Articles | Volume 28, issue 16
https://doi.org/10.5194/hess-28-3897-2024
https://doi.org/10.5194/hess-28-3897-2024
Research article
 | 
26 Aug 2024
Research article |  | 26 Aug 2024

Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China

Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan

Related authors

Revealing the Influence of Topography and Vegetation on Hydrological Processes Using a Stepwise Modelling Approach in Cold Alpine Basins of the Mongolian Plateau
Leilei Yong, Yahui Wang, Batsuren Dorjsuren, Zheng Duan, and Hongkai Gao
EGUsphere, https://doi.org/10.5194/egusphere-2025-3062,https://doi.org/10.5194/egusphere-2025-3062, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Reconstruction of reservoir water level-storage relationship based on capacity loss induced by sediment accumulation and its impact on flood control operation
Qiumei Ma, Chengyu Xie, Zheng Duan, Yanke Zhang, Lihua Xiong, and Chong-Yu Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-679,https://doi.org/10.5194/egusphere-2025-679, 2025
Short summary
Root zone in the Earth system
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 4477–4499, https://doi.org/10.5194/hess-28-4477-2024,https://doi.org/10.5194/hess-28-4477-2024, 2024
Short summary
Widespread increase of root zone storage capacity in the United States
Jiaxing Liang, Hongkai Gao, Fabrizio Fenicia, Qiaojuan Xi, Yahui Wang, and Hubert H. G. Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-550,https://doi.org/10.5194/egusphere-2024-550, 2024
Preprint archived
Short summary
HESS Opinions: Are soils overrated in hydrology?
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023,https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary

Cited articles

Abdelhamed, M. S., Elshamy, M. E., Wheater, H. S., and Razavi, S.: Hydrologic-land surface modelling of the Canadian sporadic-discontinuous permafrost: Initialization and uncertainty propagation, Hydrol. Process., 36, E14509, https://doi.org/10.1002/hyp.14509, 2022. 
Adler, C., Huggel, C., Orlove, B., and Nolin, A.: Climate change in the mountain cryosphere: impacts and responses, Reg. Environ. Change, 19, 1225–1228, https://doi.org/10.1007/s10113-019-01507-6, 2019. 
Andrianaki, M., Shrestha, J., Kobierska, F., Nikolaidis, N. P., and Bernasconi, S. M.: Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment, Hydrol. Earth Syst. Sci., 23, 3219–3232, https://doi.org/10.5194/hess-23-3219-2019, 2019. 
Arendt, A., Krakauer, N., Kumar, S. V., Rounce, D. R., and Rupper, S.: Editorial: Collaborative Research to Address Changes in the Climate, Hydrology and Cryosphere of High Mountain Asia, Front. Earth Sci., 8, 605336, https://doi.org/10.3389/feart.2020.605336, 2020. 
Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls on the surface energy balance of a high Arctic valley glacier, J. Geophys. Res., 111, 2005JF000426, https://doi.org/10.1029/2005JF000426, 2006. 
Download
Short summary
An integrated cryospheric–hydrologic model, FLEX-Cryo, was developed that considers glaciers, snow cover, and frozen soil and their dynamic impacts on hydrology. We utilized it to simulate future changes in cryosphere and hydrology in the Hulu catchment. Our projections showed the two glaciers will melt completely around 2050, snow cover will reduce, and permafrost will degrade. For hydrology, runoff will decrease after the glacier has melted, and permafrost degradation will increase baseflow.
Share