Articles | Volume 28, issue 22
https://doi.org/10.5194/hess-28-4971-2024
https://doi.org/10.5194/hess-28-4971-2024
Research article
 | 
21 Nov 2024
Research article |  | 21 Nov 2024

Learning landscape features from streamflow with autoencoders

Alberto Bassi, Marvin Höge, Antonietta Mira, Fabrizio Fenicia, and Carlo Albert

Related authors

Simple Box-Cox probabilistic models for hourly streamflow predictions
Cristina Prieto, Dmitri Kavetski, Fabrizio Fenicia, James Kirchner, David McInerney, Mark Thyer, and César Álvarez
EGUsphere, https://doi.org/10.5194/egusphere-2026-483,https://doi.org/10.5194/egusphere-2026-483, 2026
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Climate and landscape jointly control Europe's hydrology
Julia M. Rudlang, Thiago V. M. do Nascimento, Ruud van der Ent, Fabrizio Fenicia, and Markus Hrachowitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-6372,https://doi.org/10.5194/egusphere-2025-6372, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
How do geological map details influence the identification of geology-streamflow relationships in large-sample hydrology studies?
Thiago V. M. do Nascimento, Julia Rudlang, Sebastian Gnann, Jan Seibert, Markus Hrachowitz, and Fabrizio Fenicia
Hydrol. Earth Syst. Sci., 29, 7173–7200, https://doi.org/10.5194/hess-29-7173-2025,https://doi.org/10.5194/hess-29-7173-2025, 2025
Short summary
EARLS: A runoff reconstruction dataset for Europe
Daniel Klotz, Peter Miersch, Thiago V. M. do Nascimento, Fabrizio Fenicia, Martin Gauch, and Jakob Zscheischler
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-450,https://doi.org/10.5194/essd-2024-450, 2025
Revised manuscript under review for ESSD
Short summary
Root zone in the Earth system
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024,https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a, b, c
Albert, C., Künsch, H., and Scheidegger, A.: A Simulated Annealing Approach to Approximate Bayes Computations, Stat. Comput., 25, 1217–1232, https://doi.org/10.1007/s11222-014-9507-8, 2015. a
Albert, C., Ulzega, S., Ozdemir, F., Perez-Cruz, F., and Mira, A.: Learning Summary Statistics for Bayesian Inference with Autoencoders, SciPost Phys. Core, 5, 043, https://doi.org/10.21468/SciPostPhysCore.5.3.043, 2022. a, b, c, d
Allegra, M., Facco, E., Denti, F., Laio, A., and Mira, A.: Data segmentation based on the local intrinsic dimension, Sci. Rep., 10, 16449, https://doi.org/10.1038/s41598-020-72222-0, 2020. a
Bassi, A.: abassi98/AE4Hydro: v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.13132951, 2024. 
Download
Short summary
The goal is to remove the impact of meteorological drivers in order to uncover the unique landscape fingerprints of a catchment from streamflow data. Our results reveal an optimal two-feature summary for most catchments, with a third feature associated with aridity and intermittent flow that is needed for challenging cases. Baseflow index, aridity, and soil or vegetation attributes strongly correlate with learnt features, indicating their importance for streamflow prediction.
Share