Articles | Volume 28, issue 3
https://doi.org/10.5194/hess-28-611-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-611-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CAMELS-Chem: augmenting CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) with atmospheric and stream water chemistry data
Gary Sterle
Department of Natural Resources and Environmental Science, University of Nevada, Reno, USA
Julia Perdrial
CORRESPONDING AUTHOR
Department of Geography and Geosciences, University of Vermont, Vermont, USA
GUND Institute of the Environment, University of Vermont, Vermont, USA
Dustin W. Kincaid
Department of Civil and Environmental Engineering, University of Vermont, Vermont, USA
GUND Institute of the Environment, University of Vermont, Vermont, USA
Kristen L. Underwood
Department of Civil and Environmental Engineering, University of Vermont, Vermont, USA
GUND Institute of the Environment, University of Vermont, Vermont, USA
Donna M. Rizzo
Department of Civil and Environmental Engineering, University of Vermont, Vermont, USA
GUND Institute of the Environment, University of Vermont, Vermont, USA
Ijaz Ul Haq
Department of Computer Science, University of Vermont, Vermont, USA
Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, USA
Byung Suk Lee
Department of Computer Science, University of Vermont, Vermont, USA
Thomas Adler
Department of Geography and Geosciences, University of Vermont, Vermont, USA
GUND Institute of the Environment, University of Vermont, Vermont, USA
School of Earth System Science, Tianjin University, Tianjin, China
Helena Middleton
Department of Natural Resources and Environmental Science, University of Nevada, Reno, USA
Department of Natural Resources and Environmental Science, University of Nevada, Reno, USA
Related authors
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Elias C. Massoud, Nathan Collier, Yaoping Wang, Jiafu Mao, Adrian Harpold, Steven A. Kannenberg, Gerbrand Koren, Mukesh Kumar, Pushpendra Raghav, Pallav Ray, Mingjie Shi, Jing Tao, Sreedevi P. Vasu, Huiqi Wang, Qing Zhu, and Forrest M. Hoffman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3517, https://doi.org/10.5194/egusphere-2025-3517, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We studied how well Earth System Models simulate soil moisture and its connection to plant growth and water use. Using a model evaluation tool and real-world data, we found that models generally perform well at the surface but struggle deeper in the soil. These issues vary by region, especially in colder regions. Our results can help improve future model development and support better predictions of how ecosystems respond to a changing environment.
Elijah N. Boardman, Andrew G. Fountain, Joseph W. Boardman, Thomas H. Painter, Evan W. Burgess, Laura Wilson, and Adrian A. Harpold
The Cryosphere, 19, 3193–3225, https://doi.org/10.5194/tc-19-3193-2025, https://doi.org/10.5194/tc-19-3193-2025, 2025
Short summary
Short summary
Watersheds on the downwind side of a mountain range have deeper seasonal snow and more abundant glaciers due to topographic controls that favor wind drifting. Despite receiving less total snow, these drift-prone watersheds produce relatively more late-summer streamflow due to a combination of slow-melting snow drifts and mass loss from glaciers (and other perennial snow/ice features).
Catherine M. Collins, Nicolas Perdrial, Pierre-Henri Blard, Nynke Keulen, William C. Mahaney, Halley Mastro, Juliana Souza, Donna M. Rizzo, Yves Marrocchi, Paul C. Knutz, and Paul R. Bierman
Clim. Past, 21, 1359–1381, https://doi.org/10.5194/cp-21-1359-2025, https://doi.org/10.5194/cp-21-1359-2025, 2025
Short summary
Short summary
The Camp Century subglacial core stores information about past climates and glacial and interglacial processes in northwestern Greenland. In this study, we investigated the core archive, making large-scale observations using computed tomography (CT) scans and micron-scale observations observing physical and chemical characteristics of individual grains. We find evidence of past ice-free conditions, weathering processes during warmer periods, and past glaciations.
Esteban Alonso-González, Adrian Harpold, Jessica D. Lundquist, Cara Piske, Laura Sourp, Kristoffer Aalstad, and Simon Gascoin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2347, https://doi.org/10.5194/egusphere-2025-2347, 2025
Short summary
Short summary
Simulating the snowpack is challenging, as there are several sources of uncertainty due to e.g. the meteorological forcing. Using data assimilation techniques, it is possible to improve the simulations by fusing models and snow observations. However in forests, observations are difficult to obtain, because they cannot be retrieved through the canopy. Here, we explore the possibility of propagating the information obtained in forest clearings to areas covered by the canopy.
Elijah N. Boardman, Gabrielle F. S. Boisramé, Mark S. Wigmosta, Robert K. Shriver, and Adrian A. Harpold
EGUsphere, https://doi.org/10.5194/egusphere-2025-1877, https://doi.org/10.5194/egusphere-2025-1877, 2025
Short summary
Short summary
Predicting hydrological change is a global priority. Environmental changes can cause model biases that vary over time (nonstationarity). We demonstrate a new framework to detect nonstationarity after a large wildfire, which reduces uncertainty and improves model fidelity.
Kachinga Silwimba, Alejandro N. Flores, Irene Cionni, Sharon A. Billings, Pamela L. Sullivan, Hoori Ajami, Daniel R. Hirmas, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-713, https://doi.org/10.5194/egusphere-2025-713, 2025
Short summary
Short summary
This study evaluates the influence of soil hydraulic parameterizations on soil moisture simulations in CLM5 across the CONUS (1980–2010) using Empirical Orthogonal Function (EOF) analysis. Results reveal significant regional discrepancies, particularly in the Great Plains, where parameter uncertainty drives biases in soil moisture variability. Comparisons with ERA5-Land highlight seasonal mismatches, underscoring the need for improved soil parameterization to enhance land surface model accuracy.
James Stegen, Amy J. Burgin, Michelle H. Busch, Joshua B. Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian M. Deines, Julia A. Guimond, Peter Regier, Kenton Rod, Edward K. P. Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin L. Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon N. Sweetman, Jianqiu Zheng, Daniel C. Allen, Elizabeth Herndon, Beth A. Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad F. Patel
Biogeosciences, 22, 995–1034, https://doi.org/10.5194/bg-22-995-2025, https://doi.org/10.5194/bg-22-995-2025, 2025
Short summary
Short summary
The loss and gain of surface water (variable inundation) are common processes across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review the literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Lena Wang, Sharon Billings, Li Li, Daniel Hirmas, Keira Johnson, Devon Kerins, Julio Pachon, Curtis Beutler, Karla Jarecke, Vaishnavi Varikuti, Micah Unruh, Hoori Ajami, Holly Barnard, Alejandro Flores, Kenneth Williams, and Pamela Sullivan
EGUsphere, https://doi.org/10.5194/egusphere-2025-70, https://doi.org/10.5194/egusphere-2025-70, 2025
Short summary
Short summary
Our study looked at how different forest types and conditions affected soil microbes, and soil carbon and stability. Aspen organic matter led to higher microbial activity, smaller soil aggregates, and more stable soil carbon, possibly reducing dissolved organic carbon movement from hillslopes to streams. This shows the importance of models like the Microbial Efficiency – Matrix Stabilization framework for predicting CO2 release, soil carbon stability, and carbon movement.
Zewei Ma, Kaiyu Guan, Bin Peng, Wang Zhou, Robert Grant, Jinyun Tang, Murugesu Sivapalan, Ming Pan, Li Li, and Zhenong Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-340, https://doi.org/10.5194/hess-2024-340, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We explore tile drainage’ impacts on the integrated hydrology-biogeochemistry-plant system, using ecosys with soil oxygen and microbe dynamics. We found that tile drainage lowers soil water content and improves soil oxygen levels, which helps crops grow better, especially during wet springs, and the developed root system also helps mitigate drought stress on dry summers. Overall, tile drainage increases crop resilience to climate change, making it a valuable future agricultural practice.
Chao Wang, Stephen Leisz, Li Li, Xiaoying Shi, Jiafu Mao, Yi Zheng, and Anping Chen
Earth Syst. Dynam., 15, 75–90, https://doi.org/10.5194/esd-15-75-2024, https://doi.org/10.5194/esd-15-75-2024, 2024
Short summary
Short summary
Climate change can significantly impact river runoff; however, predicting future runoff is challenging. Using historical runoff gauge data to evaluate model performances in runoff simulations for the Mekong River, we quantify future runoff changes in the Mekong River with the best simulation combination. Results suggest a significant increase in the annual runoff, along with varied seasonal distributions, thus heightening the need for adapted water resource management measures.
Sebastian A. Krogh, Lucia Scaff, James W. Kirchner, Beatrice Gordon, Gary Sterle, and Adrian Harpold
Hydrol. Earth Syst. Sci., 26, 3393–3417, https://doi.org/10.5194/hess-26-3393-2022, https://doi.org/10.5194/hess-26-3393-2022, 2022
Short summary
Short summary
We present a new way to detect snowmelt using daily cycles in streamflow driven by solar radiation. Results show that warmer sites have earlier and more intermittent snowmelt than colder sites, and the timing of early snowmelt events is strongly correlated with the timing of streamflow volume. A space-for-time substitution shows greater sensitivity of streamflow timing to climate change in colder rather than in warmer places, which is then contrasted with land surface simulations.
Wei Zhi, Yuning Shi, Hang Wen, Leila Saberi, Gene-Hua Crystal Ng, Kayalvizhi Sadayappan, Devon Kerins, Bryn Stewart, and Li Li
Geosci. Model Dev., 15, 315–333, https://doi.org/10.5194/gmd-15-315-2022, https://doi.org/10.5194/gmd-15-315-2022, 2022
Short summary
Short summary
Watersheds are the fundamental Earth surface functioning unit that connects the land to aquatic systems. Here we present the recently developed BioRT-Flux-PIHM v1.0, a watershed-scale biogeochemical reactive transport model, to improve our ability to understand and predict solute export and water quality. The model has been verified against the benchmark code CrunchTope and has recently been applied to understand reactive transport processes in multiple watersheds of different conditions.
Hang Wen, Pamela L. Sullivan, Gwendolyn L. Macpherson, Sharon A. Billings, and Li Li
Biogeosciences, 18, 55–75, https://doi.org/10.5194/bg-18-55-2021, https://doi.org/10.5194/bg-18-55-2021, 2021
Short summary
Short summary
Carbonate weathering is essential in regulating carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics modify flow paths and weathering. This work indicates that deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep, carbonate-abundant subsurface.
Cited articles
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017.
Adler, T., Underwood, K. L., Rizzo, D. M., Harpold, A., Sterle, G., Li, L., Wen, H., Stinson, L., Bristol, C., Stewart, B., Lini, A., Perdrial, N., and Perdrial, J. N.: Drivers of Dissolved Organic Carbon Mobilization From Forested Headwater Catchments: A Multi Scaled Approach, Front. Water, 3, https://doi.org/10.3389/frwa.2021.578608, 2021.
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018.
Anderson, I., Hanley, J. P., M. Rizzo, D., Huston D. R., and Dewoolkar, M. M.: Evaluating Damage to Vermont Bridges by Hurricane Irene with Multivariate Bridge Inspection and Stream Hydrogeologic Data, J. Bridge. Eng., 25, 04020083, https://doi.org/10.1061/(ASCE)BE.1943-5592.0001603, 2020.
Arora, B., Kuppel, S., Wellen, C., Oswald, C., Groh, J., Payandi-Rolland, D., Stegen, J., and Coffinet, S.: Building Cross-Site and Cross-Network collaborations in critical zone science, J. Hydrol., 618, 129248, https://doi.org/10.1016/j.jhydrol.2023.129248, 2023.
Bansal, S. K. and Kagemann, S.: Integrating Big Data: A Semantic Extract-Transform-Load Framework, Computer, 48, 42–50, 2015.
Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E.,. Loukinova, N. V, Darracq, A., Zanardo, S., Yaeger, M., Sivapalan, M., Rinaldo, A., and Rao, P. S. C.: Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity, Geophy. Res. Lett., 23, L23404, https://doi.org/10.1029/2010GL045168, 2010.
Baumgardner, R. E., Lavery, T. F., Rogers, C. M., and Isil, S. S.: Estimates of the Atmospheric Deposition of Sulfur and Nitrogen Species: Clean Air Status and Trends Network, 1990–2000, Environ. Sci. Technol., 36, 2614–2629, 2002.
Berghuijs, W. R., Woods, R. A., and Hrachowitz, M.: A precipitation shift from snow towards rain leads to a decrease in streamflow, Nat. Clim. Change, 4, 583–586, 2014.
Berner, E. K. and Berner, R. A.: Global Environment. Water, Air and Geochemical Cycles, Princeton University Press, Princeton, Oxford, ISBN 9780691136783, 2012.
Brooks, P. D., Chorover, J., Fan, Y., Godsey, S. E., Maxwell, R. M., McNamara, J. P., and Tague, C.: Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics, Water Resour. Res., 51, 6973–6987, 2015.
Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C. D., and Siqueira, V. A.: CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil, Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, 2020.
Clow, D. W. and Mast, M. A.: Mechanisms for chemostatic behavior in catchments: Implications for CO2 consumption by mineral weathering, Chem. Geol., 269, 40–51, 2010.
Cohn, T. A., Delong, L. L., Gilroy, E. J., Hirsch, R. M., and Wells, D. K.: Estimating constituent loads, Water Resour. Res., 25, 937–942, 1989.
Duan, Q., Schaake, J., Andréassian, V., Franks, S., Goteti, G.,. Gupta, H. V., Gusev, Y. M., Habets, F., Hall, A., Hay, L., Hogue, T., Huang, M., Leavesley, G., Liang, X., Nasonova, O. N., Noilhan, J., Oudin, L., Sorooshian, S., Wagener, T., and Wood, E. F.: Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops, J. Hydrol., 320, 3–17, 2006.
Ebeling, P., Kumar, R., Lutz, S. R., Nguyen, T., Sarrazin, F., Weber, M., Büttner, O., Attinger, S., and Musolff, A.: QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany, Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, 2022.
Gaillardet, J., Dupré, B., Louvat, P., and Allègre C. J.: Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers, Chem. Geol., 159, 3–30, 1999.
Garmo, Ø. A., Skjelkvåle, B. L., de Wit, H. A., Colombo, L., Curtis, C., Fölster, J., Hoffmann, A., Hruška, J., Høgåsen, T., Jeffries, D. S., Keller, W. B., Krám , P., Majer, V., Monteith, D. T., Paterson, A. M., Rogora, M., Rzychon, D., Steingruber, S., Stoddard, J. L., Vuorenmaa, J., and Worsztynowicz, A.: Trends in Surface Water Chemistry in Acidified Areas in Europe and North America from 1990 to 2008, Water Air Soil Poll., 225, 1880, https://doi.org/10.1007/s11270-014-1880-6, 2014.
Godsey, S. E., Kirchner, J. W., and Clow, D. W.: Concentration–discharge relationships reflect chemostatic characteristics of US catchments, Hydrol. Process., 23, 1844–1864, 2009.
Godsey, S. E., Hartmann, J., and Kirchner, J. W.: Catchment chemostasis revisited: Water quality responds differently to variations in weather and climate, Hydrol. Process., 33, 3056–3069, 2019.
Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, 2014.
Hanley, J. P., Rizzo, D. M., Stevens, L., Helms Cahan, S., Dorn, P. L., Morrissey, L. A., Rodas, A. G., Orantes, L. C., and Monroy, C.: Novel Evolutionary Algorithm Identifies Interactions Driving Infestation of Triatoma dimidiata, a Chagas Disease Vector, Am. J. Trop. Med. Hyg., 103, 735–744, 2020.
Harpold, A. A., Burns, D. A., Walter, T., Shaw, S. B., and Steenhuis, T. S.: Relating hydrogeomorphic properties to stream buffering chemistry in the Neversink River watershed, New York State, USA, Hydrol. Process., 24, 3759–3771, 2010.
Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., and Köhler, P.: Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?, Global Planet. Change, 69, 185–194, 2009.
Hartmann, J., Lauerwald, R., and Moosdorf, N.: A Brief Overview of the GLObal RIver Chemistry Database, GLORICH, Proced. Earth Plan Sc., 10, 23–27, 2014.
Hirsch, R. M. and Slack, J. R.: A Nonparametric Trend Test for Seasonal Data With Serial Dependence, Water Resour. Res., 20, 727–732, 1984.
Horgby, Å., Segatto, P. L., Bertuzzo, E., Lauerwald, R., Lehner, B., Ulseth, A. J., Vennemann, T. W., and Battin, T. J.: Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains, Nat. Commun., 10, 4888, https://doi.org/10.1038/s41467-019-12905-z, 2019.
Hubbard, S. S., Varadharajan, C., Wu, Y., Wainwright, H., and Dwivedi, D.: Emerging technologies and radical collaboration to advance predictive understanding of watershed hydrobiogeochemistry, Hydrol. Process., 34, 3175–3182, 2020.
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S.: Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning, Water Resour. Res., 55, 11344–11354, 2019.
Kratzert, F., Nearing, G., Addor, N., Erickson, T., Gauch, M., Gilon, O., Gudmundsson, L., Hassidim, A., Klotz, D., Nevo, S., Shalev, G., and Matias, Y.: Caravan – A global community dataset for large-sample hydrology, Sci. Data, 10, 61, https://doi.org/10.1038/s41597-023-01975-w, 2023.
Lauerwald, R., Hartmann, J., Ludwig, W., and Moosdorf, N.: Assessing the nonconservative fluvial fluxes of dissolved organic carbon in North America, J. Geophys. Res., 117, G01027, https://doi.org/10.1029/2011JG001820, 2012.
Li, L., Stewart, B., Zhi, W., Sadayappan, K., Ramesh, S., Kerins, D., Sterle, G., Harpold, A., and Perdrial, J.: Climate Controls on River Chemistry, Earths Future, 10, e2021EF002603, https://doi.org/10.1029/2021EF002603, 2022.
Lins, H. F.: USGS Hydro-Climatic Data Network 2009 (HCDN – 2009), US Geological Survey Fact Sheet, USGS, https://pubs.usgs.gov/fs/2012/3047/ (last access: 1 December 2023), 2012.
Lloret, J. and Valiela, I.: Unprecedented decrease in deposition of nitrogen oxides over North America: the relative effects of emission controls and prevailing air-mass trajectories, Biogeochemistry, 129, 165–180, 2016.
McHale, M. R., Burns, D. A., Siemion, J., and Antidormi, M. R.: The response of soil and stream chemistry to decreases in acid deposition in the Catskill Mountains, New York, USA, Environ. Pollut., 229, 607–620, 2017.
Melsen, L. A., Addor, N., Mizukami, N., Newman, A. J., Torfs, P. J. J. F., Clark, M. P., Uijlenhoet, R., and Teuling, A. J.: Mapping (dis)agreement in hydrologic projections, Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, 2018.
Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., and Kumar, R.: On the choice of calibration metrics for “high-flow” estimation using hydrologic models, Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, 2019.
Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Hogasen, T., Wilander, A., Skjelkvale, B. L., Jeffries, D. S., Vuorenmaa, J., Keller, B., Kopacek, J., and Vesely, J.: Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry, Nature, 450, 537–540, 2007.
Musolff, A., Schmidt, C., Selle, B., and Fleckenstein, J. H.: Catchment controls on solute export, Adv. Water Resour., 86, 133–146, 2015.
National Atmospheric Deposition Program (NADP) (NRSP-3): NADP Program Office, Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706, 2022.
Newell, A. D. and Skjelkvåle, B. L.: Acidification Trends in Surface Waters in the International Program on Acidification of Rivers and Lakes, Water Air Soil Poll., 93, 27–57, 1997.
Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015.
Niu, X., Wen, T., Li, Z., and Brantley, S. L.: One Step toward Developing Knowledge from Numbers in Regional Analysis of Water Quality, Environ. Sci. Technol., 52, 3342–3343, 2018.
Oelsner, G. P., Sprague, L. A., Murphy, J. C., Zuellig, R. E., Johnson, H. M., Ryberg, K. R., Falcone, J. A., Stets, E. G., Vecchia, A. V., Riskin, M. L., De Cicco, L. A., Mills, T. J., and Farmer, W. H.: Water-quality trends in the nation's rivers and streams, 1972–2012 – Data preparation, statistical methods, and trend results, Sci. Inv. Rep., Reston, VA, 158 pp. https://doi.org/10.3133/sir20175006, 2017.
Pool, S., Viviroli, D., and Seibert, J.: Value of a Limited Number of Discharge Observations for Improving Regionalization: A Large-Sample Study Across the United States, Water Resour. Res., 55, 363–377, 2019.
PostgreSQL: PostgreSQL Open Source Data Base, https://www.postgresql.org/ (last access: 1 December 2023), 2020.
Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Durr, H., Meybeck, M., Ciais, P., Guth, P.: Global carbon dioxide emissions from inland waters, Nature, 503, 355–359, 2013.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.
Ruckhaus, M., Seybold, E. C., Underwood, K. L., Stewart, B., Kincaid, D. W., Shanley, J. B., Li, L., and Perdrial, J. N.: Disentangling the responses of dissolved organic carbon and nitrogen concentrations to overlapping drivers in a northeastern United States forested watershed, Front. Water, 5, https://doi.org/10.3389/frwa.2023.1065300, 2023.
Shanley, J. B., Sebestyen, S. D., McDonnell, J. J., McGlynn, B. L., and Dunne, T.: Water's Way at Sleepers River watershed – revisiting flow generation in a post-glacial landscape, Vermont USA, Hydrol. Process., 29, 3447–3459, 2015.
Shao, S., Driscoll, C. T., Sullivan, T. J., Burns, D. A., Baldigo, B., Lawrence, G. B., and McDonnell, T. C.: The response of stream ecosystems in the Adirondack region of New York to historical and future changes in atmospheric deposition of sulfur and nitrogen, Sci. Total Environ., 716, 137113, https://doi.org/10.1016/j.scitotenv.2020.137113, 2020.
Siemion, J., McHale, M. R., Lawrence, G. B., Burns, D. A., and Antidormi, M.: Long-term Changes in Soil and Stream Chemistry across an Acid Deposition Gradient in the Northeastern United States, Environ. Sci. Technol., 47, 410–418, 2018.
Sprague, L. A., Oelsner, G. P., and Argue, D. M.: Challenges with secondary use of multi-source water-quality data in the United States, Water Res., 110, 252–261, 2017.
Sterle, G., Harpold, A. A., HAQ, I. U., Perdrial, J., Kincaid, D., and Lee, B. S.: Camels Chem (1980–2018), HydroShare [data set], https://www.hydroshare.org/resource/841f5e85085c423f889ac809c1bed4ac (last access: 1 October 2023), 2023.
Stewart, B., Shanley, J. B., Kirchner, J. W., Norris, D., Adler, T., Bristol, C., Harpold, A. A., Perdrial, J. N., Rizzo, D. M., Sterle, G., Underwood, K. L., Wen, H., and Li, L.: Streams as Mirrors: Reading Subsurface Water Chemistry From Stream Chemistry, Water Resour. Res., 58, e2021WR029931, https://doi.org/10.1029/2021WR029931, 2022a.
Stewart, B., Zhi, W., Sadayappan, K., Sterle, G., Harpold, A., and Li, L.: Soil CO2 controls short-term variation but climate regulates long-term mean of riverine inorganic carbon, Global Biogeochem. Cy., 36, e2022GB007351, https://doi.org/10.1029/2022GB007351, 2022b.
Underwood, K. L., Rizzo, D. M., Hanley, J. P., Sterle, G., Harpold, A., Adler, T., Li, L., Wen, H., and Perdrial, J. N.: Machine-Learning Reveals Equifinality in Drivers of Stream DOC Concentration at Continental Scales, Water Resour. Res., 59, e2021WR030551, https://doi.org/10.1029/2021WR030551, 2023.
USGS: US Geological Survey National Water Information System data, https://waterdata.usgs.gov/nwis (last access: 1 December 2023), 2023.
Virro, H., Amatulli, G., Kmoch, A., Shen, L., and Uuemaa, E.: GRQA: Global River Water Quality Archive, Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, 2021.
Vlah, M. J., Rhea, S., Bernhardt, E. S., Slaughter, W., Gubbins, N., DelVecchia, A. G., Thellman, A., and Ross, M. R. V.: MacroSheds: A synthesis of long-term biogeochemical, hydroclimatic, and geospatial data from small watershed ecosystem studies, Limnol. Oceanogr. Lett., 8, 419–452, https://doi.org/10.1002/lol2.10325, 2023.
Zhi, W. and Li, L.: The Shallow and Deep Hypothesis: Subsurface Vertical Chemical Contrasts Shape Nitrate Export Patterns from Different Land Uses, Environ. Sci. Technol., 54, 11915–11928, 2020.
Zhi, W., Li, L., Dong, W., Brown, W., Kaye, J., Steefel, C., and Williams, K. H.: Distinct Source Water Chemistry Shapes Contrasting Concentration-Discharge Patterns, Water Resour. Res., 55, 4233–4251, https://doi.org/10.1029/2018WR024257, 2019.
Zhi, W., Williams, K. H., Carroll, R. W. H., Brown, W., Dong, W., Kerins, D., and Li, L.: Significant stream chemistry response to temperature variations in a high-elevation mountain watershed, Commun. Earth Environ., 1, 43 https://doi.org/10.1038/s43247-020-00039-w, 2020.
Zhi, W., Feng, D., Tsai, W. P., Sterle, G., Harpold, A., Shen, C., and Li, L.: From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale?, Environ. Sci. Technol., 55, 2357–2368, 2021.
Short summary
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset. The newly developed dataset, termed CAMELS-Chem, includes common stream water chemistry constituents and wet deposition chemistry in 516 catchments. Examples show the value of CAMELS-Chem to trend and spatial analyses, as well as its limitations in sampling length and consistency.
We develop stream water chemistry to pair with the existing CAMELS (Catchment Attributes and...