Articles | Volume 29, issue 4
https://doi.org/10.5194/hess-29-1033-2025
https://doi.org/10.5194/hess-29-1033-2025
Research article
 | 
27 Feb 2025
Research article |  | 27 Feb 2025

Runoff component quantification and future streamflow projection in a large mountainous basin based on a multidata-constrained cryospheric–hydrological model

Mengjiao Zhang, Yi Nan, and Fuqiang Tian

Related authors

Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Reducing Hydrological Uncertainty in Large Mountainous Basins: The Role of Isotope, Snow Cover, and Glacier Dynamics in Capturing Streamflow Seasonality
Diego Avesani, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2025-664,https://doi.org/10.5194/egusphere-2025-664, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Enhancing Urban Pluvial Flood Modelling through Graph Reconstruction of Incomplete Sewer Networks
Ruidong Li, Jiapei Liu, Ting Sun, Shao Jian, Fuqiang Tian, and Guangheng Ni
EGUsphere, https://doi.org/10.5194/egusphere-2024-3780,https://doi.org/10.5194/egusphere-2024-3780, 2025
Short summary
On the cause of large daily river flow fluctuations in the Mekong River
Khosro Morovati, Keer Zhang, Lidi Shi, Yadu Pokhrel, Maozhou Wu, Paradis Someth, Sarann Ly, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 28, 5133–5147, https://doi.org/10.5194/hess-28-5133-2024,https://doi.org/10.5194/hess-28-5133-2024, 2024
Short summary
Assesing the Value of High-Resolution Data and Parameters Transferability Across Temporal Scales in Hydrological Modeling: A Case Study in Northern China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2966,https://doi.org/10.5194/egusphere-2024-2966, 2024
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Long short-term memory networks for enhancing real-time flood forecasts: a case study for an underperforming hydrologic model
Sebastian Gegenleithner, Manuel Pirker, Clemens Dorfmann, Roman Kern, and Josef Schneider
Hydrol. Earth Syst. Sci., 29, 1939–1962, https://doi.org/10.5194/hess-29-1939-2025,https://doi.org/10.5194/hess-29-1939-2025, 2025
Short summary
Assessing the value of high-resolution rainfall and streamflow data for hydrological modeling: an analysis based on 63 catchments in southeast China
Mahmut Tudaji, Yi Nan, and Fuqiang Tian
Hydrol. Earth Syst. Sci., 29, 1919–1937, https://doi.org/10.5194/hess-29-1919-2025,https://doi.org/10.5194/hess-29-1919-2025, 2025
Short summary
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Scale dependency in modeling nivo-glacial hydrological systems: the case of the Arolla basin, Switzerland
Anne-Laure Argentin, Pascal Horton, Bettina Schaefli, Jamal Shokory, Felix Pitscheider, Leona Repnik, Mattia Gianini, Simone Bizzi, Stuart N. Lane, and Francesco Comiti
Hydrol. Earth Syst. Sci., 29, 1725–1748, https://doi.org/10.5194/hess-29-1725-2025,https://doi.org/10.5194/hess-29-1725-2025, 2025
Short summary
Extended-range forecasting of stream water temperature with deep-learning models
Ryan S. Padrón, Massimiliano Zappa, Luzi Bernhard, and Konrad Bogner
Hydrol. Earth Syst. Sci., 29, 1685–1702, https://doi.org/10.5194/hess-29-1685-2025,https://doi.org/10.5194/hess-29-1685-2025, 2025
Short summary

Cited articles

Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res.-Earth, 115, F03019, https://doi.org/10.1029/2009jf001426, 2010. 
Boral, S. and Sen, I. S.: Tracing “Third Pole” ice meltwater contribution to the Himalayan rivers using oxygen and hydrogen isotopes, Geochem. Perspect. Lett., 13, 48–53, https://doi.org/10.7185/geochemlet.2013, 2020. 
Cannon, A. J.: Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables, Clim. Dynam., 50, 31–49, https://doi.org/10.1007/s00382-017-3580-6, 2018. 
Chen, X., Long, D., Hong, Y., Zeng, C., and Yan, D.: Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin?, Water Resour. Res., 53, 2431–2466, https://doi.org/10.1002/2016wr019656, 2017. 
Chen, X., Long, D., Liang, S., He, L., Zeng, C., Hao, X., and Hong, Y.: Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data, Remote Sens. Environ., 215, 284–299, https://doi.org/10.1016/j.rse.2018.06.021, 2018. 
Download
Short summary
Owing to differences in the existing published results, we conducted a detailed analysis of the runoff components and future trends in the Yarlung Tsangpo River basin and found that the contributions of snowmelt and glacier melt runoff to streamflow (both ~5 %) are limited and much lower than previous results. The streamflow in this area will continuously increase in the future, but the overestimated contribution of glacier melt could lead to an underestimation of this increasing trend.
Share