Articles | Volume 28, issue 11
https://doi.org/10.5194/hess-28-2531-2024
https://doi.org/10.5194/hess-28-2531-2024
Research article
 | 
14 Jun 2024
Research article |  | 14 Jun 2024

Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models

David F. Muñoz, Hamed Moftakhari, and Hamid Moradkhani

Related authors

The value of visualization in improving compound flood hazard communication: A new perspective through a Euclidean Geometry lens
Soheil Radfar, Georgios Boumis, Hamed R. Moftakhari, Wanyun Shao, Larisa Lee, and Alison N. Rellinger
Geosci. Commun. Discuss., https://doi.org/10.5194/gc-2024-7,https://doi.org/10.5194/gc-2024-7, 2024
Preprint under review for GC
Short summary
Towards a Robust Hydrologic Data Assimilation System for Hurricane-induced River Flow Forecasting
Peyman Abbaszadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-209,https://doi.org/10.5194/hess-2024-209, 2024
Preprint under review for HESS
Short summary
Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products
Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 24, 2647–2665, https://doi.org/10.5194/nhess-24-2647-2024,https://doi.org/10.5194/nhess-24-2647-2024, 2024
Short summary
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022,https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Sequential data assimilation for real-time probabilistic flood inundation mapping
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021,https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary

Related subject area

Subject: Coasts and Estuaries | Techniques and Approaches: Modelling approaches
Mangroves as nature-based mitigation for ENSO-driven compound flood risks in a large river delta
Ignace Pelckmans, Jean-Philippe Belliard, Olivier Gourgue, Luis Elvin Dominguez-Granda, and Stijn Temmerman
Hydrol. Earth Syst. Sci., 28, 1463–1476, https://doi.org/10.5194/hess-28-1463-2024,https://doi.org/10.5194/hess-28-1463-2024, 2024
Short summary
Forecasting estuarine salt intrusion in the Rhine–Meuse delta using an LSTM model
Bas J. M. Wullems, Claudia C. Brauer, Fedor Baart, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 27, 3823–3850, https://doi.org/10.5194/hess-27-3823-2023,https://doi.org/10.5194/hess-27-3823-2023, 2023
Short summary
Coastal topography and hydrogeology control critical groundwater gradients and potential beach surface instability during storm surges
Anner Paldor, Nina Stark, Matthew Florence, Britt Raubenheimer, Steve Elgar, Rachel Housego, Ryan S. Frederiks, and Holly A. Michael
Hydrol. Earth Syst. Sci., 26, 5987–6002, https://doi.org/10.5194/hess-26-5987-2022,https://doi.org/10.5194/hess-26-5987-2022, 2022
Short summary
Effect of tides on river water behavior over the eastern shelf seas of China
Lei Lin, Hao Liu, Xiaomeng Huang, Qingjun Fu, and Xinyu Guo
Hydrol. Earth Syst. Sci., 26, 5207–5225, https://doi.org/10.5194/hess-26-5207-2022,https://doi.org/10.5194/hess-26-5207-2022, 2022
Short summary
Extreme precipitation events induce high fluxes of groundwater and associated nutrients to coastal ocean
Marc Diego-Feliu, Valentí Rodellas, Aaron Alorda-Kleinglass, Maarten Saaltink, Albert Folch, and Jordi Garcia-Orellana
Hydrol. Earth Syst. Sci., 26, 4619–4635, https://doi.org/10.5194/hess-26-4619-2022,https://doi.org/10.5194/hess-26-4619-2022, 2022
Short summary

Cited articles

Abbaszadeh, P., Moradkhani, H., and Daescu, D. N.: The Quest for Model Uncertainty Quantification: A Hybrid Ensemble and Variational Data Assimilation Framework, Water Resour. Res., 55, 2407–2431, https://doi.org/10.1029/2018WR023629, 2019. 
Abbaszadeh, P., Muñoz, D. F., Moftakhari, H., Jafarzadegan, K., and Moradkhani, H.: Perspective on uncertainty quantification and reduction in compound flood modeling and forecasting, iScience, 25, 105201, https://doi.org/10.1016/j.isci.2022.105201, 2022. 
Ahrens, B.: Distance in spatial interpolation of daily rain gauge data, Hydrol. Earth Syst. Sci., 10, 197–208, https://doi.org/10.5194/hess-10-197-2006, 2006. 
Alipour, A., Ahmadalipour, A., Abbaszadeh, P., and Moradkhani, H.: Leveraging machine learning for predicting flash flood damage in the Southeast US, Environ. Res. Lett., 15, 024011, https://doi.org/10.1088/1748-9326/ab6edd, 2020. 
Alipour, A., Jafarzadegan, K., and Moradkhani, H.: Global sensitivity analysis in hydrodynamic modeling and flood inundation mapping, Environ. Model. Softw., 152, 105398, https://doi.org/10.1016/j.envsoft.2022.105398, 2022. 
Download
Short summary
Linking hydrodynamics with machine learning models for compound flood modeling enables a robust characterization of nonlinear interactions among the sources of uncertainty. Such an approach enables the quantification of cascading uncertainty and relative contributions to total uncertainty while also tracking their evolution during compound flooding. The proposed approach is a feasible alternative to conventional statistical approaches designed for uncertainty analyses.