Articles | Volume 28, issue 12
https://doi.org/10.5194/hess-28-2721-2024
https://doi.org/10.5194/hess-28-2721-2024
Research article
 | 
27 Jun 2024
Research article |  | 27 Jun 2024

Conceptualising surface water–groundwater exchange in braided river systems

Scott R. Wilson, Jo Hoyle, Richard Measures, Antoine Di Ciacca, Leanne K. Morgan, Eddie W. Banks, Linda Robb, and Thomas Wöhling

Related authors

Deriving transmission losses in ephemeral rivers using satellite imagery and machine learning
Antoine Di Ciacca, Scott Wilson, Jasmine Kang, and Thomas Wöhling
Hydrol. Earth Syst. Sci., 27, 703–722, https://doi.org/10.5194/hess-27-703-2023,https://doi.org/10.5194/hess-27-703-2023, 2023
Short summary

Cited articles

Anderson, E. I.: Modeling groundwater–surface water interactions using the Dupuit approximation, Adv. Water Resour., 28, 315–327, https://doi.org/10.1016/j.advwatres.2004.11.007, 2005. 
Banks, E. W., Simmons, C. T., Love, A. J., and Shand, P.: Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: Implications for regional scale water quantity and quality, J. Hydrol., 404, 30–49, https://doi.org/10.1016/j.jhydrol.2011.04.017, 2011. 
Banks, E. W., Morgan, L. K., Sai Louie, A. J., Dempsey, D., and Wilson, S. R.: Active distributed temperature sensing to assess surface water–groundwater interaction and river loss in braided river systems, J. Hydrol., 615, 128667, https://doi.org/10.1016/j.jhydrol.2022.128667, 2022. 
Barthel, R. and Banzhaf, S.: Groundwater and Surface Water Interaction at the Regional-scale – A Review with Focus on Regional Integrated Models, Water Resour. Manag., 30, 1–32, https://doi.org/10.1007/s11269-015-1163-z, 2016. 
Bayat, H., Rastgo, M., Mansouri Zadeh, M., and Vereecken, H.: Particle size distribution models, their characteristics and fitting capability, J. Hydrol., 529, 872–889, https://doi.org/10.1016/j.jhydrol.2015.08.067, 2015. 
Download
Short summary
Braided rivers are complex and dynamic systems that are difficult to understand. Here, we proposes a new model of how braided rivers work in the subsurface based on field observations in three braided rivers in New Zealand. We suggest that braided rivers create their own shallow aquifers by moving bed sediments during flood flows. This new conceptualisation considers braided rivers as whole “river systems” consisting of channels and a gravel aquifer, which is distinct from the regional aquifer.
Share