022.
Maxwell, D., Lentz, E., Simmons, C., and Gottlieb, G.: Early Warning and Early Action for Increased Resilience of Livelihoods in IGAD Region, Tufts University, 1–22, https://fic.tufts.edu/publication-item/early-warning-and-early-action-for-increased-resilience-of-livelihoods-in-igad-region (last access 10 November 2025), 2021.
Mazzucato, M., Okonjo-Iweala, N., Rockström, J., and Shanmugaratnam, T.: The Economics of Water: Valuing the Hydrological Cycle as a Global Common Good, Global Commission on the Economics of Water, Paris, 1–220, https://watercommission.org/publication/the-economics-of-water/ (last access 10 November 2025), 2024.
Mills, J., Bonner, A., and Francis, K.: The Development of Constructivist Grounded Theory, International Journal of Qualitative Methods, 5, 25–35, https://doi.org/10.1177/160940690600500103, 2006.
Mojtahed, R., Nunes, M. B., Martins, J. T., and Peng, A.: Equipping the Constructivist Researcher: The Combined use of Semi Structured Interviews and Decision Making maps, Electronic Journal of Business Research Methods, 12, 2, 87–95 pp., https://academic-publishing.org/index.php/ejbrm/article/view/1318 (last access: 10 November 2024), 2014.
Nasta, P., Blöschl, G., Bogena, H. R., Zacharias, S., Baatz, R., De Lannoy, G., Jensen, K. H., Manfreda, S., Pfister, L., Tarquis, A. M., van Meerveld, I., Voltz, M., Zeng, Y., Kustas, W., Li, X., Vereecken, H., and Romano, N.: HESS Opinions: Towards a common vision for the future of hydrological observatories, Hydrology and Earth System Sciences, 29(2), 465–483, https://doi.org/10.5194/hess-29-465-2025, 2025.
Nature Sustainability: Too much and not enough, Nat. Sustain., 4, 659, https://doi.org/10.1038/s41893-021-00766-8, 2021.
Nielsen-Gammon, J. W., Banner, J. L., Cook, B. I., Tremaine, D. M., Wong, C. I., Mace, R. E., Gao, H., Yang, Z.-L., Gonzalez, M. F., Hoffpauir, R., Gooch, T., and Kloesel, K.: Unprecedented Drought Challenges for Texas Water Resources in a Changing Climate: What Do Researchers and Stakeholders Need to Know? Earth's Future, 8, e2020EF001552, https://doi.org/10.1029/2020EF001552, 2020.
OFWAT: Water company performance report 2021-22, https://www.ofwat.gov.uk/wp-content/uploads/2022/12/WCPR_2021-22.pdf (last access: 10 November 2025), 2022.
OFWAT: Ofwat sets out record GBP 88 billion upgrade to deliver cleaner rivers and seas, and better services for customers, https://www.ofwat.gov.uk/pr24-draft-determinations-press-notice/, last access: 29 October 2025.
Ohnemus, T., Zacharias, S., Dirnböck, T., Bäck, J., Brack, W., Forsius, M., Mallast, U., Nikolaidis, N. P., Peterseil, J., Piscart, C., Pando, F., Poppe Terán, C., and Mirtl, M.: The eLTER research infrastructure: Current design and coverage of environmental and socio-ecological gradients, Environmental and Sustainability Indicators, 23, 100456, https://doi.org/10.1016/j.indic.2024.100456, 2024.
Ovink, H., Rahimzoda, S., Cullman, J., and Imperiale, A. J.: The UN 2023 Water Conference and pathways towards sustainability transformation for a water-secure world, Nature Water, 1, 3, https://doi.org/10.1038/s44221-023-00052-1, 2023.
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., and Moher, D.: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews, BMJ (Clinical Research Edn.), 372, n71, https://doi.org/10.1136/bmj.n71, 2021.
Patton, M.: Qualitative Research & Evaluation Methods, Sage, Thousand Oaks, USA, https://us.sagepub.com/en-us/nam/qualitative-research-evaluation-methods/book232962 (last access: 10 November 2025), 2014.
Paul, J. D. and Buytaert, W.: Citizen Science and Low-Cost Sensors for Integrated Water Resources Management. Advances in Chemical Pollution, Environmental Management and Protection, 3, 1–33, 2018.
Paul, J. D., Buytaert, W., Allen, S., Ballesteros-Cánovas, J. A., Bhusal, J., Cieslik, K., Clark, J., Dugar, S., Hannah, D. M., Stoffel, M., Dewulf, A., Dhital, M. R., Liu, W., Nayaval, J. L., Neupane, B., Schiller, A., Smith, P. J., and Supper, R.: Citizen science for hydrological risk reduction and resilience building, WIREs Water, 5, e1262, https://doi.org/10.1002/wat2.1262, 2018.
Peek, L., Tobin, J., Adams, R. M., Wu, H., and Mathews, M. C.: A Framework for Convergence Research in the Hazards and Disaster Field: The Natural Hazards Engineering Research Infrastructure CONVERGE Facility, Frontiers in Built Environment, 6, https://doi.org/10.3389/fbuil.2020.00110, 2020.
Philipp, A., Kerl, F., Büttner, U., Metzkes, C., Singer, T., Wagner, M., and Schütze, N.: Small-scale (flash) flood early warning in the light of operational requirements: opportunities and limits with regard to user demands, driving data, and hydrologic modeling techniques, Proc. IAHS, 373, 201–208, https://doi.org/10.5194/piahs-373-201-2016, 2016.
Prokopy, L. S., Carlton, J. S., Haigh, T., Lemos, M. C., Mase, A. S., and Widhalm, M.: Useful to Usable: Developing usable climate science for agriculture, Climate Risk Management, 15, 1–7, https://doi.org/10.1016/j.crm.2016.10.004, 2017.
Roy, S. G., Daigneault, A., Zydlewski, J., Truhlar, A., Smith, S., Jain, S., and Hart, D.: Coordinated river infrastructure decisions improve net social-ecological benefits, Environmental Research Letters, 15, 104054, https://doi.org/10.1088/1748-9326/abad58, 2020.
Saldana, J.: The coding manual for qualitative researchers, Sage, Thousand Oaks, USA, ISBN-13: 978-1529731743, 2021.
Sarni, W., Stinson, C., Mung, A., Garcia, B., Bryan, S., and Swanborough, J.: Harnessing the Fourth Industrial Revolution for Water, World Economic Forum, Geneva, Switzerland, 1–26, https://www3.weforum.org/docs/WEF_WR129_Harnessing_4IR_Water_Online.pdf (last access: 10 November 2025), 2018.
Sartorius, J. V., Geddes, A., Gagnon, A. S., and Burnett, K. A.: Participation and co-production in climate adaptation: Scope and limits identified from a meta-method review of research with European coastal communities, WIREs Climate Change, e880, https://doi.org/10.1002/wcc.880, 2024.
Saunders, M. N. K., Lewis, P., Thornhill, A., and Bristow, A.: Understanding research philosophy and approaches to theory development, Pearson Education, London, UK, ISBN: 1-292-01662-0, 978-1-292-01662-7, 2015.
Scanlon, B. R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., Grafton, R. Q., Jobbagy, E., Kebede, S., Kolusu, S. R., Konikow, L. F., Long, D., Mekonnen, M., Schmied, H. M., Mukherjee, A., MacDonald, A., Reedy, R. C., Shamsudduha, M., Simmons, C. T., and Zheng, C.: Global water resources and the role of groundwater in a resilient water future, Nature Reviews Earth & Environment, 4, 2, https://doi.org/10.1038/s43017-022-00378-6, 2023.
Schwab, K.: The Fourth Industrial Revolution, Crown, New York, US, 1–172, https://www.weforum.org/about/the-fourth-industrial-revolution-by-klaus-schwab (last access: 10 November 2025), 2017.
Skinner, C., Ockelford, A., King, A., Goodship, E., and Harfoot, H.: The UK Hydrology Skills and Satisfaction Survey, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-12552, https://doi.org/10.5194/egusphere-egu23-12552, 2023.
Snow, S., Fleming, A., Fielke, S., Malakar, Y., Jakku, E., Tozer, C., and Bonnett, G. D.: “A little bit obsessed with the weather”: Leveraging Australian farmers' online weather practices to inform the design of climate services, NJAS: Impact in Agricultural and Life Sciences, 96, 2296652, https://doi.org/10.1080/27685241.2023.2296652, 2024.
Stephenson, J., Vaganay, M., Coon, D., Cameron, R., and Hewitt, N.: The role of Facebook and Twitter as organisational communication platforms in relation to flood events in Northern Ireland, Journal of Flood Risk Management, 11, 339–350, https://doi.org/10.1111/jfr3.12329, 2018.
Tate, E., Decker, V., and Just, C.: Evaluating Collaborative Readiness for Interdisciplinary Flood Research, Risk Analysis, 41, 1187–1194, https://doi.org/10.1111/risa.13249, 2021.
Twomlow, A., Grainger, S., Cieslik, K., Paul, J. D., and Buytaert, W.: A user-centred design framework for disaster risk visualisation, International Journal of Disaster Risk Reduction, 77, 103067, https://doi.org/10.1016/j.ijdrr.2022.103067, 2022.
UN-Water: Valuing Water, UNESCO, Paris, France, https://www.unesco.org/reports/wwdr/2021/en (last access: 10 November 2025), 2021.
Veness, W. A.: Towards Resolving Data Scarcity in Water Resources Management, Doctoral dissertation, Imperial College London, Spiral Digital Repository, https://doi.org/10.25560/124969, 2024.
Veness, W. A. and Buytaert, W.: Towards an evidence base for groundwater data investments, Environmental Science & Policy, 164, 104014, https://doi.org/10.1016/j.envsci.2025.104014, 2025.
Veness, W. A., Butler, A. P., Ochoa-Tocachi, B. F., Moulds, S., and Buytaert, W.: Localizing Hydrological Drought Early Warning Using In Situ Groundwater Sensors, Water Resources Research, 58, e2022WR032165, https://doi.org/10.1029/2022WR032165, 2022.
Veness, W. A., Balfour, N., O'Keeffe, J., and Buytaert, W.: Humanitarian management of drought needs better water security data, Disasters, 49, e12687, https://doi.org/10.1111/disa.12687, 2025.
Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C. J. A., and Buytaert, W.: Web technologies for environmental Big Data, Environmental Modelling & Software, 63, 185–198, https://doi.org/10.1016/j.envsoft.2014.10.007, 2015.
Vogl, A. L., Goldstein, J. H., Daily, G. C., Vira, B., Bremer, L., McDonald, R. I., Shemie, D., Tellman, B., and Cassin, J.: Mainstreaming investments in watershed services to enhance water security: Barriers and opportunities, Environmental Science & Policy, 75, 19–27, https://doi.org/10.1016/j.envsci.2017.05.007, 2017.
Wagenbrenner, J. W., Dralle, D. N., Safeeq, M., and Hunsaker, C. T.: The Kings River Experimental Watersheds: Infrastructure and data, Hydrological Processes, 35, e14142, https://doi.org/10.1002/hyp.14142, 2021.
Walker, D. W., Smigaj, M., and Tani, M.: The benefits and negative impacts of citizen science applications to water as experienced by participants and communities, WIREs Water, 8, e1488, https://doi.org/10.1002/wat2.1488, 2021.
Water4All: Water Security for the Planet, https://www.water4all-partnership.eu/, last access: 29 October 2025.
Widdicks, K., Samreen, F., Blair, G. S., Rennie, S., and Watkins, J.: A multi-dimensional approach to the future of digital research infrastructure for systemic environmental science, Patterns, 5, 101092, https://doi.org/10.1016/j.patter.2024.101092, 2024.
Wilson, L., Bende-Michl, U., Sharples, W., Vogel, E., Peter, J., Srikanthan, S., Khan, Z., Matic, V., Oke, A., Turner, M., Co Duong, V., Loh, S., Baron-Hay, S., Roussis, J., Kociuba, G., Hope, P., Dowdy, A., Donnelly, C., Argent, R., Thomas, S., Kitsios, A., and Bellhouse, J.: A national hydrological projections service for Australia, Climate Services, 28, 100331, https://doi.org/10.1016/j.cliser.2022.100331, 2022.
Zacharias, S., Lumpi, T., Weldon, J., Dirnboeck, T., Gaillardet, J., Haase, P., Kühn, I., Vereecken, H., Bäck, J. K., Bergami, C., Bertsch-Hoermann, B., Braud, I., Cools, N., Dick, J., Dor-Haim, S., Forsius, M., Futter, M., Gaube, V., Groner, E., Halada, L., Kauppi, L., Lami, A., Linholm, T., Marangi, C., Matteucci, G., Mendez, P. F., Müller, C., Monteith, D., Nejstgaard, J., Nikolaidis, N. P., Oggioni, A., Orenstein, D., Piscart, C., Pons, M.-N., Ptacnik, R., Rinke, K., Sandén, T., Schaub, M., Schrön, M., Schuetze, C., Siebert, C., Spiegel, A., Thornton, J. M., Vogel, H.-J., and Mirtl, M.: Achieving harmonized and integrated long-term environmental observation of essential ecosystem variables: eLTER's Framework of Standard Observations, ESS Open Archive, https://doi.org/10.22541/essoar.175130653.38919874/v1, 2025.
Zulkafli, Z., Perez, K., Vitolo, C., Buytaert, W., Karpouzoglou, T., Dewulf, A., De Bièvre, B., Clark, J., Hannah, D. M., and Shaheed, S.: User-driven design of decision support systems for polycentric environmental resources management, Environmental Modelling & Software, 88, 58–73, https://doi.org/10.1016/j.envsoft.2016.10.012, 2017.
Short summary
We investigated what users want from the next-generation of hydrological monitoring systems to better support science and innovation. Through literature review and interviews with UK experts, we found that beyond providing high-quality data, users particularly value additional support for collecting their own data, sharing it with others, and building collaborations with other data users. Designing systems with these needs in mind can greatly boost long-term engagement, data coverage and impact.
We investigated what users want from the next-generation of hydrological monitoring systems to...