Articles | Volume 29, issue 6
https://doi.org/10.5194/hess-29-1615-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-29-1615-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Projections of streamflow intermittence under climate change in European drying river networks
UR RiverLy, INRAE, Villeurbanne, France
Institute of Geography, Friedrich Schiller University Jena, Jena, Germany
Flood Information Center, State Office for Environment, Mining and Nature Conservation, Jena, Germany
Alexandre Devers
UR RiverLy, INRAE, Villeurbanne, France
EDF-DTG, Saint-Martin-le-Vinoux, France
Flora Branger
UR RiverLy, INRAE, Villeurbanne, France
Sven Kralisch
Flood Information Center, State Office for Environment, Mining and Nature Conservation, Jena, Germany
Claire Lauvernet
UR RiverLy, INRAE, Villeurbanne, France
Jean-Philippe Vidal
UR RiverLy, INRAE, Villeurbanne, France
Núria Bonada
Freshwater Ecology, Hydrology and Management (FEHM-Lab), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
Zoltán Csabai
Department of Hydrobiology, University of Pécs, Pécs, Hungary
HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
Heikki Mykrä
Finnish Environment Institute, Nature Solutions, Oulu, Finland
Petr Pařil
Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
Luka Polović
Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
Thibault Datry
UR RiverLy, INRAE, Villeurbanne, France
Related authors
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Olivier Grandjouan, Flora Branger, Matthieu Masson, Benoit Cournoyer, Nicolas Robinet, Pauline Dusseux, Angélique Dominguez Lage, and Marina Coquery
EGUsphere, https://doi.org/10.5194/egusphere-2025-2234, https://doi.org/10.5194/egusphere-2025-2234, 2025
Short summary
Short summary
This study presents a novel approach aimed at using biogeochemical data from surface water to decompose streamwater flow into spatial and vertical contributions. A selection of tracers was used in a mixing model to estimate contributions at the outlet of a peri-urban catchment. Results provided a better understanding of hydrological processes in the catchment and demonstrated the potential of biogeochemical data to discriminate spatial contributions according to land use.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Giovanny Mosquera, Daniela Rosero-López, José Daza, Daniel Escobar-Camacho, Annika Künne, Patricio Crespo, Sven Kralisch, Jordan Karubian, and Andrea Encalada
EGUsphere, https://doi.org/10.5194/egusphere-2025-71, https://doi.org/10.5194/egusphere-2025-71, 2025
Short summary
Short summary
Tropical forests supply the water needs of millions of people around the world. Hydrological intermittency, defined as the cessation of river and stream flow, reduces the ability of these forests to provide continuous flow throughout the year. However, there is a lack of knowledge about the factors that cause hydrological intermittency in tropical forests. The results reveal that geology is a key factor causing hydrological intermittency in the Ecuadorian forest of the Chocó-Darién ecoregion.
Emilie Rouzies, Claire Lauvernet, and Arthur Vidard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-219, https://doi.org/10.5194/hess-2024-219, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Hydrological models are useful for assessing the impact of landscape organization for effective mitigation strategies. However, using these models requires reducing uncertainties in their results, which can be achieved through model-data fusion. We integrate satellite surface moisture images into a water and pesticide transfer model. We compare 3 methods, studying their performance, and exploring various scenarios. This study helps improving decision support in water quality management.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023, https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Short summary
Ski resorts are a key socio-economic asset of several mountain areas. Grooming and snowmaking are routinely used to manage the snow cover on ski pistes, but despite vivid debate, little is known about their impact on water resources downstream. This study quantifies, for the pilot ski resort La Plagne in the French Alps, the impact of grooming and snowmaking on downstream river flow. Hydrological impacts are mostly apparent at the seasonal scale and rather neutral on the annual scale.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Emilie Rouzies, Claire Lauvernet, Bruno Sudret, and Arthur Vidard
Geosci. Model Dev., 16, 3137–3163, https://doi.org/10.5194/gmd-16-3137-2023, https://doi.org/10.5194/gmd-16-3137-2023, 2023
Short summary
Short summary
Water and pesticide transfer models are complex and should be simplified to be used in decision support. Indeed, these models simulate many spatial processes in interaction, involving a large number of parameters. Sensitivity analysis allows us to select the most influential input parameters, but it has to be adapted to spatial modelling. This study will identify relevant methods that can be transposed to any hydrological and water quality model and improve the fate of pesticide knowledge.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-78, https://doi.org/10.5194/hess-2023-78, 2023
Publication in HESS not foreseen
Short summary
Short summary
The recent development of the a new meteorological dataset providing precipitation and temperature over France – FYRE Climate – has been transformed to streamflow time series over 1871–2012 through the used of a hydrological model. This led to the creation of the daily hydrological reconstructions called HyDRE and HyDRE. These two reconstructions are evaluated allow to better understand the variability of past hydrology over France.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Manuel Fossa, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 25, 5683–5702, https://doi.org/10.5194/hess-25-5683-2021, https://doi.org/10.5194/hess-25-5683-2021, 2021
Short summary
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, and Olivier Vannier
Clim. Past, 17, 1857–1879, https://doi.org/10.5194/cp-17-1857-2021, https://doi.org/10.5194/cp-17-1857-2021, 2021
Short summary
Short summary
This article presents FYRE Climate, a dataset providing daily precipitation and temperature spanning the 1871–2012 period at 8 km resolution over France. FYRE Climate has been obtained through the combination of daily and yearly observations and a gridded reconstruction already available through a statistical technique called data assimilation. Results highlight the quality of FYRE Climate in terms of both long-term variations and reproduction of extreme events.
Santosh Nepal, Saurav Pradhananga, Narayan Kumar Shrestha, Sven Kralisch, Jayandra P. Shrestha, and Manfred Fink
Hydrol. Earth Syst. Sci., 25, 1761–1783, https://doi.org/10.5194/hess-25-1761-2021, https://doi.org/10.5194/hess-25-1761-2021, 2021
Short summary
Short summary
This paper examines soil moisture drought in the central Himalayan region by applying a process-based hydrological model. Our results suggest that both the occurrence and severity of droughts have increased over the last 3 decades, especially in the winter and
pre-monsoon seasons. The insights provided into the frequency, spatial coverage, and severity of the drought conditions can provide valuable inputs towards improved management of water resources and greater agricultural productivity.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Cited articles
Acuña, V., Datry, T., Marshall, J., Barceló, D., Dahm, C. N., Ginebreda, A., McGregor, G., Sabater, S., Tockner, K., and Palmer, M.: Why should we care about temporary waterways?, Science, 343, 1080–1081, https://doi.org/10.1126/science.1246666, 2014. a
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, Fao, Rome, 300, D05109, http://www.fao.org/docrep/x0490e/x0490e00.htm (last access: 13 September 2022), 1998. a
Barthelemy, N., Mermillod-Blondin, F., Krause, S., Simon, L., Mimeau, L., Devers, A., Vidal, J.-P., and Datry, T.: The Duration of Dry Events Promotes PVC Film Fragmentation in Intermittent Rivers, Environ. Sci. Technol., 58, 12621–12632, https://doi.org/10.1021/acs.est.4c00528, 2024. a
Blöschl, G. and Sivapalan, M.: Scale issues in hydrological modelling: A review, Hydrol. Process., 9, 251–290, https://doi.org/10.1002/hyp.3360090305, 1995. a
Bond, N. R., Lake, P. S., and Arthington, A. H.: The impacts of drought on freshwater ecosystems: an Australian perspective, Hydrobiologia, 600, 3–16, https://doi.org/10.1007/s10750-008-9326-z, 2008. a
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/a:1010933404324, 2001. a
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Jotzo, F., Krug, T., Lasco, R., Lee, Y.-Y., Masson-Delmotte, V., Meinshausen, M., Mintenbeck, K., Mokssit, A., Otto, F. E., Pathak, M., Pirani, A., Poloczanska, E., Pörtner, H.-O., Revi, A., Roberts, D. C., Roy, J., Ruane, A. C., Skea, J., Shukla, P. R., Slade, R., Slangen, A., Sokona, Y., Sörensson, A. A., Tignor, M., Van Vuuren, D., Wei, Y.-M., Winkler, H., Zhai, P., Zommers, Z., Hourcade, J.-C., Johnson, F. X., Pachauri, S., Simpson, N. P., Singh, C., Thomas, A., Totin, E., Arias, P., Bustamante, M., Elgizouli, I., Flato, G., Howden, M., Méndez-Vallejo, C., Pereira, J. J., Pichs-Madruga, R., Rose, S. K., Saheb, Y., Sánchez Rodríguez, R., Ürge Vorsatz, D., Xiao, C., Yassaa, N., Alegría, A., Armour, K., Bednar-Friedl, B., Blok, K., Cissé, G., Dentener, F., Eriksen, S., Fischer, E., Garner, G., Guivarch, C., Haasnoot, M., Hansen, G., Hauser, M., Hawkins, E., Hermans, T., Kopp, R., Leprince-Ringuet, N., Lewis, J., Ley, D., Ludden, C., Niamir, L., Nicholls, Z., Some, S., Szopa, S., Trewin, B., Van Der Wijst, K.-I., Winter, G., Witting, M., Birt, A., Ha, M., Romero, J., Kim, J., Haites, E. F., Jung, Y., Stavins, R., Birt, A., Ha, M., Orendain, D. J. A., Ignon, L., Park, S., Park, Y., Reisinger, A., Cammaramo, D., Fischlin, A., Fuglestvedt, J. S., Hansen, G., Ludden, C., Masson-Delmotte, V., Matthews, J. R., Mintenbeck, K., Pirani, A., Poloczanska, E., Leprince-Ringuet, N., and Péan, C.: IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, edited by: Lee, H. and Romero, J., IPCC, Geneva, Switzerland, Tech. rep., Intergovernmental Panel on Climate Change (IPCC), https://doi.org/10.59327/IPCC/AR6-9789291691647, 1st edn., 2023. a
Cammalleri, C., Naumann, G., Mentaschi, L., Bisselink, B., Gelati, E., De Roo, A., and Feyen, L.: Diverging hydrological drought traits over Europe with global warming, Hydrol. Earth Syst. Sci., 24, 5919–5935, https://doi.org/10.5194/hess-24-5919-2020, 2020. a
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., and Borges, B.: shiny: Web Application Framework for R, r package version 1.8.1.9001, https://shiny.posit.co/ (last access: 17 March 2025), 2024. a
Costigan, K. H., Kennard, M. J., Leigh, C., Sauquet, E., Datry, T., and Boulton, A. J.: Flow regimes in intermittent rivers and ephemeral streams, in: Intermittent rivers and ephemeral streams, 51–78, Elsevier, https://doi.org/10.1016/B978-0-12-803835-2.00003-6, 2017. a
Datry, T.: Ecological effects of flow intermittence in gravel-bed rivers, John Wiley & Sons Ltd, ISBN 9781118971437, https://doi.org/10.1002/9781118971437, 2017. a
Datry, T., Larned, S. T., and Tockner, K.: Intermittent rivers: a challenge for freshwater ecology, BioScience, 64, 229–235, 2014. a
Datry, T., Pella, H., Leigh, C., Bonada, N., and Hugueny, B.: A landscape approach to advance intermittent river ecology, Freshwater Biology, 61, 1200–1213, https://doi.org/10.1093/biosci/bit027, 2016. a
Datry, T., Boulton, A. J., Bonada, N., Fritz, K., Leigh, C., Sauquet, E., Tockner, K., Hugueny, B., and Dahm, C. N.: Flow intermittence and ecosystem services in rivers of the Anthropocene, J. Appl. Ecol., 55, 353–364, https://doi.org/10.1111/1365-2664.12941, 2017. a
Datry, T., Boulton, A. J., Bonada, N., Fritz, K., Leigh, C., Sauquet, E., Tockner, K., Hugueny, B., and Dahm, C. N.: Flow intermittence and ecosystem services in rivers of the Anthropocene, J. Appl. Ecol., 55, 353–364, https://doi.org/10.1111/1365-2664.12941, 2018. a, b
Datry, T., Allen, D., Argelich, R., Barquin, J., Bonada, N., Boulton, A., Branger, F., Cai, Y., Cañedo-Argüelles, M., Cid, N., Csabai, Z., Dallimer, M., de Araújo, J.-C., Declerck, S., Dekker, T., Döll, P., Encalada, A., Forcellini, M., Foulquier, A., Heino, J., Jabot, F., Keszler, P., Kopperoinen, L., Kralisch, S., Künne, A., Lamouroux, N., Lauvernet, C., Lehtoranta, V., Loskotová, B., Marcé, R., Martin Ortega, J., Matauschek, C., Miliša, M., Mogyorósi, S., Moya, N., Müller, S. H., Munné, A., Munoz, F., Mykrä, H., Pal, I., Paloniemi, R., Pařil, P., Pengal, P., Pernecker, B., Polášek, M., Rezende, C., Sabater, S., Sarremejane, R., Schmidt, G., Senerpont Domis, L., Singer, G., Suárez, E., Talluto, M., Teurlincx, S., Trautmann, T., Truchy, A., Tyllianakis, E., Väisänen, S., Varumo, L., Vidal, J.-P., Vilmi, A., and Vinyoles, D.: Securing Biodiversity, Functional Integrity, and Ecosystem Services in Drying River Networks (DRYvER), Research Ideas and Outcomes, 7, e77750, https://doi.org/10.3897/rio.7.e77750, 2021. a, b, c
Datry, T., Truchy, A., Olden, J. D., Busch, M. H., Stubbington, R., Dodds, W. K., Zipper, S., Songyan, Y., Messager, M. L., Tonkin, J. D., Kaiser, K. E., Hammond, J. C., Moody, E. K., Burrows, R. M., Sarremejane, R., Delvecchia, A. G., Fork, M. L., Little, C. J., Walker, R. H., Walters, A. W., and Allen, D.: Causes, Responses, and Implications of Anthropogenic versus Natural Flow Intermittence in River Networks, BioScience, 73, 9–22, https://doi.org/10.1093/biosci/biac098, 2022. a, b
Datry, T., Boulton, A. J., Fritz, K., Stubbington, R., Cid, N., Crabot, J., and Tockner, K.: Non-perennial segments in river networks, Nat. Rev. Earth Environ., 4, 815–830, https://doi.org/10.1038/s43017-023-00495-w, 2023. a, b
Devers, A., Lauvernet, C., and Vidal, J.-P.: Downscaled climate projections (1970–2100) for the 6 European catchments studied in the DRYvER project, Recherche Data Gouv, V1 [data set], https://doi.org/10.57745/CPIKSQ, 2025. a
Döll, P. and Schmied, H. M.: How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis, Environ. Res. Lett., 7, 014037, https://doi.org/10.1088/1748-9326/7/1/014037, 2012. a
Döll, P., Abbasi, M., Messager, M. L., Trautmann, T., Lehner, B., and Lamouroux, N.: Streamflow intermittence in Europe: Estimating high-resolution monthly time series by downscaling of simulated runoff and random forest modeling, Water Resour. Res., 60, e2023WR036900, https://doi.org/10.1029/2023WR036900, 2024. a, b
Feyen, L. and Dankers, R.: Impact of global warming on streamflow drought in Europe, J. Geophys. Res.-Atmos., 114, 2008JD011438, https://doi.org/10.1029/2008JD011438, 2009. a
Frieler, K., Volkholz, J., Lange, S., Schewe, J., Mengel, M., del Rocío Rivas López, M., Otto, C., Reyer, C. P. O., Karger, D. N., Malle, J. T., Treu, S., Menz, C., Blanchard, J. L., Harrison, C. S., Petrik, C. M., Eddy, T. D., Ortega-Cisneros, K., Novaglio, C., Rousseau, Y., Watson, R. A., Stock, C., Liu, X., Heneghan, R., Tittensor, D., Maury, O., Büchner, M., Vogt, T., Wang, T., Sun, F., Sauer, I. J., Koch, J., Vanderkelen, I., Jägermeyr, J., Müller, C., Rabin, S., Klar, J., Vega del Valle, I. D., Lasslop, G., Chadburn, S., Burke, E., Gallego-Sala, A., Smith, N., Chang, J., Hantson, S., Burton, C., Gädeke, A., Li, F., Gosling, S. N., Müller Schmied, H., Hattermann, F., Wang, J., Yao, F., Hickler, T., Marcé, R., Pierson, D., Thiery, W., Mercado-Bettín, D., Ladwig, R., Ayala-Zamora, A. I., Forrest, M., and Bechtold, M.: Scenario setup and forcing data for impact model evaluation and impact attribution within the third round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a), Geosci. Model Dev., 17, 1–51, https://doi.org/10.5194/gmd-17-1-2024, 2024. a
Gelfan, A., Kalugin, A., and Krylenko, I.: Detection, attribution, and specifying mechanisms of hydrological changes in geographically different river basins, Clim. Change, 176, 122, https://doi.org/10.1007/s10584-023-03557-6, 2023. a
Gudmundsson, L. and Seneviratne, S. I.: Anthropogenic climate change affects meteorological drought risk in Europe, Environ. Res. Lett., 11, 044005, https://doi.org/10.1088/1748-9326/11/4/044005, 2016. a
Gudmundsson, L., Boulange, J., Do, H. X., Gosling, S. N., Grillakis, M. G., Koutroulis, A. G., Leonard, M., Liu, J., Müller Schmied, H., Papadimitriou, L., Pokhrel, Y., Seneviratne, S. I., Satoh, Y., Thiery, W., Westra, S., Zhang, X., and Zhao, F.: Globally observed trends in mean and extreme river flow attributed to climate change, Science, 371, 1159–1162, https://doi.org/10.1126/science.aba3996, 2021. a
Gusev, Y. M., Nasonova, O. N., Kovalev, E. E., and Ayzel, G. V.: Impact of possible climate changes on river runoff under different natural conditions, Proc. IAHS, 379, 293–300, https://doi.org/10.5194/piahs-379-293-2018, 2018. a
Gutierrez-Jurado, K. Y., Partington, D., and Shanafield, M.: Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment, Hydrol. Earth Syst. Sci., 25, 4299–4317, https://doi.org/10.5194/hess-25-4299-2021, 2021. a
Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B., and Gräler, B.: Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables, PeerJ, 6, e5518, https://doi.org/10.7717/peerj.5518, 2018. a
Herzog, A., Hector, B., Cohard, J., Vouillamoz, J., Lawson, F. M. A., Peugeot, C., and De Graaf, I.: A parametric sensitivity analysis for prioritizing regolith knowledge needs for modeling water transfers in the West African critical zone, Vadose Zone J., 20, e20163, https://doi.org/10.1002/vzj2.20163, 2021. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009157896, 2023. a
Kampf, S., Strobl, B., Hammond, J., Anenberg, A., Etter, S., Martin, C., Puntenney-Desmond, K., Seibert, J., and van Meerveld, I.: Testing the waters: Mobile apps for crowdsourced streamflow data, Eos, 99, 30–34, https://doi.org/10.1029/2018EO096355, 2018. a
Kralisch, S. and Krause, P.: JAMS – A framework for natural resource model development “Summit on Environmental Modelling and Software”, Burlington, USA, edited by: Voinov, A., Jakeman, A., and Rizzoli, A., http://www.iemss.org/iemss2006/papers/s5/254_Kralisch_1-4.pdf (last access: 21 September 2023), 2006. a
Krysanova, V. and Hattermann, F. F.: Intercomparison of climate change impacts in 12 large river basins: overview of methods and summary of results, Clim. Change, 141, 363–379, https://doi.org/10.1007/s10584-017-1919-y, 2017. a
Künne, A. and Kralisch, S.: Report on flow intermittence indicators, Tech. rep., Horizon 2020 project DRYvER, Securing biodiversity, functional integrity and ecosystem services in DRYing riVER networks, https://www.dryver.eu/results/reports-and-documents (last access: 17 March 2025), 2021. a
Künne, A., Mimeau, L., Branger, F., and Kralisch, S.: Report on catchment-scale spatially distributed models for the 6 European focal DRNs, Tech. rep., Horizon 2020 project DRYvER, Securing biodiversity, functional integrity and ecosystem services in DRYing riVER networks, https://www.dryver.eu/results/reports-and-documents (last access: 17 March 2025), 2022. a
Leigh, C. and Datry, T.: Drying as a primary hydrological determinant of biodiversity in river systems: A broad-scale analysis, Ecography, 40, 487–499, https://doi.org/10.1111/ecog.02230, 2017. a
Leigh, C., Boulton, A. J., Courtwright, J. L., Fritz, K., May, C. L., Walker, R. H., and Datry, T.: Ecological research and management of intermittent rivers: an historical review and future directions, Freshwater Biol., 61, https://doi.org/10.1111/fwb.12646, 2016. a
López‐Rojo, N., Datry, T., Peñas, F. J., Singer, G., Lamouroux, N., Barquín, J., Rodeles, A. A., Silverthorn, T., Sarremejane, R., Del Campo, R., Estévez, E., Mimeau, L., Boyer, F., Künne, A., Dalvai Ragnoli, M., and Foulquier, A.: Carbon emissions from inland waters may be underestimated: Evidence from European river networks fragmented by drying, Limnol. Oceanogr. Lett., 9, 553–562, https://doi.org/10.1002/lol2.10408, 2024. a, b
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global prevalence of non-perennial rivers and streams, Nature, 594, 391–397, https://doi.org/10.1038/s41586-021-03565-5, 2021. a, b
Mimeau, L.: DRYvER-Hydro, https://dryver-hydro.sk8.inrae.fr (last access: 17 March 2025), 2023. a
Mimeau, L., Künne, A., Branger, F., Kralisch, S., Devers, A., and Vidal, J.-P.: Flow intermittence prediction using a hybrid hydrological modelling approach: influence of observed intermittence data on the training of a random forest model, Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, 2024. a, b, c, d, e, f, g, h, i, j, k
Mimeau, L., Künne, A., Devers, A., Branger, F., Kralisch, S., Lauvernet, C., and Vidal, J.-P.: Hydrological and flow intermittence models for the 6 European catchments studied in the DRYvER project, Recherche Data Gouv, V1 [data set], https://doi.org/10.57745/LCT9L6, 2025a. a
Mimeau, L., Künne, A., Branger, F., and Kralisch, S.: Geographical information for the European Drying River Networks, Recherche Data Gouv, V1 [data set], https://doi.org/10.57745/U0KJL3, 2025b. a
Mimeau, L., Künne, A., Datry, T., Csabai, Z., Polović, L., Bonada, N., Mykrä, H., and Pařil, P.: Flow intermittence observations collected in the European Drying River Networks, Recherche Data Gouv, V1 [data set], https://doi.org/10.57745/VIPKDP, 2025c. a
Mimeau, L., Künne, A., Devers, A., Branger, F., Kralisch, S., Lauvernet, C., and Vidal, J.-P.: Simulated hydrological variables and flow intermittence indicators for the reconstruction period (1960–2021) for the 6 European catchments studied in the DRYvER project, Recherche Data Gouv, V1 [data set], https://doi.org/10.57745/JDQ4KO, 2025d. a
Mimeau, L., Künne, A., Devers, A., Branger, F., Kralisch, S., Lauvernet, C., and Vidal, J.-P.: Simulated hydrological variables and flow intermittence indicators for the projection period (1985–2100) for the 6 European catchments studied in the DRYvER project, Recherche Data Gouv, V1 [data set], https://doi.org/10.57745/5JDNWF, 2025e. a
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a
Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R. A., Carrao, H., Spinoni, J., Vogt, J., and Feyen, L.: Global Changes in Drought Conditions Under Different Levels of Warming, Geophys. Res. Lett., 45, 3285–3296, https://doi.org/10.1002/2017GL076521, 2018. a
Pal, I., Towler, E., and Livneh, B.: How Can We Better Understand Low River Flows as Climate Changes?, Eos, 96, https://doi.org/10.1029/2015EO033875, 2015. a
Parey, S. and Gailhard, J.: Extreme Low Flow Estimation under Climate Change, Atmosphere, 13, 164, https://doi.org/10.3390/atmos13020164, 2022. a
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., and Stromberg, J. C.: The Natural Flow Regime, BioScience, 47, 769–784, https://doi.org/10.2307/1313099, 1997. a
Pörtner, H.-O., Scholes, R. J., Agard, J., Archer, E., Arneth, A., Bai, X., Barnes, D., Burrows, M., Chan, L., Cheung, W. L. W., Diamond, S., Donatti, C., Duarte, C., Eisenhauer, N., Foden, W., Gasalla, M. A., Handa, C., Hickler, T., Hoegh-Guldberg, O., Ichii, K., Jacob, U., Insarov, G., Kiessling, W., Leadley, P., Leemans, R., Levin, L., Lim, M., Maharaj, S., Managi, S., Marquet, P. A., McElwee, P., Midgley, G., Oberdorff, T., Obura, D., Osman Elasha, B., Pandit, R., Pascual, U., Pires, A. P. F., Popp, A., Reyes-García, V., Sankaran, M., Settele, J., Shin, Y.-J., Sintayehu, D. W., Smith, P., Steiner, N., Strassburg, B., Sukumar, R., Trisos, C., Val, A., Wu, J., Aldrian, E., Parmesan, C., Pichs-Madruga, R., Roberts, D. C., Rogers, A. D., Díaz, S., Fischer, M., Hashimoto, S., Lavorel, S., Wu, N., and Ngo, H.: Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change, Tech. rep., Zenodo, https://doi.org/10.5281/zenodo.5101125, 2021. a
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 17 March 2025), 2023. a
Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview, Global Environ. Change, 42, 153–168, https://doi.org/10.1016/j.gloenvcha.2016.05.009, 2017. a
Roy, J., Tejedor, A., and Singh, A.: Dynamic Clusters to Infer Topologic Controls on Environmental Transport of River Networks, Geophys. Res. Lett., 49, e2021GL096957, https://doi.org/10.1029/2021GL096957, 2022. a, b
Sarremejane, R., Messager, M. L., and Datry, T.: Drought in intermittent river and ephemeral stream networks, Ecohydrology, 15, e2390, https://doi.org/10.1002/eco.2390, 2022. a, b
Sauquet, E., van Meerveld, I., Gallart, F., Sefton, C., Parry, S., Gauster, T., Laaha, G., Alves, M. H., Arnaud, P., Banasik, K., Beaufort, A., Bezdan, A., Datry, T., De Girolamo, A. M., Dörflinger, G., Elçi, A., Engeland, K., Estrany, J., Fialho, A., Fortesa, J., Hakoun, V., Karagiozova, T., Kohnova, S., Kriauciuniene, J., Morais, M., Ninov, P., Osuch, M., Reis, E., Rutkowska, A., Stubbington, R., Tzoraki, O., and Żelazny, M.: A catalogue of European intermittent rivers and ephemeral streams, Tech. rep., Zenodo, https://doi.org/10.5281/ZENODO.3763419, 2020. a
Schneider, C., Laizé, C. L. R., Acreman, M. C., and Flörke, M.: How will climate change modify river flow regimes in Europe?, Hydrol. Earth Syst. Sci., 17, 325–339, https://doi.org/10.5194/hess-17-325-2013, 2013. a
Shanafield, M., Bourke, S. A., Zimmer, M. A., and Costigan, K. H.: An overview of the hydrology of non-perennial rivers and streams, Wiley Interdisciplinary Reviews: Water, 8, e1504, https://doi.org/10.1002/wat2.1504, 2021. a
Silverthorn, T., López‐Rojo, N., Sarremejane, R., Foulquier, A., Chanudet, V., Azougui, A., Del Campo, R., Singer, G., and Datry, T.: River network‐scale drying impacts the spatiotemporal dynamics of greenhouse gas fluxes, Limnol. Oceanogr., 69, 861–873, https://doi.org/10.1002/lno.12531, 2024. a
Snelder, T. H., Datry, T., Lamouroux, N., Larned, S. T., Sauquet, E., Pella, H., and Catalogne, C.: Regionalization of patterns of flow intermittence from gauging station records, Hydrol. Earth Syst. Sci., 17, 2685–2699, https://doi.org/10.5194/hess-17-2685-2013, 2013. a
Steward, A. L., von Schiller, D., Tockner, K., Marshall, J. C., and Bunn, S. E.: When the river runs dry: human and ecological values of dry riverbeds, Front. Ecol. Environ., 10, 202–209, https://doi.org/10.1890/110136, 2012. a
Steward, A. L., Datry, T., and Langhans, S. D.: The terrestrial and semi-aquatic invertebrates of intermittent rivers and ephemeral streams, Biol. Rev., 97, 1408–1425, 2022. a
Straka, M., Polášek, M., Syrovátka, V., Stubbington, R., Zahrádková, S., Němejcová, D., Šikulová, L., Řezníčková, P., Opatřilová, L., Datry, T., and Pařil, P.: Recognition of stream drying based on benthic macroinvertebrates: A new tool in Central Europe, Ecological Indicators, 106, 105486, https://doi.org/10.1016/j.ecolind.2019.105486, 2019. a
Strayer, D. L. and Dudgeon, D.: Freshwater biodiversity conservation: recent progress and future challenges, J. N. Am. Benthol. Soc., 29, 344–358, https://doi.org/10.1899/08-171.1, 2010. a
Thompson, S. E., Harman, C. J., Troch, P. A., Brooks, P. D., and Sivapalan, M.: Spatial scale dependence of ecohydrologically mediated water balance partitioning: A synthesis framework for catchment ecohydrology, Water Resour. Res., 47, 2010WR009998, https://doi.org/10.1029/2010WR009998, 2011. a
Tonkin, J. D., Poff, N. L., Bond, N. R., Horne, A., Merritt, D. M., Reynolds, L. V., Olden, J. D., Ruhi, A., and Lytle, D. A.: Prepare river ecosystems for an uncertain future, Nature, 570, 301–303, https://doi.org/10.1038/d41586-019-01877-1, 2019. a
Tramblay, Y., Rutkowska, A., Sauquet, E., Sefton, C., Laaha, G., Osuch, M., Albuquerque, T., Alves, M. H., Banasik, K., Beaufort, A., Brocca, L., Camici, S., Csabai, Z., Dakhlaoui, H., DeGirolamo, A. M., Dörflinger, G., Gallart, F., Gauster, T., Hanich, L., Kohnová, S., Mediero, L., Plamen, N., Parry, S., Quintana-Seguí, P., Tzoraki, O., and Datry, T.: Trends in flow intermittence for European rivers, Hydrol. Sci. J., 66, 37–49, https://doi.org/10.1080/02626667.2020.1849708, 2021. a
Truchy, A., Csabai, Z., Mimeau, L., Künne, A., Pernecker, B., Bertin, W., Pellizzaro, F., and Datry, T.: Citizen scientists can help advance the science and management of intermittent rivers and ephemeral streams, BioScience, 73, 513–521, https://doi.org/10.1093/biosci/biad045, 2023. a, b
Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., Gleeson, T., Van Dijk, A. I. J. M., Tallaksen, L. M., Hannaford, J., Uijlenhoet, R., Teuling, A. J., Hannah, D. M., Sheffield, J., Svoboda, M., Verbeiren, B., Wagener, T., and Van Lanen, H. A. J.: Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches, Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, 2016. a, b
van Meerveld, H. J. I., Kirchner, J. W., Vis, M. J. P., Assendelft, R. S., and Seibert, J.: Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution, Hydrol. Earth Syst. Sci., 23, 4825–4834, https://doi.org/10.5194/hess-23-4825-2019, 2019. a
Van Meerveld, H. I., Sauquet, E., Gallart, F., Sefton, C., Seibert, J., and Bishop, K.: Aqua temporaria incognita, Hydrol. Process., 34, 5704–5711, https://doi.org/10.1002/hyp.13979, 2020. a
Yu, S., Do, H. X., van Dijk, A. I. J. M., Bond, N. R., Lin, P., and Kennard, M. J.: Evaluating a landscape-scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks, Hydrol. Earth Syst. Sci., 24, 5279–5295, https://doi.org/10.5194/hess-24-5279-2020, 2020. a
Zennaro, F., Furlan, E., Simeoni, C., Torresan, S., Aslan, S., Critto, A., and Marcomini, A.: Exploring machine learning potential for climate change risk assessment, Earth-Sci. Rev., 220, 103752, https://doi.org/10.1016/j.earscirev.2021.103752, 2021. a
Zimmer, M. A., Kaiser, K. E., Blaszczak, J. R., Zipper, S. C., Hammond, J. C., Fritz, K. M., Costigan, K. H., Hosen, J., Godsey, S. E., Allen, G. H., Kampf, S., Burrows, R. M., Krabbenhoft, C. A., Dodds, Walter andHale, R., Olde, J. D., Shanafield, M., and DelVecchia, A. G. A. A. S. A. M. C., Datry, T., Bogan, M. T., Boersma, K. S., Busch, M. H., Jones, C. N., Burgin, A. J., and Allen, D. C.: Zero or not? Causes and consequences of zero-flow stream gage readings, Wiley Interdisciplinary Reviews: Water, 7, e1436, https://doi.org/10.1002/wat2.1436, 2020. a
Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and Hinkelmann, R.: Ensemble machine learning paradigms in hydrology: A review, J. Hydrol., 598, 126266, https://doi.org/10.1016/j.jhydrol.2021.126266, 2021. a
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Our study projects how climate change will affect the drying of river segments and stream...