Articles | Volume 28, issue 11
https://doi.org/10.5194/hess-28-2531-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-28-2531-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying cascading uncertainty in compound flood modeling with linked process-based and machine learning models
David F. Muñoz
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
Center for Complex Hydrosystems Research, The University of Alabama, Tuscaloosa, AL 35487, USA
Hamed Moftakhari
Center for Complex Hydrosystems Research, The University of Alabama, Tuscaloosa, AL 35487, USA
Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
Hamid Moradkhani
Center for Complex Hydrosystems Research, The University of Alabama, Tuscaloosa, AL 35487, USA
Department of Civil, Construction and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
Related authors
Soheil Radfar, Hamed Moftakhari, David F. Muñoz, Avantika Gori, Ferdinand Diermanse, Ning Lin, and Amir AghaKouchak
EGUsphere, https://doi.org/10.5194/egusphere-2025-4623, https://doi.org/10.5194/egusphere-2025-4623, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Flooding in coastal areas often occurs when several mechanisms act together, causing compound flooding. Researchers increasingly use hybrid models that combine numerical models with statistical tools to study these events. Yet, the term “hybrid model” has been used inconsistently. This paper provides a clear definition and classification system, along with examples and technical challenges.
Soheil Radfar, Hamed Moftakhari, David F. Muñoz, Avantika Gori, Ferdinand Diermanse, Ning Lin, and Amir AghaKouchak
EGUsphere, https://doi.org/10.5194/egusphere-2025-4623, https://doi.org/10.5194/egusphere-2025-4623, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Flooding in coastal areas often occurs when several mechanisms act together, causing compound flooding. Researchers increasingly use hybrid models that combine numerical models with statistical tools to study these events. Yet, the term “hybrid model” has been used inconsistently. This paper provides a clear definition and classification system, along with examples and technical challenges.
Soheil Radfar, Georgios Boumis, Hamed R. Moftakhari, Wanyun Shao, Larisa Lee, and Alison N. Rellinger
Geosci. Commun., 8, 237–250, https://doi.org/10.5194/gc-8-237-2025, https://doi.org/10.5194/gc-8-237-2025, 2025
Short summary
Short summary
Our study presents a method to visualize how variations in the relationship of flood drivers like discharge and surge evolve over time. This method simplifies complex relationships, making it easier to understand evolving flood risks, especially as climate change increases these threats. By surveying a diverse group, we found that this visual approach could improve communication between scientists and non-experts, helping communities better prepare for compound flooding in a changing climate.
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025, https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary
Short summary
The Hybrid Ensemble and Variational Data Assimilation framework for Environmental Systems (HEAVEN) enhances flood predictions by refining hydrologic models through improved data integration and uncertainty management. Tested in three southeastern US watersheds during hurricanes, HEAVEN assimilates real-time United States Geological Survey (USGS) streamflow data, boosting forecast accuracy.
Francisco Javier Gomez, Keighobad Jafarzadegan, Hamed Moftakhari, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 24, 2647–2665, https://doi.org/10.5194/nhess-24-2647-2024, https://doi.org/10.5194/nhess-24-2647-2024, 2024
Short summary
Short summary
This study utilizes the global copula Bayesian model averaging technique for accurate and reliable flood modeling, especially in coastal regions. By integrating multiple precipitation datasets within this framework, we can effectively address sources of error in each dataset, leading to the generation of probabilistic flood maps. The creation of these probabilistic maps is essential for disaster preparedness and mitigation in densely populated areas susceptible to extreme weather events.
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022, https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Short summary
The high population settled in coastal regions and the potential damage imposed by coastal floods highlight the need for improving coastal flood hazard assessment techniques. This study introduces a topography-based approach for rapid estimation of flood hazard areas in the Savannah River delta. Our validation results demonstrate that, besides the high efficiency of the proposed approach, the estimated areas accurately overlap with reference flood maps.
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021, https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary
Short summary
In this study, daily observations are assimilated into a hydrodynamic model to update the performance of modeling and improve the flood inundation mapping skill. Results demonstrate that integrating data assimilation with a hydrodynamic model improves the performance of flood simulation and provides more reliable inundation maps. A flowchart provides the overall steps for applying this framework in practice and forecasting probabilistic flood maps before the onset of upcoming floods.
Cited articles
Abbaszadeh, P., Moradkhani, H., and Daescu, D. N.: The Quest for Model Uncertainty Quantification: A Hybrid Ensemble and Variational Data Assimilation Framework, Water Resour. Res., 55, 2407–2431, https://doi.org/10.1029/2018WR023629, 2019.
Abbaszadeh, P., Muñoz, D. F., Moftakhari, H., Jafarzadegan, K., and Moradkhani, H.: Perspective on uncertainty quantification and reduction in compound flood modeling and forecasting, iScience, 25, 105201, https://doi.org/10.1016/j.isci.2022.105201, 2022.
Ahrens, B.: Distance in spatial interpolation of daily rain gauge data, Hydrol. Earth Syst. Sci., 10, 197–208, https://doi.org/10.5194/hess-10-197-2006, 2006.
Alipour, A., Ahmadalipour, A., Abbaszadeh, P., and Moradkhani, H.: Leveraging machine learning for predicting flash flood damage in the Southeast US, Environ. Res. Lett., 15, 024011, https://doi.org/10.1088/1748-9326/ab6edd, 2020.
Alipour, A., Jafarzadegan, K., and Moradkhani, H.: Global sensitivity analysis in hydrodynamic modeling and flood inundation mapping, Environ. Model. Softw., 152, 105398, https://doi.org/10.1016/j.envsoft.2022.105398, 2022.
Alizad, K., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Morris, J. T., Balthis, L., and Buckel, C. A.: Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise, PLOS ONE, 13, e0205176, https://doi.org/10.1371/journal.pone.0205176, 2018.
Anaraki, M. V., Farzin, S., Mousavi, S.-F., and Karami, H.: Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods, Water Resour. Manage., 35, 199–223, https://doi.org/10.1007/s11269-020-02719-w, 2021.
Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning's roughness coefficients for natural channels and flood plains, Water Supply Paper, US G.P.O. , For sale by the Books and Open-File Reports Section, US Geological Survey, https://doi.org/10.3133/wsp2339, 1989.
Aronica, G., Bates, P. D., and Horritt, M. S.: Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE, Hydrol. Process., 16, 2001–2016, https://doi.org/10.1002/hyp.398, 2002.
Attari, M. and Hosseini, S. M.: A simple innovative method for calibration of Manning's roughness coefficient in rivers using a similarity concept, J. Hydrol., 575, 810–823, https://doi.org/10.1016/j.jhydrol.2019.05.083, 2019.
Bakhtyar, R., Maitaria, K., Velissariou, P., Trimble, B., Mashriqui, H., Moghimi, S., Abdolali, A., der Westhuysen, A. J. V., Ma, Z., Clark, E. P., and Flowers, T.: A New 1D/2D Coupled Modeling Approach for a Riverine-Estuarine System Under Storm Events: Application to Delaware River Basin, J. Geophys. Res.-Oceans, 125, e2019JC015822, https://doi.org/10.1029/2019JC015822, 2020.
Bates, P.: Fundamental limits to flood inundation modelling, Nat. Water, 1, 566–567, https://doi.org/10.1038/s44221-023-00106-4, 2023.
Bates, P. D.: Flood Inundation Prediction, Annu. Rev. Fluid Mech., 54, 287–315, https://doi.org/10.1146/annurev-fluid-030121-113138, 2022.
Bates, P. D., Quinn, N., Sampson, C., Smith, A., Wing, O., Sosa, J., Savage, J., Olcese, G., Neal, J., Schumann, G., Giustarini, L., Coxon, G., Porter, J. R., Amodeo, M. F., Chu, Z., Lewis-Gruss, S., Freeman, N. B., Houser, T., Delgado, M., Hamidi, A., Bolliger, I., E. McCusker, K., Emanuel, K., Ferreira, C. M., Khalid, A., Haigh, I. D., Couasnon, A., E. Kopp, R., Hsiang, S., and Krajewski, W. F.: Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates, Water Resour. Res., 57, e2020WR028673, https://doi.org/10.1029/2020WR028673, 2021.
Bensi, M., Mohammadi, S., Kao, S.-C., and DeNeale, S. T.: Multi-Mechanism Flood Hazard Assessment: Critical Review of Current Practice and Approaches, ORNL – Oak Ridge National Lab., Oak Ridge, TN, USA, https://doi.org/10.2172/1637939, 2020.
Berg, R.: Tropical Cyclone Report: Hurricane Ike (AL092008) 1–14 September 2008, National Hurricane Center, Miami, Florida, https://www.nhc.noaa.gov/data/tcr/AL092008_Ike.pdf (last access: 6 June 2024), 2009.
Bevacqua, E., Vousdoukas, M. I., Shepherd, T. G., and Vrac, M.: Brief communication: The role of using precipitation or river discharge data when assessing global coastal compound flooding, Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, 2020.
Beven, K., Romanowicz, R., Pappenberger, F., Young, P. C., and Werner, M.: The uncertainty cascade in flood forecasting, in: Proceedings of the ACTIF meeting on Flood Risk, 17–19 October 2005, Tromsø, Norway, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fc2566bb4b75794d26c8a77b914dee7b0e242470 (last access: 6 June 2024), 2005.
Beven, K. J., Almeida, S., Aspinall, W. P., Bates, P. D., Blazkova, S., Borgomeo, E., Freer, J., Goda, K., Hall, J. W., Phillips, J. C., Simpson, M., Smith, P. J., Stephenson, D. B., Wagener, T., Watson, M., and Wilkins, K. L.: Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas, Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, 2018.
Bhola, P. K., Leandro, J., and Disse, M.: Reducing uncertainties in flood inundation outputs of a two-dimensional hydrodynamic model by constraining roughness, Nat. Hazards Earth Syst. Sci., 19, 1445–1457, https://doi.org/10.5194/nhess-19-1445-2019, 2019.
Bilskie, M. V. and Hagen, S. C.: Defining Flood Zone Transitions in Low-Gradient Coastal Regions, Geophys. Res. Lett., 45, 2761–2770, https://doi.org/10.1002/2018GL077524, 2018.
Bilskie, M. V., Zhao, H., Resio, D., Atkinson, J., Cobell, Z., and Hagen, S. C.: Enhancing Flood Hazard Assessments in Coastal Louisiana Through Coupled Hydrologic and Surge Processes, Front. Water, 3, 609231, https://doi.org/10.3389/frwa.2021.609231, 2021.
Blake, E. and Zelinsky, D.: Hurricane Harvey, Tropical Cyclone Report (AL092017), National Hurricane Center, https://www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf (last access: 6 June 2024), 2018.
Bolla Pittaluga, M., Tambroni, N., Canestrelli, A., Slingerland, R., Lanzoni, S., and Seminara, G.: Where river and tide meet: The morphodynamic equilibrium of alluvial estuaries, J. Geophys. Res.-Earth, 120, 75–94, https://doi.org/10.1002/2014JF003233, 2015.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Brunner, G. W.: HEC-RAS River Analysis System: Hydraulic Reference Manual, Version 5.0., 547 pp., https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Reference Manual.pdf (last access: 6 June 2024), 2016.
Cea, L. and French, J. R.: Bathymetric error estimation for the calibration and validation of estuarine hydrodynamic models, Estuarine, Coast. Shelf Sci., 100, 124–132, https://doi.org/10.1016/j.ecss.2012.01.004, 2012.
CERA: Coastal Emergency Risk Assessment, https://cera.coastalrisk.live/ (last access: 20 February 2023), 2023.
Chaudhary, P., Leitão, J. P., Donauer, T., D'Aronco, S., Perraudin, N., Obozinski, G., Perez-Cruz, F., Schindler, K., Wegner, J. D., and Russo, S.: Flood Uncertainty Estimation Using Deep Ensembles, Water, 14, 2980, https://doi.org/10.3390/w14192980, 2022.
Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., Wang, X., Bian, H., Zhang, S., Pradhan, B., and Ahmad, B. B.: Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods, Sci. Total Environ., 701, 134979, https://doi.org/10.1016/j.scitotenv.2019.134979, 2020.
Cooper, H. M., Zhang, C., Davis, S. E., and Troxler, T. G.: Object-based correction of LiDAR DEMs using RTK-GPS data and machine learning modeling in the coastal Everglades, Environ. Model. Softw., 112, 179–191, https://doi.org/10.1016/j.envsoft.2018.11.003, 2019.
Delft3D: Deltares, Source code and Graphical User Interface, https://oss.deltares.nl/web/delft3d/downloads (last access: 6 June 2024), 2024.
Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., and Brath, A.: Probabilistic flood hazard mapping: effects of uncertain boundary conditions, Hydrol. Earth Syst. Sci., 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, 2013.
Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S.: Multi-model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30, 1371–1386, https://doi.org/10.1016/j.advwatres.2006.11.014, 2007.
East, J. W., Turco, M. J., and Mason Jr., R. R.: Monitoring inland storm surge and flooding from Hurricane Ike in Texas and Louisiana, September 2008, Surge, 29, 1–38, 2008.
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Eilander, D., Couasnon, A., Ikeuchi, H., Muis, S., Yamazaki, D., Winsemius, H., and Ward, P. J.: The effect of surge on riverine flood hazard and impact in deltas globally, Environ. Res. Lett., 15, 104007, https://doi.org/10.1088/1748-9326/ab8ca6, 2020.
ERA5: European Centre for Medium-Range Weather Forecasts, https://cds.climate.copernicus.eu/#!/home (last access: 6 June 2024), 2024.
Gallien, Kalligeris, N., Delisle, M.-P. C., Tang, B.-X., Lucey, J. T. D., and Winters, M. A.: Coastal Flood Modeling Challenges in Defended Urban Backshores, Geosciences, 8, 450, https://doi.org/10.3390/geosciences8120450, 2018.
Ganguli, P. and Merz, B.: Extreme Coastal Water Levels Exacerbate Fluvial Flood Hazards in Northwestern Europe, Sci. Rep., 9, 13165, https://doi.org/10.1038/s41598-019-49822-6, 2019a.
Ganguli, P. and Merz, B.: Trends in Compound Flooding in Northwestern Europe During 1901–2014, Geophys. Res. Lett., 46, 10810–10820, https://doi.org/10.1029/2019GL084220, 2019b.
Gori, A., Lin, N., and Xi, D.: Tropical Cyclone Compound Flood Hazard Assessment: From Investigating Drivers to Quantifying Extreme Water Levels, Earth's Future, 8, e2020EF001660, https://doi.org/10.1029/2020EF001660, 2020.
Hall, J. W., Tarantola, S., Bates, P. D., and Horritt, M. S.: Distributed Sensitivity Analysis of Flood Inundation Model Calibration, J. Hydraul. Eng., 131, 117–126, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(117), 2005.
Harris County FWS: Flood Warning System, https://www.harriscountyfws.org/ (last access: 6 June 2024), 2024.
Hasan Tanim, A. and Goharian, E.: Developing a hybrid modeling and multivariate analysis framework for storm surge and runoff interactions in urban coastal flooding, J. Hydrol., 595, 125670, https://doi.org/10.1016/j.jhydrol.2020.125670, 2021.
Helton, J. C. and Davis, F. J.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliabil. Eng. Syst. Safe., 81, 23–69, https://doi.org/10.1016/S0951-8320(03)00058-9, 2003.
HEC-RAS: US Army Corps of Engineers Hydrologic Engineering Center, https://www.hec.usace.army.mil/software/hec-ras/download.aspx (last access: 6 June 2024), 2024.
Hoitink, A. J. F. and Jay, D. A.: Tidal river dynamics: Implications for deltas, Rev. Geophys., 54, 240–272, https://doi.org/10.1002/2015RG000507, 2016.
Holmquist, J. R. and Windham-Myers, L.: A Conterminous USA-Scale Map of Relative Tidal Marsh Elevation, Estuar. Coasts, 45, 1596–1614, https://doi.org/10.1007/s12237-021-01027-9, 2022.
Hsu, C.-E., Serafin, K. A., Yu, X., Hegermiller, C. A., Warner, J. C., and Olabarrieta, M.: Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup, Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, 2023.
Hu, R., Fang, F., Pain, C. C., and Navon, I. M.: Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method, J. Hydrol., 575, 911–920, https://doi.org/10.1016/j.jhydrol.2019.05.087, 2019.
Huang, W., Ye, F., Zhang, Y. J., Park, K., Du, J., Moghimi, S., Myers, E., Pe'eri, S., Calzada, J. R., Yu, H. C., Nunez, K., and Liu, Z.: Compounding factors for extreme flooding around Galveston Bay during Hurricane Harvey, Ocean Model., 158, 101735, https://doi.org/10.1016/j.ocemod.2020.101735, 2021.
Jafarzadegan, K., Abbaszadeh, P., and Moradkhani, H.: Sequential data assimilation for real-time probabilistic flood inundation mapping, Hydrol. Earth System Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021, 2021a.
Jafarzadegan, K., Alipour, A., Gavahi, K., Moftakhari, H., and Moradkhani, H.: Toward improved river boundary conditioning for simulation of extreme floods, Adv. Water Resour., 158, 104059, https://doi.org/10.1016/j.advwatres.2021.104059, 2021b.
Jafarzadegan, K., Moradkhani, H., Pappenberger, F., Moftakhari, H., Bates, P., Abbaszadeh, P., Marsooli, R., Ferreira, C., Cloke, H. L., Ogden, F., and Duan, Q.: Recent Advances and New Frontiers in Riverine and Coastal Flood Modeling, Rev. Geophys., 61, e2022RG000788, https://doi.org/10.1029/2022RG000788, 2023.
Jalili Pirani, F. and Najafi, M. R.: Characterizing compound flooding potential and the corresponding driving mechanisms across coastal environments, Stoch. Environ. Res. Risk A., 37, 1943–1961, https://doi.org/10.1007/s00477-022-02374-0, 2023.
Kodra, E., Bhatia, U., Chatterjee, S., Chen, S., and Ganguly, A. R.: Physics-guided probabilistic modeling of extreme precipitation under climate change, Sci. Rep., 10, 10299, https://doi.org/10.1038/s41598-020-67088-1, 2020.
Kohanpur, A. H., Saksena, S., Dey, S., Johnson, J. M., Riasi, M. S., Yeghiazarian, L., and Tartakovsky, A. M.: Urban flood modeling: Uncertainty quantification and physics-informed Gaussian processes regression forecasting, Water Resour. Res., 59, e2022WR033939, https://doi.org/10.1029/2022WR033939, 2023.
Kuczera, G. and Parent, E.: Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm, J. Hydrol., 211, 69–85, https://doi.org/10.1016/S0022-1694(98)00198-X, 1998.
Kumar, M., Bhatt, G., and Duffy, C. J.: An efficient domain decomposition framework for accurate representation of geodata in distributed hydrologic models, Int. J. Geogr. Inf. Sci., 23, 1569–1596, https://doi.org/10.1080/13658810802344143, 2009.
Kumbier, K., Carvalho, R. C., Vafeidis, A. T., and Woodroffe, C. D.: Investigating compound flooding in an estuary using hydrodynamic modelling: a case study from the Shoalhaven River, Australia, Nat. Hazards Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/nhess-18-463-2018, 2018.
Kumbier, K., Rogers, K., Hughes, M. G., Lal, K. K., Mogensen, L. A., and Woodroffe, C. D.: Eco-Morphodynamic Modelling Approach to Estuarine Hydrodynamics & Wetlands in Response to Sea-Level Rise, Front. Mar. Sci., 9, 860910, https://doi.org/10.3389/fmars.2022.860910, 2022.
Lee, W., Sun, A. Y., Scanlon, B. R., and Dawson, C.: Hindcasting compound pluvial, fluvial and coastal flooding during Hurricane Harvey (2017) using Delft3D-FM, Nat. Hazards, 120, 851–880, https://doi.org/10.1007/s11069-023-06247-9, 2024.
Leijnse, T., van Ormondt, M., Nederhoff, K., and van Dongeren, A.: Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: Including fluvial, pluvial, tidal, wind- and wave-driven processes, Coast. Eng., 163, 103796, https://doi.org/10.1016/j.coastaleng.2020.103796, 2021.
Leonardi, N., Carnacina, I., Donatelli, C., Ganju, N. K., Plater, A. J., Schuerch, M., and Temmerman, S.: Dynamic interactions between coastal storms and salt marshes: A review, Geomorphology, 301, 92–107, https://doi.org/10.1016/j.geomorph.2017.11.001, 2018.
Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., and Stelling, G. S.: Development and validation of a three-dimensional morphological model, Coast. Eng., 51, 883–915, https://doi.org/10.1016/j.coastaleng.2004.07.014, 2004.
Liu, Z., Merwade, V., and Jafarzadegan, K.: Investigating the role of model structure and surface roughness in generating flood inundation extents using one- and two-dimensional hydraulic models, J. Flood Risk Manage., 12, e12347, https://doi.org/10.1111/jfr3.12347, 2018.
Madadgar, S. and Moradkhani, H.: Improved Bayesian multimodeling: Integration of copulas and Bayesian model averaging, Water Resour. Res., 50, 9586–9603, https://doi.org/10.1002/2014WR015965, 2014.
Marsooli, R. and Wang, Y.: Quantifying Tidal Phase Effects on Coastal Flooding Induced by Hurricane Sandy in Manhattan, New York Using a Micro-Scale Hydrodynamic Model, Front. Built Environ., 6, 149, https://doi.org/10.3389/fbuil.2020.00149, 2020.
Mayo, T., Butler, T., Dawson, C., and Hoteit, I.: Data assimilation within the Advanced Circulation (ADCIRC) modeling framework for the estimation of Manning's friction coefficient, Ocean Model., 76, 43–58, https://doi.org/10.1016/j.ocemod.2014.01.001, 2014.
Medeiros, S., Hagen, S., Weishampel, J., and Angelo, J.: Adjusting Lidar-Derived Digital Terrain Models in Coastal Marshes Based on Estimated Aboveground Biomass Density, Remote Sens., 7, 3507–3525, https://doi.org/10.3390/rs70403507, 2015.
Meresa, H., Murphy, C., Fealy, R., and Golian, S.: Uncertainties and their interaction in flood hazard assessment with climate change, Hydrol. Earth Syst. Sci., 25, 5237–5257, https://doi.org/10.5194/hess-25-5237-2021, 2021.
Moftakhari, H., Schubert, J. E., AghaKouchak, A., Matthew, R. A., and Sanders, B. F.: Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries, Adv. Water Resour., 128, 28–38, https://doi.org/10.1016/j.advwatres.2019.04.009, 2019.
Moradkhani, H., Nearing, G., Abbaszadeh, P., and Pathiraja, S.: Fundamentals of Data Assimilation and Theoretical Advances, in: Handbook of Hydrometeorological Ensemble Forecasting, edited by: Duan, Q., Pappenberger, F., Thielen, J., Wood, A., Cloke, H. L., and Schaake, J. C., Springer, Berlin, Heidelberg, 1–26, https://doi.org/10.1007/978-3-642-40457-3_30-1, 2018.
Mosavi, A., Ozturk, P., and Chau, K.: Flood Prediction Using Machine Learning Models: Literature Review, Water, 10, 1536, https://doi.org/10.3390/w10111536, 2018.
Muñoz, D. F., Moftakhari, H., and Moradkhani, H.: Compound Effects of Flood Drivers and Wetland Elevation Correction on Coastal Flood Hazard Assessment, Water Resour. Res., 56, e2020WR027544, https://doi.org/10.1029/2020WR027544, 2020.
Muñoz, D. F., Yin, D., Bakhtyar, R., Moftakhari, H., Xue, Z., Mandli, K., and Ferreira, C.: Inter-Model Comparison of Delft3D-FM and 2D HEC-RAS for Total Water Level Prediction in Coastal to Inland Transition Zones, J. Am. Water Resour. Assoc., 58, 34–49, https://doi.org/10.1111/1752-1688.12952, 2021.
Muñoz, D. F., Abbaszadeh, P., Moftakhari, H., and Moradkhani, H.: Accounting for uncertainties in compound flood hazard assessment: The value of data assimilation, Coast. Eng., 171, 104057, https://doi.org/10.1016/j.coastaleng.2021.104057, 2022a.
Muñoz, D. F., Moftakhari, H., Kumar, M., and Moradkhani, H.: Compound Effects of Flood Drivers, Sea Level Rise, and Dredging Protocols on Vessel Navigability and Wetland Inundation Dynamics, Front. Mar. Sci., 9, 906376, https://doi.org/10.3389/fmars.2022.906376, 2022b.
Najafi, M. R. and Moradkhani, H.: Ensemble Combination of Seasonal Streamflow Forecasts, J. Hydrol. Eng., 21, 04015043, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001250, 2016.
Nasr, A. A., Wahl, T., Rashid, M. M., Camus, P., and Haigh, I. D.: Assessing the dependence structure between oceanographic, fluvial, and pluvial flooding drivers along the United States coastline, Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, 2021.
NCEI: National Centers for Environmental Information, https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0209268 (last access: 9 January 2023), 2023.
Neal, J., Hawker, L., Savage, J., Durand, M., Bates, P., and Sampson, C.: Estimating River Channel Bathymetry in Large Scale Flood Inundation Models, Water Resour. Res., 57, e2020WR028301, https://doi.org/10.1029/2020WR028301, 2021.
Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., and Weijs, S. V.: A philosophical basis for hydrological uncertainty, Hydrolog. Sci. J., 61, 1666–1678, https://doi.org/10.1080/02626667.2016.1183009, 2016.
NLCD: National Land Cover Dataset, https://www.mrlc.gov/data (last access: 6 June 2024), 2024.
NOAA: Tide and Current Glossary, https://www.tidesandcurrents.noaa.gov/publications/glossary2.pdf (last access: 6 June 2024), 2000.
NOAA: A NOAA capability for Coastal Flooding and Inundation Information and Services at Climate Timescales to Reduce Risk and Improve Resilience, https://cpo.noaa.gov/wp-content/uploads/2023/08/NOAA-Coastal-Inundation-at-Climate-Timescales-Whitepaper.pdf (last access: 6 June 2024), 2022.
NOAA-DAV: Data Access Viewer, https://coast.noaa.gov/ (last access: 6 June 2024), 2024.
NOAA Digital Coast: Office for coastal management – NOAA Digital Coast – Socioeconomic Data Summary, https://coast.noaa.gov/digitalcoast/training/socioeconomic-data-summary.html (last access: 6 June 2024), 2020.
NOAA-NGDC: National Geophysical Data Center, NOAA-NGDC [data set], https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ngdc.mgg.dem:403 (last access: 6 June 2024), 2024.
NOAA – Tides & Currents: Tides & Currents portal, https://tidesandcurrents.noaa.gov/ (last access: 6 June 2024), 2024.
Oruc Baci, N., Jafarzadegan, K., and Moradkhani, H.: Improving flood inundation modeling skill: interconnection between model parameters and boundary conditions, Model. Earth Syst. Environ., 10, 243–257, https://doi.org/10.1007/s40808-023-01768-5, 2024.
Otieno, H., Yang, J., Liu, W., and Han, D.: Influence of Rain Gauge Density on Interpolation Method Selection, J. Hydrol. Eng., 19, 04014024, https://doi.org/10.1061/(ASCE)HE.1943-5584.0000964, 2014.
Pappenberger, F., Beven, K., Horritt, M., and Blazkova, S.: Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, J. Hydrol., 302, 46–69, https://doi.org/10.1016/j.jhydrol.2004.06.036, 2005.
Pappenberger, F., Matgen, P., Beven, K. J., Henry, J.-B., Pfister, L., and Fraipont, P.: Influence of uncertain boundary conditions and model structure on flood inundation predictions, Adv. Water Resour., 29, 1430–1449, https://doi.org/10.1016/j.advwatres.2005.11.012, 2006.
Pappenberger, F., Beven, K. J., Ratto, M., and Matgen, P.: Multi-method global sensitivity analysis of flood inundation models, Adv. Water Resour., 31, 1–14, https://doi.org/10.1016/j.advwatres.2007.04.009, 2008.
Parodi, M. U., Giardino, A., van Dongeren, A., Pearson, S. G., Bricker, J. D., and Reniers, A. J. H. M.: Uncertainties in coastal flood risk assessments in small island developing states, Nat. Hazards Earth Syst. Sci., 20, 2397–2414, https://doi.org/10.5194/nhess-20-2397-2020, 2020.
Pathiraja, S., Moradkhani, H., Marshall, L., Sharma, A., and Geenens, G.: Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation, Water Resour. Res., 54, 1252–1280, https://doi.org/10.1002/2018WR022627, 2018.
Peña, F., Nardi, F., Melesse, A., Obeysekera, J., Castelli, F., Price, R. M., Crowl, T., and Gonzalez-Ramirez, N.: Compound flood modeling framework for surface–subsurface water interactions, Nat. Hazards Earth Syst. Sci., 22, 775–793, https://doi.org/10.5194/nhess-22-775-2022, 2022.
Rego, J. L. and Li, C.: Storm surge propagation in Galveston Bay during Hurricane Ike, J. Mar. Syst., 82, 265–279, https://doi.org/10.1016/j.jmarsys.2010.06.001, 2010.
Roelvink, J. A. and Van Banning, G.: Design and development of DELFT3D and application to coastal morphodynamics, Oceanogr. Literat. Rev., 11, 451–456, 1995.
Rogers, J. N., Parrish, C. E., Ward, L. G., and Burdick, D. M.: Assessment of Elevation Uncertainty in Salt Marsh Environments using Discrete-Return and Full-Waveform Lidar, J. Coast. Res., 76, 107–122, https://doi.org/10.2112/SI76-010, 2016.
Rogers, J. N., Parrish, C. E., Ward, L. G., and Burdick, D. M.: Improving salt marsh digital elevation model accuracy with full-waveform lidar and nonparametric predictive modeling, Estuar. Coast. Shelf Sci., 202, 193–211, https://doi.org/10.1016/j.ecss.2017.11.034, 2018.
Sadegh, M., Moftakhari, H., Gupta, H. V., Ragno, E., Mazdiyasni, O., Sanders, B., Matthew, R., and AghaKouchak, A.: Multihazard Scenarios for Analysis of Compound Extreme Events, Geophys. Res. Lett., 45, 5470–5480, https://doi.org/10.1029/2018GL077317, 2018.
Salehi, M.: Storm Surge and Wave Impact of Low-Probability Hurricanes on the Lower Delaware Bay – Calibration and Application, J. Mar. Sci. Eng., 6, 54, https://doi.org/10.3390/jmse6020054, 2018.
Sanders, B. F., Schubert, J. E., Kahl, D. T., Mach, K. J., Brady, D., AghaKouchak, A., Forman, F., Matthew, R. A., Ulibarri, N., and Davis, S. J.: Large and inequitable flood risks in Los Angeles, California, Nat. Sustain., 6, 47–57, https://doi.org/10.1038/s41893-022-00977-7, 2023.
Santiago-Collazo, F. L., Bilskie, M. V., and Hagen, S. C.: A comprehensive review of compound inundation models in low-gradient coastal watersheds, Environ. Model. Softw., 119, 166–181, https://doi.org/10.1016/j.envsoft.2019.06.002, 2019.
Savage, T., Pianosi, F., Bates, P., Freer, J., and Wagener, T.: Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model, Water Resour. Res., 52, 9146–9163, https://doi.org/10.1002/2015WR018198, 2016.
Schoppa, L., Disse, M., and Bachmair, S.: Evaluating the performance of random forest for large-scale flood discharge simulation, J. Hydrol., 590, 125531, https://doi.org/10.1016/j.jhydrol.2020.125531, 2020.
Sebastian, A., Bader, D. J., Nederhoff, C. M., Leijnse, T. W. B., Bricker, J. D., and Aarninkhof, S. G. J.: Hindcast of pluvial, fluvial, and coastal flood damage in Houston, Texas during Hurricane Harvey (2017) using SFINCS, Nat. Hazards, 109, 2343–2362, https://doi.org/10.1007/s11069-021-04922-3, 2021.
Serafin, K. A., Ruggiero, P., and Stockdon, H. F.: The relative contribution of waves, tides, and nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches, Geophys. Res. Lett., 44, 1839–1847, https://doi.org/10.1002/2016GL071020, 2017.
Serafin, K. A., Ruggiero, P., Parker, K., and Hill, D. F.: What's streamflow got to do with it? A probabilistic simulation of the competing oceanographic and fluvial processes driving extreme along-river water levels, Nat. Hazards Earth Syst. Sci., 19, 1415–1431, https://doi.org/10.5194/nhess-19-1415-2019, 2019.
Shustikova, I., Domeneghetti, A., Neal, J. C., Bates, P., and Castellarin, A.: Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography, Hydrolog. Sci. J., 64, 1769–1782, https://doi.org/10.1080/02626667.2019.1671982, 2019.
Taylor, N. R., Irish, J. L., Udoh, I. E., Bilskie, M. V., and Hagen, S. C.: Development and uncertainty quantification of hurricane surge response functions for hazard assessment in coastal bays, Nat. Hazards, 77, 1103–1123, https://doi.org/10.1007/s11069-015-1646-5, 2015.
Thompson, A., Guo, Y., and Moin, S.: Uncertainty Analysis of a Two-dimensional Hydrodynamic Model, J. Great Lakes Res., 34, 472–484, https://doi.org/10.3394/0380-1330(2008)34[472:UAOATH]2.0.CO;2, 2008.
TPXO 8.0: Global Inverse Tide Model, TPXO 8.0 [code and data set], https://www.tpxo.net/global/tpxo8-atlas (last access: 6 June 2024), 2024.
USACE: US Army Corps of Engineers, https://www.hec.usace.army.mil/software/hec-ras/documentation.aspx (last access: 4 April 2023), 2023.
USGS: US Geological Survey, https://help.waterdata.usgs.gov/codes-and-parameters/discharge-measurement-quality-code (last access: 3 May 2021), 2021.
USGS-FEV: Flood Event Viewer, https://stn.wim.usgs.gov/fev/ (last access: 6 June 2024), 2024.
USGS-NWD: National Water Dashboard, https://dashboard.waterdata.usgs.gov/app/nwd/en/ (last access: 6 June 2024), 2024.
Valle-Levinson, A., Olabarrieta, M., and Heilman, L.: Compound flooding in Houston-Galveston Bay during Hurricane Harvey, Sci. Total Environ., 747, 141272, https://doi.org/10.1016/j.scitotenv.2020.141272, 2020.
Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation, Environ. Model. Softw., 75, 273–316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.
Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., and Bai, X.: Flood hazard risk assessment model based on random forest, J. Hydrol., 527, 1130–1141, https://doi.org/10.1016/j.jhydrol.2015.06.008, 2015.
Wing, O. E. J., Sampson, C. C., Bates, P. D., Quinn, N., Smith, A. M., and Neal, J. C.: A flood inundation forecast of Hurricane Harvey using a continental-scale 2D hydrodynamic model, J. Hydrol. X, 4, 100039, https://doi.org/10.1016/j.hydroa.2019.100039, 2019.
Xu, K., Wang, C., and Bin, L.: Compound flood models in coastal areas: a review of methods and uncertainty analysis, Nat. Hazards, 116, 469–496, https://doi.org/10.1007/s11069-022-05683-3, 2023.
Yen, B. C.: Open Channel Flow Resistance, J. Hydraul. Eng., 128, 20–39, https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20), 2002.
Yin, D., Muñoz, D. F., Bakhtyar, R., Xue, Z. G., Moftakhari, H., Ferreira, C., and Mandli, K.: Extreme Water Level Simulation and Component Analysis in Delaware Estuary during Hurricane Isabel, J. Am. Water Resour. Assoc., 58, 19–33, https://doi.org/10.1111/1752-1688.12947, 2021.
Short summary
Linking hydrodynamics with machine learning models for compound flood modeling enables a robust characterization of nonlinear interactions among the sources of uncertainty. Such an approach enables the quantification of cascading uncertainty and relative contributions to total uncertainty while also tracking their evolution during compound flooding. The proposed approach is a feasible alternative to conventional statistical approaches designed for uncertainty analyses.
Linking hydrodynamics with machine learning models for compound flood modeling enables a robust...