Articles | Volume 28, issue 12
https://doi.org/10.5194/hess-28-2721-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-2721-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Conceptualising surface water–groundwater exchange in braided river systems
Scott R. Wilson
CORRESPONDING AUTHOR
Environmental Research, Lincoln Agritech, Lincoln University, Rīkona / Lincoln, Aotearoa / New Zealand
Jo Hoyle
National Institute of Water and Atmospheric Research, Ōtautahi / Christchurch, Aotearoa / New Zealand
Richard Measures
National Institute of Water and Atmospheric Research, Ōtautahi / Christchurch, Aotearoa / New Zealand
Antoine Di Ciacca
Environmental Research, Lincoln Agritech, Lincoln University, Rīkona / Lincoln, Aotearoa / New Zealand
Leanne K. Morgan
Waterways Centre for Freshwater Management, University of Canterbury, Ōtautahi / Christchurch, Aotearoa / New Zealand
Eddie W. Banks
National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders University, Adelaide, Australia
Linda Robb
Environmental Research, Lincoln Agritech, Lincoln University, Rīkona / Lincoln, Aotearoa / New Zealand
Thomas Wöhling
Environmental Research, Lincoln Agritech, Lincoln University, Rīkona / Lincoln, Aotearoa / New Zealand
Chair of Hydrology, Institute of Hydrology and Meteorology, Technische Universität Dresden, Dresden, Germany
Related authors
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024, https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
Short summary
We show the results of the 2022 Groundwater Time Series Modelling Challenge; 15 teams applied data-driven models to simulate hydraulic heads, and three model groups were identified: lumped, machine learning, and deep learning. For all wells, reasonable performance was obtained by at least one team from each group. There was not one team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary
Short summary
We present a novel framework to estimate how much water is lost by ephemeral rivers using satellite imagery and machine learning. This framework proved to be an efficient approach, requiring less fieldwork and generating more data than traditional methods, at a similar accuracy. Furthermore, applying this framework improved our understanding of the water transfer at our study site. Our framework is easily transferable to other ephemeral rivers and could be applied to long time series.
Brady A. Flinchum, Eddie Banks, Michael Hatch, Okke Batelaan, Luk J. M. Peeters, and Sylvain Pasquet
Hydrol. Earth Syst. Sci., 24, 4353–4368, https://doi.org/10.5194/hess-24-4353-2020, https://doi.org/10.5194/hess-24-4353-2020, 2020
Short summary
Short summary
Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection in a flat, semi-arid region north of Adelaide, Australia. We show that a combined geophysical approach can provide a unique perspective that can help shape the hydrogeological conceptualization.
Katie Coluccio and Leanne Kaye Morgan
Hydrol. Earth Syst. Sci., 23, 4397–4417, https://doi.org/10.5194/hess-23-4397-2019, https://doi.org/10.5194/hess-23-4397-2019, 2019
Short summary
Short summary
Braided rivers are uncommon internationally but are important freshwater resources. However, there is limited understanding of how characteristics unique to braided rivers affect groundwater–surface water flow paths. This article reviews prior studies that have investigated groundwater–surface water interactions in these rivers and their associated aquifers to provide guidance on methodologies most suitable for future work in braided rivers and highlight gaps in current knowledge.
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019, https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Short summary
The flow of water is often inferred from water levels and gradients whose measurements are considered trivial despite the many steps and complexity of the instruments involved. We systematically review the four measurement steps required and summarise the systematic errors. To determine the accuracy with which flow can be resolved, we quantify and propagate the random errors. Our results illustrate the limitations of current practice and provide concise recommendations to improve data quality.
Eddie W. Banks, Margaret A. Shanafield, Saskia Noorduijn, James McCallum, Jörg Lewandowski, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1917–1929, https://doi.org/10.5194/hess-22-1917-2018, https://doi.org/10.5194/hess-22-1917-2018, 2018
Short summary
Short summary
This study used a portable 56-sensor, 3-D temperature array with three heat pulse sources to measure the flow direction and magnitude below the water–sediment interface. Breakthrough curves from each of the sensors were analyzed using a heat transport equation. The use of short-duration heat pulses provided a rapid, accurate assessment technique for determining dynamic and multi-directional flow patterns in the hyporheic zone and is a basis for improved understanding of biogeochemical processes.
Etienne Bresciani, Roger H. Cranswick, Eddie W. Banks, Jordi Batlle-Aguilar, Peter G. Cook, and Okke Batelaan
Hydrol. Earth Syst. Sci., 22, 1629–1648, https://doi.org/10.5194/hess-22-1629-2018, https://doi.org/10.5194/hess-22-1629-2018, 2018
Short summary
Short summary
This article tackles the problem of finding the origin of groundwater in basin aquifers adjacent to mountains. In particular, we aim to determine whether the recharge occurs predominantly through stream infiltration along the mountain front or through subsurface flow from the mountain. To this end, we discuss the use of routinely measured variables: hydraulic head, chloride and electrical conductivity. A case study from Australia demonstrates the approach.
Diane von Gunten, Thomas Wöhling, Claus P. Haslauer, Daniel Merchán, Jesus Causapé, and Olaf A. Cirpka
Hydrol. Earth Syst. Sci., 20, 4159–4175, https://doi.org/10.5194/hess-20-4159-2016, https://doi.org/10.5194/hess-20-4159-2016, 2016
Short summary
Short summary
We compare seven meteorological drought indices that are commonly used to predict future droughts. Our goal is to assess the reliability of these indices to predict hydrological impacts of droughts under changing climatic conditions, using an integrated hydrological model. Drought indices are able to identify the timing of hydrological impacts of droughts in present and future climate. However, these indices can not estimate the severity of hydrological impacts of droughts in future climate.
D. Lemke, R. González-Pinzón, Z. Liao, T. Wöhling, K. Osenbrück, R. Haggerty, and O. A. Cirpka
Hydrol. Earth Syst. Sci., 18, 3151–3163, https://doi.org/10.5194/hess-18-3151-2014, https://doi.org/10.5194/hess-18-3151-2014, 2014
Related subject area
Subject: Rivers and Lakes | Techniques and Approaches: Theory development
Spatiotemporal variation of modern lake, stream, and soil water isotopes in Iceland
Impacts of science on society and policy in major river basins globally
Evaporation and sublimation measurement and modeling of an alpine saline lake influenced by freeze–thaw on the Qinghai–Tibet Plateau
Rediscovering Robert E. Horton's lake evaporation formulae: new directions for evaporation physics
Ionic aluminium concentrations exceed thresholds for aquatic health in Nova Scotian rivers, even during conditions of high dissolved organic carbon and low flow
Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model
Changing suspended sediment in United States rivers and streams: linking sediment trends to changes in land use/cover, hydrology and climate
Freshwater pearl mussels from northern Sweden serve as long-term, high-resolution stream water isotope recorders
Integrating network topology metrics into studies of catchment-level effects on river characteristics
Estimating the effect of rainfall on the surface temperature of a tropical lake
Toward a conceptual framework of hyporheic exchange across spatial scales
HESS Opinions: Science in today's media landscape – challenges and lessons from hydrologists and journalists
River water quality changes in New Zealand over 26 years: response to land use intensity
A review of current and possible future human–water dynamics in Myanmar's river basins
A century-scale, human-induced ecohydrological evolution of wetlands of two large river basins in Australia (Murray) and China (Yangtze)
An index of floodplain surface complexity
Hydroclimatological influences on recently increased droughts in China's largest freshwater lake
Quantitative analysis of biogeochemically controlled density stratification in an iron-meromictic lake
Reconstruction of flood events based on documentary data and transnational flood risk analysis of the Upper Rhine and its French and German tributaries since AD 1480
A methodological approach of estimating resistance to flow under unsteady flow conditions
Quantitative historical hydrology in Europe
Quantifying groundwater dependence of a sub-polar lake cluster in Finland using an isotope mass balance approach
Variations in quantity, composition and grain size of Changjiang sediment discharging into the sea in response to human activities
The KULTURisk Regional Risk Assessment methodology for water-related natural hazards – Part 1: Physical–environmental assessment
The use of taxation records in assessing historical floods in South Moravia, Czech Republic
New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru
Dissolved and particulate nutrient transport dynamics of a small Irish catchment: the River Owenabue
Water balance of selected floodplain lake basins in the Middle Bug River valley
Winter stream temperature in the rain-on-snow zone of the Pacific Northwest: influences of hillslope runoff and transient snow cover
Inverse streamflow routing
A fluid-mechanics based classification scheme for surface transient storage in riverine environments: quantitatively separating surface from hyporheic transient storage
Variation in turbidity with precipitation and flow in a regulated river system – river Göta Älv, SW Sweden
A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota
Mass transport of contaminated soil released into surface water by landslides (Göta River, SW Sweden)
Physical and chemical consequences of artificially deepened thermocline in a small humic lake – a paired whole-lake climate change experiment
A flume experiment on the effect of constriction shape on the formation of forced pools
David J. Harning, Jonathan H. Raberg, Jamie M. McFarlin, Yarrow Axford, Christopher R. Florian, Kristín B. Ólafsdóttir, Sebastian Kopf, Julio Sepúlveda, Gifford H. Miller, and Áslaug Geirsdóttir
Hydrol. Earth Syst. Sci., 28, 4275–4293, https://doi.org/10.5194/hess-28-4275-2024, https://doi.org/10.5194/hess-28-4275-2024, 2024
Short summary
Short summary
As human-induced global warming progresses, changes to Arctic precipitation are expected, but predictions are limited by an incomplete understanding of past changes in the hydrological system. Here, we measured water isotopes, a common tool to reconstruct past precipitation, from lakes, streams, and soils across Iceland. These data will allow robust reconstruction of past precipitation changes in Iceland in future studies.
Shuanglei Wu and Yongping Wei
Hydrol. Earth Syst. Sci., 28, 3871–3895, https://doi.org/10.5194/hess-28-3871-2024, https://doi.org/10.5194/hess-28-3871-2024, 2024
Short summary
Short summary
This study developed a framework to understand the structures of knowledge development in 72 river basins globally from 1962–2017 using Web of Science. It was found that the knowledge systems were characterized by increasingly interconnected management issues addressed by limited disciplines and were linked more strongly to societal impacts than that to policy. Understanding the current state of knowledge casts a light on sustainable knowledge transformations for river basin management.
Fangzhong Shi, Xiaoyan Li, Shaojie Zhao, Yujun Ma, Junqi Wei, Qiwen Liao, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 163–178, https://doi.org/10.5194/hess-28-163-2024, https://doi.org/10.5194/hess-28-163-2024, 2024
Short summary
Short summary
(1) Evaporation under ice-free and sublimation under ice-covered conditions and its influencing factors were first quantified based on 6 years of eddy covariance observations. (2) Night evaporation of Qinghai Lake accounts for more than 40 % of the daily evaporation. (3) Lake ice sublimation reaches 175.22 ± 45.98 mm, accounting for 23 % of the annual evaporation. (4) Wind speed weakening may have resulted in a 7.56 % decrease in lake evaporation during the ice-covered period from 2003 to 2017.
Solomon Vimal and Vijay P. Singh
Hydrol. Earth Syst. Sci., 26, 445–467, https://doi.org/10.5194/hess-26-445-2022, https://doi.org/10.5194/hess-26-445-2022, 2022
Short summary
Short summary
Evaporation from open water is a well-studied problem in hydrology. Robert E. Horton, unknown to most investigators on the subject, studied it in great detail by conducting experiments and relating them to physical laws. His work furthered known theories of lake evaporation but was not recognized. This is unfortunate because it performs better than five variously complex methods across scales (local to continental; 30 min–2 months) and seems quite relevant for climate-change-era problems.
Shannon M. Sterling, Sarah MacLeod, Lobke Rotteveel, Kristin Hart, Thomas A. Clair, Edmund A. Halfyard, and Nicole L. O'Brien
Hydrol. Earth Syst. Sci., 24, 4763–4775, https://doi.org/10.5194/hess-24-4763-2020, https://doi.org/10.5194/hess-24-4763-2020, 2020
Short summary
Short summary
Wild salmon numbers in Nova Scotia, Canada, have been plummeting in recent decades. In 2014, we launched an ionic aluminium monitoring program in Nova Scotia to see if this toxic element was a threat to salmon populations. We found that all 10 monitored rivers had ionic aluminium concentrations that exceeded the threshold for aquatic health. Our results demonstrate that elevated aluminium still threatens aquatic ecosystems and that delays in recovery from acid rain remains a critical issue.
Georgiy Kirillin, Ilya Aslamov, Vladimir Kozlov, Roman Zdorovennov, and Nikolai Granin
Hydrol. Earth Syst. Sci., 24, 1691–1708, https://doi.org/10.5194/hess-24-1691-2020, https://doi.org/10.5194/hess-24-1691-2020, 2020
Short summary
Short summary
We found that heat transported from Lake Baikal to its ice cover is up to 10 times higher than traditionally assumed and strongly affects the ice melting. The heat is transported by under-ice currents on the background of a strong temperature gradient between the ice base and warmer waters beneath. To parameterize this newly quantified transport mechanism, an original boundary layer model was developed. The results are crucial for understanding seasonal ice dynamics on lakes and marginal seas.
Jennifer C. Murphy
Hydrol. Earth Syst. Sci., 24, 991–1010, https://doi.org/10.5194/hess-24-991-2020, https://doi.org/10.5194/hess-24-991-2020, 2020
Short summary
Short summary
Between 1992 and 2012, concentrations of suspended sediment decreased at about 60 % of 137 US stream sites, with increases at only 17 % of sites. Sediment trends were primarily attributed to changes in land management, but streamflow changes also contributed to these trends at > 50 % of sites. At many sites, decreases in sediment occurred despite small-to-moderate increases in the amount of anthropogenic land use, suggesting sediment reduction activities across the US may be seeing some success.
Bernd R. Schöne, Aliona E. Meret, Sven M. Baier, Jens Fiebig, Jan Esper, Jeffrey McDonnell, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 673–696, https://doi.org/10.5194/hess-24-673-2020, https://doi.org/10.5194/hess-24-673-2020, 2020
Short summary
Short summary
We present the first annually resolved stable isotope record (1819–1998) from shells of Swedish river mussels. Data reflect hydrological processes in the catchment and changes in the isotope value of local precipitation. The latter is related to the origin of moisture from which precipitation formed (North Atlantic or the Arctic) and governed by large-scale atmospheric circulation patterns. Results help to better understand climate dynamics and constrain ecological changes in river ecosystems.
Eleanore L. Heasley, Nicholas J. Clifford, and James D. A. Millington
Hydrol. Earth Syst. Sci., 23, 2305–2319, https://doi.org/10.5194/hess-23-2305-2019, https://doi.org/10.5194/hess-23-2305-2019, 2019
Short summary
Short summary
River network structure is an overlooked feature of catchments. We demonstrate that network structure impacts broad spatial patterns of river characteristics in catchments using regulatory data. River habitat quality increased with network density, but other characteristics responded differently between study catchments. Network density was quantified using a method that can easily be applied to any catchment. We suggest that river network structure should be included in catchment-level studies.
Gabriel Gerard Rooney, Nicole van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 6357–6369, https://doi.org/10.5194/hess-22-6357-2018, https://doi.org/10.5194/hess-22-6357-2018, 2018
Short summary
Short summary
This paper uses a unique observational dataset of a tropical African lake (L. Kivu) to assess the effect of rain on lake surface temperature. Data from 4 years were categorised by daily rain amount and total net radiation to show that heavy rain may reduce the end-of-day lake temperature by about 0.3 K. This is important since lake surface temperature may influence local weather on short timescales, but the effect of rain on lake temperature has been little studied or parametrised previously.
Chiara Magliozzi, Robert C. Grabowski, Aaron I. Packman, and Stefan Krause
Hydrol. Earth Syst. Sci., 22, 6163–6185, https://doi.org/10.5194/hess-22-6163-2018, https://doi.org/10.5194/hess-22-6163-2018, 2018
Short summary
Short summary
The hyporheic zone is the area below riverbeds where surfacewater and groundwater mix. Hyporheic flow is linked to river processes and functions, but research to date has not sufficiently addressed how factors operating at different scales in time and space drive hyporheic flow variations at reach and larger scales. This review presents the scale-specific processes and interactions that control hyporheic flow, and a case study showing how valley factors affect its expression at the reach scale.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Jason P. Julian, Kirsten M. de Beurs, Braden Owsley, Robert J. Davies-Colley, and Anne-Gaelle E. Ausseil
Hydrol. Earth Syst. Sci., 21, 1149–1171, https://doi.org/10.5194/hess-21-1149-2017, https://doi.org/10.5194/hess-21-1149-2017, 2017
Short summary
Short summary
New Zealand is a natural laboratory for investigating water quality responses to land use intensity because it has one of the highest rates of agricultural intensification globally over recent decades. We interpreted water quality state and trends (1989–2014) of 77 river sites across NZ. We show that the greatest long-term negative impacts on river water quality have been increased cattle densities and legacy nutrients from intensively managed grasslands and plantation forests.
Linda Taft and Mariele Evers
Hydrol. Earth Syst. Sci., 20, 4913–4928, https://doi.org/10.5194/hess-20-4913-2016, https://doi.org/10.5194/hess-20-4913-2016, 2016
Short summary
Short summary
The country of Myanmar and its abundant water resources are facing major challenges due to political and economic reforms, massive investments from neighbouring countries and climate change impacts. Publications on current and future impacts from human activities and climate change on Myanmar's river basins have been reviewed in order to gain an overview of the key drivers in these human–water dynamics. The review reveals the relevance of this information with regard to human–water interactions.
Giri R. Kattel, Xuhui Dong, and Xiangdong Yang
Hydrol. Earth Syst. Sci., 20, 2151–2168, https://doi.org/10.5194/hess-20-2151-2016, https://doi.org/10.5194/hess-20-2151-2016, 2016
M. W. Scown, M. C. Thoms, and N. R. De Jager
Hydrol. Earth Syst. Sci., 20, 431–441, https://doi.org/10.5194/hess-20-431-2016, https://doi.org/10.5194/hess-20-431-2016, 2016
Short summary
Short summary
An index of floodplain surface complexity is developed in this paper and applied to eight floodplains from different geographic settings. Floodplain width and sediment yield were associated with the index or with sub-indicators, whereas hydrology was not. These findings suggest that valley and sediment conditions are important determinants of floodplain surface complexity, and these should complement hydrology as a focus of floodplain research and management.
Y. Liu and G. Wu
Hydrol. Earth Syst. Sci., 20, 93–107, https://doi.org/10.5194/hess-20-93-2016, https://doi.org/10.5194/hess-20-93-2016, 2016
Short summary
Short summary
Lake droughts result in significant hydrological, ecological and economic consequences. This study proposes approaches for quantifying the lake drought features and estimating the contributions from individual factors, taking China’s largest freshwater lake as a case examination. Our results showed that the recently increased lake droughts were due to hydroclimatic effects, with less important contributions from the water impoundments of the world’s largest dam affecting the lake outflows.
E. Nixdorf and B. Boehrer
Hydrol. Earth Syst. Sci., 19, 4505–4515, https://doi.org/10.5194/hess-19-4505-2015, https://doi.org/10.5194/hess-19-4505-2015, 2015
I. Himmelsbach, R. Glaser, J. Schoenbein, D. Riemann, and B. Martin
Hydrol. Earth Syst. Sci., 19, 4149–4164, https://doi.org/10.5194/hess-19-4149-2015, https://doi.org/10.5194/hess-19-4149-2015, 2015
Short summary
Short summary
The article presents a long-term analysis of flood occurrence along the southern part of the Upper Rhine River system and of 14 of its tributaries in France and Germany since 1480 BC. Special focus is given to temporal and spatial variations of flood events and their underlying meteorological causes over time, knowledge about the historical aspects of flood protection and flood vulnerability, while comparing selected historical and modern extreme events, establishing a common evaluation scheme.
M. M. Mrokowska, P. M. Rowiński, and M. B. Kalinowska
Hydrol. Earth Syst. Sci., 19, 4041–4053, https://doi.org/10.5194/hess-19-4041-2015, https://doi.org/10.5194/hess-19-4041-2015, 2015
Short summary
Short summary
This paper presents evaluation of resistance parameters: friction slope, friction velocity and Manning coefficient in unsteady flow. Theoretical description is facilitated with the analysis of field data from artificial dam-break flood waves in a small lowland watercourse. The methodology to enhance the evaluation of resistance by relations derived from flow equations is proposed. The study shows the Manning coefficient is less sensitive to simplified relations than other parameters.
G. Benito, R. Brázdil, J. Herget, and M. J. Machado
Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, https://doi.org/10.5194/hess-19-3517-2015, 2015
Short summary
Short summary
Historical hydrology combines documentary data with hydrological methods to lengthen flow records to the past centuries. We describe the methodological evolution of historical hydrology under the influence of developments in hydraulics and statistics. Analysis of 45 case studies in Europe show that present flood magnitudes are not unusual in the context of the past, whereas flood frequency has decreased, although some rivers show a reactivation of rare floods over the last two decades.
E. Isokangas, K. Rozanski, P. M. Rossi, A.-K. Ronkanen, and B. Kløve
Hydrol. Earth Syst. Sci., 19, 1247–1262, https://doi.org/10.5194/hess-19-1247-2015, https://doi.org/10.5194/hess-19-1247-2015, 2015
Short summary
Short summary
An iterative isotope mass balance approach was used to quantify the groundwater dependence of 67 kettle lakes and ponds. A quantitative measure for the dependence of a lake on groundwater (G index) introduced in this study revealed generally large groundwater dependency among the lakes. The isotope mass balance approach proved to be especially useful when the groundwater reliance of lakes situated in a relatively small area with similar climatic conditions needs to be determined.
J. H. Gao, J. Jia, Y. P. Wang, Y. Yang, J. Li, F. Bai, X. Zou, and S. Gao
Hydrol. Earth Syst. Sci., 19, 645–655, https://doi.org/10.5194/hess-19-645-2015, https://doi.org/10.5194/hess-19-645-2015, 2015
P. Ronco, V. Gallina, S. Torresan, A. Zabeo, E. Semenzin, A. Critto, and A. Marcomini
Hydrol. Earth Syst. Sci., 18, 5399–5414, https://doi.org/10.5194/hess-18-5399-2014, https://doi.org/10.5194/hess-18-5399-2014, 2014
Short summary
Short summary
This paper proposes a methodology, shaped by the EU Flood Directive, for the integrated assessment of flood risk at the regional scale for multiple receptors (i.e. people, economic activities, natural and semi-natural systems and cultural heritage) based on the subsequent assessment of hazards, exposure and vulnerability. By means of MCDA and GIS tools, it supports the ranking of the area, sub-areas and hotspots at risk, in order to evaluate the benefits of different risk prevention scenarios.
R. Brázdil, K. Chromá, L. Řezníčková, H. Valášek, L. Dolák, Z. Stachoň, E. Soukalová, and P. Dobrovolný
Hydrol. Earth Syst. Sci., 18, 3873–3889, https://doi.org/10.5194/hess-18-3873-2014, https://doi.org/10.5194/hess-18-3873-2014, 2014
A. Emmer and V. Vilímek
Hydrol. Earth Syst. Sci., 18, 3461–3479, https://doi.org/10.5194/hess-18-3461-2014, https://doi.org/10.5194/hess-18-3461-2014, 2014
S. T. Harrington and J. R. Harrington
Hydrol. Earth Syst. Sci., 18, 2191–2200, https://doi.org/10.5194/hess-18-2191-2014, https://doi.org/10.5194/hess-18-2191-2014, 2014
J. Dawidek and B. Ferencz
Hydrol. Earth Syst. Sci., 18, 1457–1465, https://doi.org/10.5194/hess-18-1457-2014, https://doi.org/10.5194/hess-18-1457-2014, 2014
J. A. Leach and R. D. Moore
Hydrol. Earth Syst. Sci., 18, 819–838, https://doi.org/10.5194/hess-18-819-2014, https://doi.org/10.5194/hess-18-819-2014, 2014
M. Pan and E. F. Wood
Hydrol. Earth Syst. Sci., 17, 4577–4588, https://doi.org/10.5194/hess-17-4577-2013, https://doi.org/10.5194/hess-17-4577-2013, 2013
T. R. Jackson, R. Haggerty, and S. V. Apte
Hydrol. Earth Syst. Sci., 17, 2747–2779, https://doi.org/10.5194/hess-17-2747-2013, https://doi.org/10.5194/hess-17-2747-2013, 2013
G. Göransson, M. Larson, and D. Bendz
Hydrol. Earth Syst. Sci., 17, 2529–2542, https://doi.org/10.5194/hess-17-2529-2013, https://doi.org/10.5194/hess-17-2529-2013, 2013
F. Gallart, N. Prat, E. M. García-Roger, J. Latron, M. Rieradevall, P. Llorens, G. G. Barberá, D. Brito, A. M. De Girolamo, A. Lo Porto, A. Buffagni, S. Erba, R. Neves, N. P. Nikolaidis, J. L. Perrin, E. P. Querner, J. M. Quiñonero, M. G. Tournoud, O. Tzoraki, N. Skoulikidis, R. Gómez, M. M. Sánchez-Montoya, and J. Froebrich
Hydrol. Earth Syst. Sci., 16, 3165–3182, https://doi.org/10.5194/hess-16-3165-2012, https://doi.org/10.5194/hess-16-3165-2012, 2012
G. Göransson, M. Larson, D. Bendz, and M. Åkesson
Hydrol. Earth Syst. Sci., 16, 1879–1893, https://doi.org/10.5194/hess-16-1879-2012, https://doi.org/10.5194/hess-16-1879-2012, 2012
M. Forsius, T. Saloranta, L. Arvola, S. Salo, M. Verta, P. Ala-Opas, M. Rask, and J. Vuorenmaa
Hydrol. Earth Syst. Sci., 14, 2629–2642, https://doi.org/10.5194/hess-14-2629-2010, https://doi.org/10.5194/hess-14-2629-2010, 2010
D. M. Thompson and C. R. McCarrick
Hydrol. Earth Syst. Sci., 14, 1321–1330, https://doi.org/10.5194/hess-14-1321-2010, https://doi.org/10.5194/hess-14-1321-2010, 2010
Cited articles
Anderson, E. I.: Modeling groundwater–surface water interactions using the Dupuit approximation, Adv. Water Resour., 28, 315–327, https://doi.org/10.1016/j.advwatres.2004.11.007, 2005.
Banks, E. W., Simmons, C. T., Love, A. J., and Shand, P.: Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality, J. Hydrol., 404, 30–49, https://doi.org/10.1016/j.jhydrol.2011.04.017, 2011.
Banks, E. W., Morgan, L. K., Sai Louie, A. J., Dempsey, D., and Wilson, S. R.: Active distributed temperature sensing to assess surface water–groundwater interaction and river loss in braided river systems, J. Hydrol., 615, 128667, https://doi.org/10.1016/j.jhydrol.2022.128667, 2022.
Barthel, R. and Banzhaf, S.: Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models, Water Resour. Manag., 30, 1–32, https://doi.org/10.1007/s11269-015-1163-z, 2016.
Bayat, H., Rastgo, M., Mansouri Zadeh, M., and Vereecken, H.: Particle size distribution models, their characteristics and fitting capability, J. Hydrol., 529, 872–889, https://doi.org/10.1016/j.jhydrol.2015.08.067, 2015.
Begg, J. G. and Johnston, M. R.: Geology of the Wellington area. Institute of Geological & Nuclear Sciences 1 : 250 000 geological map 10, GNS Science, Lower Hutt, New Zealand, 1 sheet + 64 pp., ISBN 0478096852, 2000.
Boano, F., Revelli, R., and Ridolfi, L.: Reduction of the hyporheic zone volume due to the stream-aquifer interaction, Geophys. Res. Lett., 35, L09401, https://doi.org/10.1029/2008GL033554, 2008.
Boano, F., Harvey, J. W., Marion, A. Packman, A. I., Revelli, R., Ridolfi, L., and Wörman, A.: Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications, Rev. Geophys., 52, 603–679, https://doi.org/10.1002/2012RG000417, 2014.
Booker, D. J.: Spatial and temporal patterns in the frequency of events exceeding three times the median flow (FRE3) across New Zealand, J. Hydrol. NZ, 52, 15–39, 2013.
Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., and Valett, H. M.: The functional significance of the hyporheic zone in streams and rivers, Annu. Rev. Ecol. Syst., 29, 59–81, https://doi.org/10.1146/annurev.ecolsys.29.1.59, 1998.
Bourke, S. A., Cook, P. G., Shanafield, M., Dogramaci, S., and Clark, J. F.: Characterisation of hyporheic exchange in a losing stream using radon-222, J. Hydrol., 519, 94–105, https://doi.org/10.1016/j.jhydrol.2014.06.057, 2014.
Bristow, C. S. and Best, J. L.: Braided rivers: perspectives and problems, in: Braided Rivers, edited by: Best, J. L. and Bristow, C. S., The Geological Society, London, Bath, UK, 1–11, https://doi.org/10.1144/GSL.SP.1993.075.01.01, 1993.
Brower, A., Hoyle, J., Gray, D., Buelow, F., Calkin, A., Fuller, I., Gabrielsson, R., Grove, P., Brierley, G., Sai-Louie, A. J., Rogers, J., Shulmeister, J., Uetz, K., Worthington, S., and Vosloo, R.: New Zealand's braided rivers: The land the law forgot, Earth Surf. Proc. Land., 49, 10–14, https://doi.org/10.1002/esp.5728, 2024.
Brown, L. J., Dravid, P. N., Hudson, N. A., and Taylor, C. B.: Sustainable groundwater resources, Heretaunga Plains, Hawke's Bay, New Zealand, Hydrogeol. J., 7, 440–453, https://doi.org/10.1007/s100400050217, 1999.
Brunner, P. and Simmons, C. T.: Hydrogeosphere: A Fully Integrated, Physically Based Hydrological Model, Groundwater, 50, 170–176, https://doi.org/10.1111/j.1745-6584.2011.00882.x, 2012.
Brunner, P., Cook, P. G., and Simmons, C. T.: Hydrogeologic controls on disconnection between surface water and groundwater, Water Resour. Res., 45, W01422, https://doi.org/10.1029/2008WR006953, 2009a.
Brunner, P., Simmons, C. T., and Cook, P. G.: Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes and groundwater, J. Hydrol., 376, 159–169, https://doi.org/10.1016/j.jhydrol.2009.07.023, 2009b.
Brunner, P., Therrien, R., Renard, P., Simmons, C. T., and Hendricks Franssen, H.-J.: Advances in understanding river-groundwater interactions, Rev. Geophys., 55, 818–854, https://doi.org/10.1002/2017RG000556, 2017.
Cardenas, M. B. and Zlotnik, V. A.: Three-dimensional model of modern channel bend deposits, Water Resour. Res., 39, 1141, https://doi.org/10.1029/2002WR001383, 2003.
Cartwright, I. and Hofmann, H.: Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia, Hydrol. Earth Syst. Sci., 20, 3581–3600, https://doi.org/10.5194/hess-20-3581-2016, 2016.
Coluccio, K. and Morgan, L. K.: A review of methods for measuring groundwater–surface water exchange in braided rivers, Hydrol. Earth Syst. Sci., 23, 4397–4417, https://doi.org/10.5194/hess-23-4397-2019, 2019.
Di Ciacca, A., Leterme, B., Laloy, E., Jacques, D., and Vanderborght, J.: Scale-dependent parameterization of groundwater–surface water interactions in a regional hydrogeological model, J. Hydrol., 576, 494–507, https://doi.org/10.1016/j.jhydrol.2019.06.072, 2019.
Di Ciacca, A., Wilson, S., Kang, J., and Wöhling, T.: Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning, Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023, 2023.
Durejka, S., Gilfedder, B., and Frei, S.: A method for long-term high resolution 222Radon measurements using a new hydrophobic capillary membrane system, J. Environ. Radioactiv., 208–209, 105980, https://doi.org/10.1016/j.jenvrad.2019.05.012, 2019.
Durridge: Continuous radon in water accessory for the RAD7 user manual, https://durridge.com/documentation/RAD AQUA Manual.pdf (last access: 25 June 2024), 2020a.
Durridge: RAD H2O radon in water accessory for the RAD7 user manual, https://www.geotechenv.com/Manuals/Durridge_Manuals/Durridge_RAD_H2O_Manual.pdf (last access: 25 June 2024), 2020b.
Durridge: RAD7 electronic radon detector user manual, https://durridge.com/documentation/RAD7 Manual.pdf (last access: 25 June 2024), 2020c.
Durridge: DRYSTIK models ADS-3 and ADS-3R active moisture exchanger accessory for the RAD7 user manual, https://durridge.com/documentation/DRYSTIK ADS-3 and ADS-3R Manual.pdf (last access: 25 June 2024), 2021.
Folk R. L. and Ward W. C.: Brazos River bar: a study in the significance of grain size parameters, J. Sediment. Petrol., 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D, 1957.
Forsyth, P. J., Barrell, D. J. A., and Jongens, R.: Geology of the Christchurch area. Institute of Geological & Nuclear Sciences 1 : 250 000 geological map 16, GNS Science, Lower Hutt, New Zealand, 1 sheet + 67 pp., ISBN 9780478196498, 2008.
Fox, G. A. and Durnford, D. S.: Unsaturated hyporheic zone flow in stream conjunctive systems, Adv. Water Resour., 26, 989–1000, https://doi.org/10.1016/S0309-1708(03)00087-3, 2003.
Gardner, M. and Sharma, N.: Wairau River Mean Bed Level and Volumetric Analysis: 2010 to 2016, Land River Sea Consulting, Report prepared for Marlborough District Council, 57 pp., 2016.
González-Pinzón, R., Ward, A. S., Hatch, C. E., Wlostowski, A. N., Singha, K., Gooseff, M. N., Haggerty, R., Harvey, J. W., Cirpka, O. A., and Brock, J. T.: A field comparison of multiple techniques to quantify groundwater–surface-water interactions, Freshw. Sci., 34, 139–160, https://doi.org/10.1086/679738, 2015.
Gray, D. P., Hicks, M., and Greenwood, M.: Advances in geomorphology and aquatic ecology of braided rivers, in: Advances in New Zealand freshwater science, edited by: Jellyman, P. G., Davie, T. J. A., Pearson, C. P., and Harding, J. S., New Zealand Freshwater Sciences Society, Christchurch, New Zealand, 357–378, ISBN 9780473376031, 2016.
Harbaugh, A. W.: MODFLOW-2005, the U. S. Geological Survey modular ground-water model – the Ground-Water Flow Process, U. S. Geological Survey Techniques and Methods 6-A16, Reston, VA, USA, 253 pp., https://doi.org/10.3133/tm6A16, 2005.
Harvey, J. and Gooseff, M.: River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins, Water Resour. Res., 51, 6893–6922, https://doi.org/10.1002/2015WR017617, 2015.
Harvey, J. W. and Wagner, B. J.: Quantifying Hydrologic Interactions between Streams and Their Subsurface Hyporheic Zones, in: Streams and ground waters, edited by: Jones, J. B. and Mulholland, P. J., Academic Press, San Diego, CA, USA, 3–44, https://doi.org/10.1016/B978-012389845-6/50002-8, 2000.
Holmes, R. M., Fisher, S. G., and Grimm, N. B.: Parafluvial Nitrogen Dynamics in a Desert Stream Ecosystem, J. N. Am. Benthol. Soc., 13, 468–478, https://doi.org/10.2307/1467844, 1994.
Huber, E. and Huggenberger, P.: Subsurface flow mixing in coarse, braided river deposits, Hydrol. Earth Syst. Sci., 20, 2035–2046, https://doi.org/10.5194/hess-20-2035-2016, 2016.
Huggenberger, P. and Regli, C.: A sedimentological model to characterize braided river deposits for hydrogeological applications, in: Braided Rivers: Process, Deposits, Ecology and Management, Special Publication Number 36 of the International Association of Sedimentologists, edited by: Sambrook Smith, G. H., Best, J. L., Bristow, C. S., and Petts, G. E., Blackwell Publishing, Malden, MA, USA, https://doi.org/10.1002/9781444304374.ch3, 2006.
Huggenberger, P., Hoehn, E., Beschta, R., and Woessner, W.: Abiotic aspects of channels and floodplains in riparian ecology, Freshwater Biol., 40, 407–425, https://doi.org/10.1046/j.1365-2427.1998.00371.x, 1998.
Hupp, C. R. and Osterkamp, W. R.: Riparian vegetation and fluvial geomorphic processes, Geomorphology, 14, 277–295, https://doi.org/10.1016/0169-555X(95)00042-4, 1996.
Kalbus, E., Reinstorf, F., and Schirmer, M.: Measuring methods for groundwater – surface water interactions: a review, Hydrol. Earth Syst. Sci., 10, 873–887, https://doi.org/10.5194/hess-10-873-2006, 2006.
Khambhammettu, P., Renard, P., and Doherty, J.: The traveling pilot point method. A novel approach to parameterize the inverse problem for categorical fields, Adv. Water Resour., 138, 103556, https://doi.org/10.1016/j.advwatres.2020.103556, 2020.
Larned, S. T., Hicks, D. M., Schmidt, J., Davey, A. J. H., Dey, K., Scarsbrook, M., Arscott, D. B., and Woods, R. A.: The Selwyn River of New Zealand: a benchmark system for alluvial plain rivers, River Res. Appl., 24, 1–21, https://doi.org/10.1002/rra.1054, 2008.
Laube, G., Schmidt, C., and Fleckenstein, J. H.: The systematic effect of streambed conductivity heterogeneity on hyporheic flux and residence time, Adv. Water Resour., 122, 60–69, https://doi.org/10.1016/j.advwatres.2018.10.003, 2018.
Lee, J. M, Bland, K. J., Townsend, D. B., and Kamp, P. J. J.: Geology of the Hawkes Bay area, Institute of Geological & Nuclear Sciences 1 : 250 000 geological map 8, GNS Science, Lower Hutt, New Zealand, 1 sheet + 93 pp., ISBN 9780478198225, 2011.
Levy, J., Birck, M. D., Mutiti, S., Kilroy, K. C., Windeler, B., Idris, O., and Allen, L. N.: The impact of storm events on a riverbed system and its hydraulic conductivity at a site of induced infiltration, J. Environ. Manage., 92, 1960–1971, https://doi.org/10.1016/j.jenvman.2011.03.017, 2011.
Measures, R.: Modelling gravel transport, extraction, and bed level change in the Ngaruroro River, National Institute of Water & Atmospheric Research, Client Report CHC2012-121 for Hawkes Bay Regional Council, 55 pp., 2012.
Morel-Seytoux, H. J., Miller, C. D., Mehl, S., and Miracapillo, C.: Achilles' heel of integrated hydrologic models: The stream-aquifer flow exchange, and proposed alternative, J. Hydrol., 564, 900–908, https://doi.org/10.1016/j.jhydrol.2018.07.010, 2018.
Niswonger, R. G. and Prudic, D. E.: Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams – A modification to SFR1, U. S. Geological Survey Techniques and Methods 6-A13, Reston, VA, USA, 47 pp., https://doi.org/10.3133/tm6A13, 2005.
Pirot, G., Straubhaar, J., and Renard, P.: Simulation of braided river elevation model time series with multiple-point statistics, Geomorphology, 214, 148–156, https://doi.org/10.1016/j.geomorph.2014.01.022, 2014.
Pirot, G., Straubhaar, J., and Renard, P.: A pseudo genetic model of coarse braided-river deposits, Water Resour. Res., 51, 9595–9611, https://doi.org/10.1002/2015WR017078, 2015.
Pirot, G., Huber, E., Irving, J., and Linde, N.: Reduction of conceptual model uncertainty using ground-penetrating radar profiles: Field-demonstration for a braided-river aquifer, J. Hydrol., 571, 254–264, https://doi.org/10.1016/j.jhydrol.2019.01.047, 2019.
Poole, G. C. and Berman, C. H.: An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation, Environ. Manage., 27, 787–802, https://doi.org/10.1007/s002670010188, 2001.
Pryshlak, T. T., Sawyer, A. H., Stonedahl, S. H., and Soltanian, M. R.: Multiscale hyporheic exchange through strongly heterogeneous sediments, Water Resour. Res., 51, 9127–9140, https://doi.org/10.1002/2015WR017293, 2015.
Rawlinson, Z. J., Westerhoff, R. S., Foged, N., and Kellett, R. L.: Hawke's Bay 3D Aquifer Mapping Project: Heretaunga Plains SkyTEM data processing and resistivity models, GNS Science consultancy report 2021/93, GNS Science, Wellington, New Zealand, 90 pp., https://data.gns.cri.nz/mapservice/Content/Public/Resistivity/CR2021-93 Heretaunga Plains SkyTEM_FINAL_HBRC.pdf (last access: 25 June 2024), 2021.
Reinfelds, I. and Nanson, G.: Formation of braided river floodplains, Waimakariri River, New Zealand, Sedimentology, 40, 1113–1127, https://doi.org/10.1111/j.1365-3091.1993.tb01382.x, 1993.
Rushton, K.: Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers, J. Hydrol., 334, 262–281, https://doi.org/10.1016/j.jhydrol.2006.10.008, 2007.
Schälchli, U.: The clogging of coarse gravel river beds by fine sediment, Hydrobiologia, 235, 189–197, https://doi.org/10.1007/BF00026211, 1992.
Schilling, O. S., Partington, D. J., Doherty, J., Kipfer, R., Hunkeler, D., and Brunner, P.: Buried paleo-channel detection with a groundwater model, tracer-based observations, and spatially varying, preferred anisotropy pilot point calibration, Geophys. Res. Lett., 49, e2022GL098944, https://doi.org/10.1029/2022GL098944, 2022.
Shanafield, M. and Cook, P. G.: Transmission losses, infiltration and groundwater recharge through ephemeral and intermittent streambeds: A review of applied methods, J. Hydrol., 511, 518–529, https://doi.org/10.1016/j.jhydrol.2014.01.068, 2014.
Shanafield, M., Bourke, S. A., Zimmer, M. A., and Costigan, K. H.: An overview of the hydrology of nonperennial rivers and streams, WIREs Water, 8, e1504, https://doi.org/10.1002/wat2.1504, 2021.
Songola, C.: Characterising Surface Water and Groundwater Interactions in Braided Rivers Using Hydraulics and Environmental Tracers: The Waikirikiri Selwyn River, M.Sc. thesis, Lincoln University, New Zealand, 104 pp., https://hdl.handle.net/10182/15669 (last access: 25 June 2024), 2022.
Sophocleous, M.: Interactions between groundwater and surface water: The state of the science, Hydrogeol. J., 10, 52–67, https://doi.org/10.1007/s10040-001-0170-8, 2002.
Stanford, J. A. and Ward, J. V.: An Ecosystem Perspective of Alluvial Rivers: Connectivity and the Hyporheic Corridor, J. N. Am. Benthol. Soc., 12, 48–60, https://doi.org/10.2307/1467685, 1993.
Steiger, J., Tabacchi, E., Dufour, S., Corenblit, D., and Peiry, J.-L.: Hydrogeomorphic processes affecting riparian habitat within alluvial channel–floodplain river systems: a review for the temperate zone, River Res. Appl., 21, 719–737, https://doi.org/10.1002/rra.879, 2005.
Tang, Q., Schilling, O. S., Kurtz, W., Brunner, P., Vereecken, H., and Hendricks Franssen, H.-J.: Simulating flood induced riverbed transience using unmanned aerial vehicles, physically-based hydrological modelling and the ensemble Kalman filter, Water Resour. Res., 54, 9342–9363, https://doi.org/10.1029/2018WR023067, 2018.
Theel, M., Huggenberger, P., and Zosseder, K.: Assessment of the heterogeneity of hydraulic properties in gravelly outwash plains: a regionally scaled sedimentological analysis in the Munich gravel plain, Germany, Hydrogeol. J., 28, 2657–2674, https://doi.org/10.1007/s10040-020-02205-y, 2020.
Therrien, R., McLaren, R. G., Sudicky, E. A., and Panday, S. M.: HydroGeoSphere: A three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport, Groundwater Simulations Group, University of Waterloo, Waterloo, ON, 456 pp., https://www.ggl.ulaval.ca/fileadmin/ggl/documents/rtherrien/hydrogeosphere.pdf (last access: 25 June 2024), 2010.
Valett, H. M, Morrice, J. A., Dahm, C. N., and Campana, M. E.: Parent lithology, surface–groundwater exchange, and nitrate retention in headwater streams, Limnol. Oceanogr., 41, 333–345, https://doi.org/10.4319/lo.1996.41.2.0333, 1996.
Warburton, J.: Active braidplain width, bed load transport and channel morphology in a model braided river, J. Hydrol. NZ, 35, 259–285, 1996.
Ward, A. S.: The evolution and state of interdisciplinary hyporheic research, WIREs Water, 3, 83–103, https://doi.org/10.1002/wat2.1120, 2015.
Ward, A. S. and Packman, A. I.: Advancing our predictive understanding of river corridor exchange, WIREs Water, 6, e1327, https://doi.org/10.1002/wat2.1327, 2019.
White, D. S.: Perspectives on defining and delineating hyporheic zones, J. N. Am. Benthol. Soc., 12, 61–69, https://doi.org/10.2307/1467686, 1993.
White, P. A., Kovacova, E., Zemansky, G., Jebbour, N., and Moreau-Fournier, M.: Groundwater-surface water interaction in the Waimakariri River, New Zealand, and groundwater outflow from the river bed, J. Hydrol. NZ, 51, 1–23, 2012.
Wöhling, T., Gosses, M. J., Wilson, S. R., and Davidson, P.: Quantifying River-Groundwater Interactions of New Zealand's Gravel-Bed Rivers: The Wairau Plain, Groundwater, 56, 647–666, https://doi.org/10.1111/gwat.12625, 2018.
Wöhling, T., Wilson, S., Wadsworth, V., and Davidson, P.: Detecting the cause of change using uncertain data: Natural and anthropogenic factors contributing to declining groundwater levels and flows of the Wairau Plain aquifer, New Zealand, J. Hydrol., 31, 100715, https://doi.org/10.1016/j.ejrh.2020.100715, 2020.
Wu, F.-C. and Huang, H.-T.: Hydraulic Resistance Induced by Deposition of Sediment in Porous Medium, J. Hydraul. Eng., 126, 547–551, https://doi.org/10.1061/(ASCE)0733-9429(2000)126:7(547), 2000.
Wu, G. D., Shu, L. C., Lu, C. P., Chen, X. H., Zhang, X. Appiah-Adjei, E. K., and Zhu, J. S.: Variations of streambed vertical hydraulic conductivity before and after a flood season, Hydrogeol. J., 23, 1603–1615, https://doi.org/10.1007/s10040-015-1275-9, 2015.
Zhou, Y., Ritzi, R. W., Soltanian, M. R., and Dominic, D. F.: The influence of streambed heterogeneity on Hyporheic flow in gravelly Rivers, Groundwater, 52, 206–216, https://doi.org/10.1111/gwat.12048, 2014.
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we...