Articles | Volume 28, issue 12
https://doi.org/10.5194/hess-28-2721-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-2721-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Conceptualising surface water–groundwater exchange in braided river systems
Scott R. Wilson
CORRESPONDING AUTHOR
Environmental Research, Lincoln Agritech, Lincoln University, Rīkona / Lincoln, Aotearoa / New Zealand
Jo Hoyle
National Institute of Water and Atmospheric Research, Ōtautahi / Christchurch, Aotearoa / New Zealand
Richard Measures
National Institute of Water and Atmospheric Research, Ōtautahi / Christchurch, Aotearoa / New Zealand
Antoine Di Ciacca
Environmental Research, Lincoln Agritech, Lincoln University, Rīkona / Lincoln, Aotearoa / New Zealand
Leanne K. Morgan
Waterways Centre for Freshwater Management, University of Canterbury, Ōtautahi / Christchurch, Aotearoa / New Zealand
Eddie W. Banks
National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, Australia
Linda Robb
Environmental Research, Lincoln Agritech, Lincoln University, Rīkona / Lincoln, Aotearoa / New Zealand
Thomas Wöhling
Environmental Research, Lincoln Agritech, Lincoln University, Rīkona / Lincoln, Aotearoa / New Zealand
Chair of Hydrology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany
Related authors
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
Cited articles
Anderson, E. I.: Modeling groundwater–surface water interactions using the Dupuit approximation, Adv. Water Resour., 28, 315–327, https://doi.org/10.1016/j.advwatres.2004.11.007, 2005.
Banks, E. W., Simmons, C. T., Love, A. J., and Shand, P.: Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality, J. Hydrol., 404, 30–49, https://doi.org/10.1016/j.jhydrol.2011.04.017, 2011.
Banks, E. W., Morgan, L. K., Sai Louie, A. J., Dempsey, D., and Wilson, S. R.: Active distributed temperature sensing to assess surface water–groundwater interaction and river loss in braided river systems, J. Hydrol., 615, 128667, https://doi.org/10.1016/j.jhydrol.2022.128667, 2022.
Barthel, R. and Banzhaf, S.: Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models, Water Resour. Manag., 30, 1–32, https://doi.org/10.1007/s11269-015-1163-z, 2016.
Bayat, H., Rastgo, M., Mansouri Zadeh, M., and Vereecken, H.: Particle size distribution models, their characteristics and fitting capability, J. Hydrol., 529, 872–889, https://doi.org/10.1016/j.jhydrol.2015.08.067, 2015.
Begg, J. G. and Johnston, M. R.: Geology of the Wellington area. Institute of Geological & Nuclear Sciences 1 : 250 000 geological map 10, GNS Science, Lower Hutt, New Zealand, 1 sheet + 64 pp., ISBN 0478096852, 2000.
Boano, F., Revelli, R., and Ridolfi, L.: Reduction of the hyporheic zone volume due to the stream-aquifer interaction, Geophys. Res. Lett., 35, L09401, https://doi.org/10.1029/2008GL033554, 2008.
Boano, F., Harvey, J. W., Marion, A. Packman, A. I., Revelli, R., Ridolfi, L., and Wörman, A.: Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications, Rev. Geophys., 52, 603–679, https://doi.org/10.1002/2012RG000417, 2014.
Booker, D. J.: Spatial and temporal patterns in the frequency of events exceeding three times the median flow (FRE3) across New Zealand, J. Hydrol. NZ, 52, 15–39, 2013.
Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., and Valett, H. M.: The functional significance of the hyporheic zone in streams and rivers, Annu. Rev. Ecol. Syst., 29, 59–81, https://doi.org/10.1146/annurev.ecolsys.29.1.59, 1998.
Bourke, S. A., Cook, P. G., Shanafield, M., Dogramaci, S., and Clark, J. F.: Characterisation of hyporheic exchange in a losing stream using radon-222, J. Hydrol., 519, 94–105, https://doi.org/10.1016/j.jhydrol.2014.06.057, 2014.
Bristow, C. S. and Best, J. L.: Braided rivers: perspectives and problems, in: Braided Rivers, edited by: Best, J. L. and Bristow, C. S., The Geological Society, London, Bath, UK, 1–11, https://doi.org/10.1144/GSL.SP.1993.075.01.01, 1993.
Brower, A., Hoyle, J., Gray, D., Buelow, F., Calkin, A., Fuller, I., Gabrielsson, R., Grove, P., Brierley, G., Sai-Louie, A. J., Rogers, J., Shulmeister, J., Uetz, K., Worthington, S., and Vosloo, R.: New Zealand's braided rivers: The land the law forgot, Earth Surf. Proc. Land., 49, 10–14, https://doi.org/10.1002/esp.5728, 2024.
Brown, L. J., Dravid, P. N., Hudson, N. A., and Taylor, C. B.: Sustainable groundwater resources, Heretaunga Plains, Hawke's Bay, New Zealand, Hydrogeol. J., 7, 440–453, https://doi.org/10.1007/s100400050217, 1999.
Brunner, P. and Simmons, C. T.: Hydrogeosphere: A Fully Integrated, Physically Based Hydrological Model, Groundwater, 50, 170–176, https://doi.org/10.1111/j.1745-6584.2011.00882.x, 2012.
Brunner, P., Cook, P. G., and Simmons, C. T.: Hydrogeologic controls on disconnection between surface water and groundwater, Water Resour. Res., 45, W01422, https://doi.org/10.1029/2008WR006953, 2009a.
Brunner, P., Simmons, C. T., and Cook, P. G.: Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes and groundwater, J. Hydrol., 376, 159–169, https://doi.org/10.1016/j.jhydrol.2009.07.023, 2009b.
Brunner, P., Therrien, R., Renard, P., Simmons, C. T., and Hendricks Franssen, H.-J.: Advances in understanding river-groundwater interactions, Rev. Geophys., 55, 818–854, https://doi.org/10.1002/2017RG000556, 2017.
Cardenas, M. B. and Zlotnik, V. A.: Three-dimensional model of modern channel bend deposits, Water Resour. Res., 39, 1141, https://doi.org/10.1029/2002WR001383, 2003.
Cartwright, I. and Hofmann, H.: Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia, Hydrol. Earth Syst. Sci., 20, 3581–3600, https://doi.org/10.5194/hess-20-3581-2016, 2016.
Coluccio, K. and Morgan, L. K.: A review of methods for measuring groundwater–surface water exchange in braided rivers, Hydrol. Earth Syst. Sci., 23, 4397–4417, https://doi.org/10.5194/hess-23-4397-2019, 2019.
Di Ciacca, A., Leterme, B., Laloy, E., Jacques, D., and Vanderborght, J.: Scale-dependent parameterization of groundwater–surface water interactions in a regional hydrogeological model, J. Hydrol., 576, 494–507, https://doi.org/10.1016/j.jhydrol.2019.06.072, 2019.
Di Ciacca, A., Wilson, S., Kang, J., and Wöhling, T.: Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning, Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, 2023.
Durejka, S., Gilfedder, B., and Frei, S.: A method for long-term high resolution 222Radon measurements using a new hydrophobic capillary membrane system, J. Environ. Radioactiv., 208–209, 105980, https://doi.org/10.1016/j.jenvrad.2019.05.012, 2019.
Durridge: Continuous radon in water accessory for the RAD7 user manual, https://durridge.com/documentation/RAD AQUA Manual.pdf (last access: 25 June 2024), 2020a.
Durridge: RAD H2O radon in water accessory for the RAD7 user manual, https://www.geotechenv.com/Manuals/Durridge_Manuals/Durridge_RAD_H2O_Manual.pdf (last access: 25 June 2024), 2020b.
Durridge: RAD7 electronic radon detector user manual, https://durridge.com/documentation/RAD7 Manual.pdf (last access: 25 June 2024), 2020c.
Durridge: DRYSTIK models ADS-3 and ADS-3R active moisture exchanger accessory for the RAD7 user manual, https://durridge.com/documentation/DRYSTIK ADS-3 and ADS-3R Manual.pdf (last access: 25 June 2024), 2021.
Folk R. L. and Ward W. C.: Brazos River bar: a study in the significance of grain size parameters, J. Sediment. Petrol., 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D, 1957.
Forsyth, P. J., Barrell, D. J. A., and Jongens, R.: Geology of the Christchurch area. Institute of Geological & Nuclear Sciences 1 : 250 000 geological map 16, GNS Science, Lower Hutt, New Zealand, 1 sheet + 67 pp., ISBN 9780478196498, 2008.
Fox, G. A. and Durnford, D. S.: Unsaturated hyporheic zone flow in stream conjunctive systems, Adv. Water Resour., 26, 989–1000, https://doi.org/10.1016/S0309-1708(03)00087-3, 2003.
Gardner, M. and Sharma, N.: Wairau River Mean Bed Level and Volumetric Analysis: 2010 to 2016, Land River Sea Consulting, Report prepared for Marlborough District Council, 57 pp., 2016.
González-Pinzón, R., Ward, A. S., Hatch, C. E., Wlostowski, A. N., Singha, K., Gooseff, M. N., Haggerty, R., Harvey, J. W., Cirpka, O. A., and Brock, J. T.: A field comparison of multiple techniques to quantify groundwater–surface-water interactions, Freshw. Sci., 34, 139–160, https://doi.org/10.1086/679738, 2015.
Gray, D. P., Hicks, M., and Greenwood, M.: Advances in geomorphology and aquatic ecology of braided rivers, in: Advances in New Zealand freshwater science, edited by: Jellyman, P. G., Davie, T. J. A., Pearson, C. P., and Harding, J. S., New Zealand Freshwater Sciences Society, Christchurch, New Zealand, 357–378, ISBN 9780473376031, 2016.
Harbaugh, A. W.: MODFLOW-2005, the U. S. Geological Survey modular ground-water model – the Ground-Water Flow Process, U. S. Geological Survey Techniques and Methods 6-A16, Reston, VA, USA, 253 pp., https://doi.org/10.3133/tm6A16, 2005.
Harvey, J. and Gooseff, M.: River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins, Water Resour. Res., 51, 6893–6922, https://doi.org/10.1002/2015WR017617, 2015.
Harvey, J. W. and Wagner, B. J.: Quantifying Hydrologic Interactions between Streams and Their Subsurface Hyporheic Zones, in: Streams and ground waters, edited by: Jones, J. B. and Mulholland, P. J., Academic Press, San Diego, CA, USA, 3–44, https://doi.org/10.1016/B978-012389845-6/50002-8, 2000.
Holmes, R. M., Fisher, S. G., and Grimm, N. B.: Parafluvial Nitrogen Dynamics in a Desert Stream Ecosystem, J. N. Am. Benthol. Soc., 13, 468–478, https://doi.org/10.2307/1467844, 1994.
Huber, E. and Huggenberger, P.: Subsurface flow mixing in coarse, braided river deposits, Hydrol. Earth Syst. Sci., 20, 2035–2046, https://doi.org/10.5194/hess-20-2035-2016, 2016.
Huggenberger, P. and Regli, C.: A sedimentological model to characterize braided river deposits for hydrogeological applications, in: Braided Rivers: Process, Deposits, Ecology and Management, Special Publication Number 36 of the International Association of Sedimentologists, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing, Malden, MA, USA, https://doi.org/10.1002/9781444304374.ch3, 2006.
Huggenberger, P., Hoehn, E., Beschta, R., and Woessner, W.: Abiotic aspects of channels and floodplains in riparian ecology, Freshwater Biol., 40, 407–425, https://doi.org/10.1046/j.1365-2427.1998.00371.x, 1998.
Hupp, C. R. and Osterkamp, W. R.: Riparian vegetation and fluvial geomorphic processes, Geomorphology, 14, 277–295, https://doi.org/10.1016/0169-555X(95)00042-4, 1996.
Kalbus, E., Reinstorf, F., and Schirmer, M.: Measuring methods for groundwater – surface water interactions: a review, Hydrol. Earth Syst. Sci., 10, 873–887, https://doi.org/10.5194/hess-10-873-2006, 2006.
Khambhammettu, P., Renard, P., and Doherty, J.: The traveling pilot point method. A novel approach to parameterize the inverse problem for categorical fields, Adv. Water Resour., 138, 103556, https://doi.org/10.1016/j.advwatres.2020.103556, 2020.
Larned, S. T., Hicks, D. M., Schmidt, J., Davey, A. J. H., Dey, K., Scarsbrook, M., Arscott, D. B., and Woods, R. A.: The Selwyn River of New Zealand: a benchmark system for alluvial plain rivers, River Res. Appl., 24, 1–21, https://doi.org/10.1002/rra.1054, 2008.
Laube, G., Schmidt, C., and Fleckenstein, J. H.: The systematic effect of streambed conductivity heterogeneity on hyporheic flux and residence time, Adv. Water Resour., 122, 60–69, https://doi.org/10.1016/j.advwatres.2018.10.003, 2018.
Lee, J. M, Bland, K. J., Townsend, D. B., and Kamp, P. J. J.: Geology of the Hawkes Bay area, Institute of Geological & Nuclear Sciences 1 : 250 000 geological map 8, GNS Science, Lower Hutt, New Zealand, 1 sheet + 93 pp., ISBN 9780478198225, 2011.
Levy, J., Birck, M. D., Mutiti, S., Kilroy, K. C., Windeler, B., Idris, O., and Allen, L. N.: The impact of storm events on a riverbed system and its hydraulic conductivity at a site of induced infiltration, J. Environ. Manage., 92, 1960–1971, https://doi.org/10.1016/j.jenvman.2011.03.017, 2011.
Measures, R.: Modelling gravel transport, extraction, and bed level change in the Ngaruroro River, National Institute of Water & Atmospheric Research, Client Report CHC2012-121 for Hawkes Bay Regional Council, 55 pp., 2012.
Morel-Seytoux, H. J., Miller, C. D., Mehl, S., and Miracapillo, C.: Achilles' heel of integrated hydrologic models: The stream-aquifer flow exchange, and proposed alternative, J. Hydrol., 564, 900–908, https://doi.org/10.1016/j.jhydrol.2018.07.010, 2018.
Niswonger, R. G. and Prudic, D. E.: Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams – A modification to SFR1, U. S. Geological Survey Techniques and Methods 6-A13, Reston, VA, USA, 47 pp., https://doi.org/10.3133/tm6A13, 2005.
Pirot, G., Straubhaar, J., and Renard, P.: Simulation of braided river elevation model time series with multiple-point statistics, Geomorphology, 214, 148–156, https://doi.org/10.1016/j.geomorph.2014.01.022, 2014.
Pirot, G., Straubhaar, J., and Renard, P.: A pseudo genetic model of coarse braided-river deposits, Water Resour. Res., 51, 9595–9611, https://doi.org/10.1002/2015WR017078, 2015.
Pirot, G., Huber, E., Irving, J., and Linde, N.: Reduction of conceptual model uncertainty using ground-penetrating radar profiles: Field-demonstration for a braided-river aquifer, J. Hydrol., 571, 254–264, https://doi.org/10.1016/j.jhydrol.2019.01.047, 2019.
Poole, G. C. and Berman, C. H.: An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation, Environ. Manage., 27, 787–802, https://doi.org/10.1007/s002670010188, 2001.
Pryshlak, T. T., Sawyer, A. H., Stonedahl, S. H., and Soltanian, M. R.: Multiscale hyporheic exchange through strongly heterogeneous sediments, Water Resour. Res., 51, 9127–9140, https://doi.org/10.1002/2015WR017293, 2015.
Rawlinson, Z. J., Westerhoff, R. S., Foged, N., and Kellett, R. L.: Hawke's Bay 3D Aquifer Mapping Project: Heretaunga Plains SkyTEM data processing and resistivity models, GNS Science consultancy report 2021/93, GNS Science, Wellington, New Zealand, 90 pp., https://data.gns.cri.nz/mapservice/Content/Public/Resistivity/CR2021-93 Heretaunga Plains SkyTEM_FINAL_HBRC.pdf (last access: 25 June 2024), 2021.
Reinfelds, I. and Nanson, G.: Formation of braided river floodplains, Waimakariri River, New Zealand, Sedimentology, 40, 1113–1127, https://doi.org/10.1111/j.1365-3091.1993.tb01382.x, 1993.
Rushton, K.: Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers, J. Hydrol., 334, 262–281, https://doi.org/10.1016/j.jhydrol.2006.10.008, 2007.
Schälchli, U.: The clogging of coarse gravel river beds by fine sediment, Hydrobiologia, 235, 189–197, https://doi.org/10.1007/BF00026211, 1992.
Schilling, O. S., Partington, D. J., Doherty, J., Kipfer, R., Hunkeler, D., and Brunner, P.: Buried paleo-channel detection with a groundwater model, tracer-based observations, and spatially varying, preferred anisotropy pilot point calibration, Geophys. Res. Lett., 49, e2022GL098944, https://doi.org/10.1029/2022GL098944, 2022.
Shanafield, M. and Cook, P. G.: Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods, J. Hydrol., 511, 518–529, https://doi.org/10.1016/j.jhydrol.2014.01.068, 2014.
Shanafield, M., Bourke, S. A., Zimmer, M. A., and Costigan, K. H.: An overview of the hydrology of nonperennial rivers and streams, WIREs Water, 8, e1504, https://doi.org/10.1002/wat2.1504, 2021.
Songola, C.: Characterising Surface Water and Groundwater Interactions in Braided Rivers Using Hydraulics and Environmental Tracers: The Waikirikiri Selwyn River, M.Sc. thesis, Lincoln University, New Zealand, 104 pp., https://hdl.handle.net/10182/15669 (last access: 25 June 2024), 2022.
Sophocleous, M.: Interactions between groundwater and surface water: The state of the science, Hydrogeol. J., 10, 52–67, https://doi.org/10.1007/s10040-001-0170-8, 2002.
Stanford, J. A. and Ward, J. V.: An Ecosystem Perspective of Alluvial Rivers: Connectivity and the Hyporheic Corridor, J. N. Am. Benthol. Soc., 12, 48–60, https://doi.org/10.2307/1467685, 1993.
Steiger, J., Tabacchi, E., Dufour, S., Corenblit, D., and Peiry, J.-L.: Hydrogeomorphic processes affecting riparian habitat within alluvial channel–floodplain river systems: a review for the temperate zone, River Res. Appl., 21, 719–737, https://doi.org/10.1002/rra.879, 2005.
Tang, Q., Schilling, O. S., Kurtz, W., Brunner, P., Vereecken, H., and Hendricks Franssen, H.-J.: Simulating flood induced riverbed transience using unmanned aerial vehicles, physically-based hydrological modelling and the ensemble Kalman filter, Water Resour. Res., 54, 9342–9363, https://doi.org/10.1029/2018WR023067, 2018.
Theel, M., Huggenberger, P., and Zosseder, K.: Assessment of the heterogeneity of hydraulic properties in gravelly outwash plains: a regionally scaled sedimentological analysis in the Munich gravel plain, Germany, Hydrogeol. J., 28, 2657–2674, https://doi.org/10.1007/s10040-020-02205-y, 2020.
Therrien, R., McLaren, R. G., Sudicky, E. A., and Panday, S. M.: HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport, Groundwater Simulations Group, University of Waterloo, Waterloo, ON, 456 pp., https://www.ggl.ulaval.ca/fileadmin/ggl/documents/rtherrien/hydrogeosphere.pdf (last access: 25 June 2024), 2010.
Valett, H. M, Morrice, J. A., Dahm, C. N., and Campana, M. E.: Parent lithology, surface–groundwater exchange, and nitrate retention in headwater streams, Limnol. Oceanogr., 41, 333–345, https://doi.org/10.4319/lo.1996.41.2.0333, 1996.
Warburton, J.: Active braidplain width, bed load transport and channel morphology in a model braided river, J. Hydrol. NZ, 35, 259–285, 1996.
Ward, A. S.: The evolution and state of interdisciplinary hyporheic research, WIREs Water, 3, 83–103, https://doi.org/10.1002/wat2.1120, 2015.
Ward, A. S. and Packman, A. I.: Advancing our predictive understanding of river corridor exchange, WIREs Water, 6, e1327, https://doi.org/10.1002/wat2.1327, 2019.
White, D. S.: Perspectives on defining and delineating hyporheic zones, J. N. Am. Benthol. Soc., 12, 61–69, https://doi.org/10.2307/1467686, 1993.
White, P. A., Kovacova, E., Zemansky, G., Jebbour, N., and Moreau-Fournier, M.: Groundwater-surface water interaction in the Waimakariri River, New Zealand, and groundwater outflow from the river bed, J. Hydrol. NZ, 51, 1–23, 2012.
Wöhling, T., Gosses, M. J., Wilson, S. R., and Davidson, P.: Quantifying River-Groundwater Interactions of New Zealand's Gravel-Bed Rivers: The Wairau Plain, Groundwater, 56, 647–666, https://doi.org/10.1111/gwat.12625, 2018.
Wöhling, T., Wilson, S., Wadsworth, V., and Davidson, P.: Detecting the cause of change using uncertain data: Natural and anthropogenic factors contributing to declining groundwater levels and flows of the Wairau Plain aquifer, New Zealand, J. Hydrol., 31, 100715, https://doi.org/10.1016/j.ejrh.2020.100715, 2020.
Wu, F.-C. and Huang, H.-T.: Hydraulic Resistance Induced by Deposition of Sediment in Porous Medium, J. Hydraul. Eng., 126, 547–551, https://doi.org/10.1061/(ASCE)0733-9429(2000)126:7(547), 2000.
Wu, G. D., Shu, L. C., Lu, C. P., Chen, X. H., Zhang, X. Appiah-Adjei, E. K., and Zhu, J. S.: Variations of streambed vertical hydraulic conductivity before and after a flood season, Hydrogeol. J., 23, 1603–1615, https://doi.org/10.1007/s10040-015-1275-9, 2015.
Zhou, Y., Ritzi, R. W., Soltanian, M. R., and Dominic, D. F.: The influence of streambed heterogeneity on Hyporheic flow in gravelly Rivers, Groundwater, 52, 206–216, https://doi.org/10.1111/gwat.12048, 2014.
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we...