Articles | Volume 27, issue 2
https://doi.org/10.5194/hess-27-385-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-385-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimating karst groundwater recharge from soil moisture observations – a new method tested at the Swabian Alb, southwest Germany
Romane Berthelin
CORRESPONDING AUTHOR
Chair of Hydrological Modeling and Water Resources, Freiburg University, Freiburg 79098, Germany
Tunde Olarinoye
Chair of Hydrological Modeling and Water Resources, Freiburg University, Freiburg 79098, Germany
Michael Rinderer
Chair of Hydrological Modeling and Water Resources, Freiburg University, Freiburg 79098, Germany
Matías Mudarra
Department of Geology and Center of Hydrogeology of the University of Málaga, Faculty of Science, 29071, Málaga, Spain
Dominic Demand
Chair of Hydrology, Freiburg University, Freiburg, 79098 Germany
Mirjam Scheller
Chair of Hydrological Modeling and Water Resources, Freiburg University, Freiburg 79098, Germany
Andreas Hartmann
Institute of Groundwater Management, Technical University of Dresden, 01069 Dresden, Germany
Chair of Hydrological Modeling and Water Resources, Freiburg University, Freiburg 79098, Germany
Related authors
No articles found.
Thomas Fichtner, Yuly Juliana Aguilar Avila, Andreas Hartmann, Stefan Seeger, Martin Maier, and Stephan Raspe
EGUsphere, https://doi.org/10.5194/egusphere-2025-4025, https://doi.org/10.5194/egusphere-2025-4025, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The study examines how spatial soil moisture variability influences SVAT model calibration and the estimation of groundwater recharge in forest ecosystems. We show that model-inherent uncertainties affect predictions more strongly than soil moisture variability itself. Our results demonstrate that reliable groundwater recharge can be achieved using data from just six to seven profiles, providing practical guidance for more efficient field monitoring and model calibration.
Theresa Blume, Peter Chifflard, Stefan Achleitner, Andreas Hartmann, Stefan Hergarten, Luisa Hopp, Bernhard Kohl, Florian Leese, Ilja van Meerveld, Christian Reinhardt-Imjela, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2025-4424, https://doi.org/10.5194/egusphere-2025-4424, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Subsurface stormflow (SSF) is one of the least studied and therefore least understood runoff generation processes because detecting and quantifying SSF is extremely challenging. We present an ongoing concerted experimental effort to systematically investigate SSF across four catchments using a variety of methods covering different spatial scales. Centerpiece of this effort is the construction of 12 large trenches to capture and monitor SSF.
Markus Giese, Yvan Caballero, Andreas Hartmann, and Jean-Baptiste Charlier
Hydrol. Earth Syst. Sci., 29, 3037–3054, https://doi.org/10.5194/hess-29-3037-2025, https://doi.org/10.5194/hess-29-3037-2025, 2025
Short summary
Short summary
Karst springs respond quickly to environmental changes, making them crucial to understanding climate impacts on groundwater. This study analyses long-term trends in precipitation, temperature, and discharge from more than 50 springs across Europe. Results show that while historical discharge trends align with those of rivers, recent changes are driven by rising temperatures rather than precipitation. These findings highlight climate-driven shifts in groundwater recharge and storage processes.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 29, 2925–2950, https://doi.org/10.5194/hess-29-2925-2025, https://doi.org/10.5194/hess-29-2925-2025, 2025
Short summary
Short summary
Groundwater is a crucial resource at risk due to droughts. To understand drought effects on groundwater levels in Germany, we grouped 6626 wells into six regional and two national patterns. Weather explained half of the level variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (a few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181, https://doi.org/10.5194/egusphere-2025-1181, 2025
Short summary
Short summary
Here we describe a collaborative effort to improve predictions of how climate change will affect groundwater. The ISIMIP groundwater sector combines multiple global groundwater models to capture a range of possible outcomes and reduce uncertainty. Initial comparisons reveal significant differences between models in key metrics like water table depth and recharge rates, highlighting the need for structured model intercomparisons.
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024, https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short summary
To understand the impact of external factors on groundwater level modelling using a 1-D convolutional neural network (CNN) model, we train, validate, and tune individual CNN models for 505 wells distributed across Lower Saxony, Germany. We then evaluate the performance of these models against available geospatial and time series features. This study provides new insights into the relationship between these factors and the accuracy of groundwater modelling.
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Short summary
We present a method to collect water vapor samples into bags in the field without an in-field analyser, followed by isotope analysis in the lab. This new method resolves even fine-scaled natural isotope variations. It combines low-cost and lightweight components for maximum spatial and temporal flexibility regarding environmental setups. Hence, it allows for sampling even in terrains that are rather difficult to access, enabling future extended isotope datasets in soil sciences and ecohydrology.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022, https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Short summary
We adapt the informal Kling–Gupta efficiency (KGE) with a gamma distribution to apply it as an informal likelihood function in the DiffeRential Evolution Adaptive Metropolis DREAM(ZS) method. Our adapted approach performs as well as the formal likelihood function for exploring posterior distributions of model parameters. The adapted KGE is superior to the formal likelihood function for calibrations combining multiple observations with different lengths, frequencies and units.
Yong Chang, Benjamin Mewes, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-77, https://doi.org/10.5194/hess-2022-77, 2022
Revised manuscript not accepted
Short summary
Short summary
This study presents a work to investigate the feasibility of using EC to predict the discharge in a typical karst catchment. We found that the spring discharge can be well predicted by EC in storms using LSTM (Long Short Term Memory) model, while the prediction has relatively large uncertainties in small recharge events. To establish a roust LSTM model for long-term discharge prediction from EC in ungauged catchments, the random or fixed-interval discharge monitoring strategy is recommended.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Tesfalem Abraham, Yan Liu, Sirak Tekleab, and Andreas Hartmann
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-271, https://doi.org/10.5194/hess-2021-271, 2021
Preprint withdrawn
Short summary
Short summary
In this study we demonstrate the use of global data products for the regionalization of model parameters. We combine three steps of uncertainty quantification from the parameter sampling, best parameter sets identification, and spatial cross-validation. Our results show the best validation parameters provide the most robust regionalization results, and the uncertainties from the regionalization in the ungauged catchments are higher than those obtained from simulations in the gauged catchments.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Cited articles
Allocca, V., Manna, F., and De Vita, P.:
Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy), Hydrol. Earth Syst. Sci., 18, 803–817, https://doi.org/10.5194/hess-18-803-2014, 2014.
Andreo, B., Vías, J., Durán, J. J., Jiménez, P., López-Geta, J. A., and Carrasco, F.:
Methodology for groundwater recharge assessment in carbonate aquifers: Application to pilot sites in southern Spain, Hydrogeol. J., 16, 911–925, https://doi.org/10.1007/s10040-008-0274-5, 2008.
Aquilina, L., Ladouche, B., and Dörfliger, N.:
Recharge processes in karstic systems investigated through the correlation of chemical and isotopic composition of rain and spring-waters, Appl. Geochem., 20, 2189–2206, https://doi.org/10.1016/j.apgeochem.2005.07.011, 2005.
Baker, A., Berthelin, R., Cuthbert, M. O., Treble, P. C., Hartmann, A., and the KSS Cave Studies Team: Rainfall recharge thresholds in a subtropical climate determined using a regional cave drip water monitoring network, J. Hydrol., 587, https://doi.org/10.1016/j.jhydrol.2020.125001, 2020.
Bargués Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A., Laudon, H., and Ilstedt, U.:
The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso, Water Resour. Res., 50, 3342–3354, https://doi.org/10.1002/2013WR015197, 2014.
Berthelin, R., Rinderer, M., Andreo, B., Baker, A., Kilian, D., Leonhardt, G., Lotz, A., Lichtenwoehrer, K., Mudarra, M., Padilla, I. Y., Pantoja Agreda, F., Rosolem, R., Vale, A., and Hartmann, A.:
A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe, Geosci. Instrum. Method. Data Syst., 9, 11–23, https://doi.org/10.5194/gi-9-11-2020, 2020.
Blume, H. P., Brümmer, G. W., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B. M., Thiele-Bruhn, S., and Welp, G.: Scheffer/Schachtschabel: Lehrbuch der Bodenkunde, Spektrum Akademischer Verlag Heidelberg, 570 pp., ISBN 978-3-662-49959-7, 2010.
Brooks, R. H. and Corey, A. T.: Hydraulic properties of porous media, Hydrology Papers Colorado State University: Fort Collins, CO, USA, 1964.
Carrière, S. D., Chalikakis, K., Danquigny, C., Davi, H., Mazzilli, N., Ollivier, C., and Emblanch, C.:
Le rôle de la matrice poreuse dans la régulation des flux d'eau dans la zone non saturée du karst: une approche hydrogéophysique intégrée, Hydrogeol. J., 24, 1905–1918, https://doi.org/10.1007/s10040-016-1425-8, 2016.
Carriere, S., Martin St-Paul, N. K., Belmys Cakpo, C., Patris, N., Gillon, M., Chalikakis, K., Doussan, C., Olioso, A., Babic, M., and Jouineau, A.:
The role of deep vadose zone water in tree transpiration during drought periods in karst settings – Insights from isotopic tracing and leaf water potential, Sci. Total Environ., 699, 134332, https://doi.org/10.1016/j.scitotenv.2019.134332, 2020.
Cary, J. W. and Hayden, C. W.:
An index for soil pore size disctribution, Geoderma, 9, https://doi.org/10.1016/0016-7061(73)90026-8, 249–256, 1973.
Chen, Z., Auler, A. S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A., Stevanovic, Z., Veni, G., and Goldscheider, N.:
Le programme de la Carte Mondiale des Aquifères Karstiques: concept, procédure de cartographie et carte de l'Europe, Hydrogeol. J., 25, 771–785, https://doi.org/10.1007/s10040-016-1519-3, 2017.
Delbart, C., Valdes, D., Barbecot, F., Tognelli, A., Richon, P., and Couchoux, L.:
Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method, J. Hydrol., 511, 580–588, https://doi.org/10.1016/j.jhydrol.2014.02.008, 2014.
Demand, D., Blume, T., and Weiler, M.:
Spatio-temporal relevance and controls of preferential flow at the landscape scale, Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, 2019.
Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.:
The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
Fleury, P., Plagnes, V., and Bakalowicz, M.:
Modelling of the functioning of karst aquifers with a reservoir model: Application to Fontaine de Vaucluse (South of France), J. Hydrol., 345, 38–49, https://doi.org/10.1016/j.jhydrol.2007.07.014, 2007.
Fu, Z. Y., Chen, H. S., Zhang, W., Xu, Q. X., Wang, S., and Wang, K. L.:
Subsurface flow in a soil-mantled subtropical dolomite karst slope: A field rainfall simulation study, Geomorphology, 250, 1–14, https://doi.org/10.1016/j.geomorph.2015.08.012, 2015.
Graham, C. B. and Lin, H. S.:
Controls and Frequency of Preferential Flow Occurrence: A 175-Event Analysis, Vadose Zone J., 10, 816–831, https://doi.org/10.2136/vzj2010.0119, 2011.
Gimbel, K. F., Puhlmann, H., and Weiler, M.:
Does drought alter hydrological functions in forest soils?, Hydrol. Earth Syst. Sci., 20, 1301–1317, https://doi.org/10.5194/hess-20-1301-2016, 2016.
Goldscheider, N.:
Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany, Hydrogeol. J., 13, 555–564, https://doi.org/10.1007/s10040-003-0291-3, 2005.
Goldscheider, N. and Drew, D. (Eds.): Methods in Karst Hydrogeology, Taylor and Francis/Balkema, London, ISBN 978-0-415-42873-6, 2007.
Goldscheider, N., Meiman, J., Pronk, M., and Smart, C.:
Tracer tests in karst hydrogeology and speleology, Int. J. Speleol., 37, 27–40, https://doi.org/10.5038/1827-806X.37.1.3, 2008.
Hartmann, A., Lange, J., Vivó Aguado, À., Mizyed, N., Smiatek, G., and Kunstmann, H.:
A multi-model approach for improved simulations of future water availability at a large Eastern Mediterranean karst spring, J. Hydrol., 468–469, 130–138, https://doi.org/10.1016/j.jhydrol.2012.08.024, 2012.
Hartmann, A., Weiler, M., Wagener, T., Lange, J., Kralik, M., Humer, F., Mizyed, N., Rimmer, A., Barberá, J. A., Andreo, B., Butscher, C., and Huggenberger, P.:
Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties, Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, 2013.
Hartmann, A., Gleeson, T., Wada, Y., and Wagener, T.:
Enhanced groundwater recharge rates and altered recharge sensitivity to climate variability through subsurface heterogeneity, P. Natl. Acad. Sci. USA, 114, 2842–2847, https://doi.org/10.1073/pnas.1614941114, 2017.
Hartmann, A., Jasechko, S., Gleeson, T., Wada, Y., Andreo, B., Barberá, J. A., Brielmann, H., Bouchaou, L., Charlier, J.-B., Darling, W. G., Filippini, M., Garvelmann, J., Goldscheider, N., Kralik, M., Kunstmann, H., Ladouche, B., Lange, J., Lucianetti, G., Martín, J. F., Mudarra, M., Sánchez, D., Stumpp, C., Zagana, E., and Wagener, T.:
Risk of groundwater contamination widely underestimated because of fast flow into aquifers, P. Natl. Acad. Sci. USA, 118, 20, https://doi.org/10.1073/PNAS.2024492118, 2021.
Heilman, J. L., Litvak, M. E., Mcinnes, K. J., Kjelgaard, J. F., Kamps, R. H., and Schwinning, S.:
Water-storage capacity controls energy partitioning and water use in karst ecosystems on the Edwards Plateau, Texas, Ecohydrology, 7, 127–138, https://doi.org/10.1002/eco.1327, 2014.
Hillel, D.: Environmental soil physics: fundamentals, applications, and environmental considerations, Academic Press, 800 pp., ISBN 9780080544151, 1998.
Ireson, A. M. and Butler, A. P.:
Controls on preferential recharge to Chalk aquifers, J. Hydrol., 398, 109–123, https://doi.org/10.1016/j.jhydrol.2010.12.015, 2011.
Jeannin, P.-Y., Groves, C., and Häuselmann, P.:
Speleological investigations, in: Methods in karst hydrogeology. International Contribution to Hydrogeology, IAH, vol. 26, edited by: Goldscheider, N. and Drew, D., Taylor and Francis/Balkema, London, ISBN 978-0-415-42873-6, 25–44, 2007.
Kirn, L., Mudarra, M., Marín, A., Andreo, B., and Hartmann, A.:
Improved Assessment of Groundwater Recharge in a Mediterranean Karst Region: Andalusia, Spain, Advances in Karst Science, 117–125, https://doi.org/10.1007/978-3-319-45465-8_13, 2017.
Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.:
Development and test of the distributed HBV-96 hydrological model, J. Hydrol., https://doi.org/10.1016/S0022-1694(97)00041-3, 272–288, 1997.
LUBW Landesanstalt für Umwelt: Daten aus dem Umweltinformationssystem (UIS) der LUBW Landesanstalt für Umwelt Baden-Württemberg, https://udo.lubw.baden-wuerttemberg.de, last access: 11 January 2023.
Maloszewski, P., Stichler, W., Zuber, A., and Rank, D.:
Identifying the fow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental 18O and 3H isotopes, J. Hydrol., 256, 48–59, https://doi.org/10.1016/S0022-1694(01)00526-1, 2002.
Mangin, A.: Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale, J. Hydrol., 67, 25–43, https://doi.org/10.1016/0022-1694(84)90230-0, 1984.
Martini, E., Wollschläger, U., Kögler, S., Behrens, T., Dietrich, P., Reinstorf, F., Schmidt, K., Weiler, M., Werban, U., and Zacharias, S.:
Spatial and Temporal Dynamics of Hillslope-Scale Soil Moisture Patterns: Characteristic States and Transition Mechanisms, Vadose Zone J., 14, vzj2014.10.0150, https://doi.org/10.2136/vzj2014.10.0150, 2015.
Messerschmid, C., Sauter, M., and Lange, J.:
Field-based estimation and modelling of distributed groundwater recharge in a Mediterranean karst catchment, Wadi Natuf, West Bank, Hydrol. Earth Syst. Sci., 24, 887–917, https://doi.org/10.5194/hess-24-887-2020, 2020.
Mudarra, M. and Andreo, B.:
Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: The case of Alta Cadena (Southern Spain), J. Hydrol., 397, 263–280, https://doi.org/10.1016/j.jhydrol.2010.12.005, 2011.
Mudarra, M., Andreo, B., Marín, A. I., Vadillo, I., and Barberá, J. A.:
Combined use of natural and artificial tracers to determine the hydrogeological functioning of a karst aquifer: the Villanueva del Rosario system (Andalusia, southern Spain), Hydrogeol. J., 22, 1027–1039, https://doi.org/10.1007/s10040-014-1117-1, 2014.
Mudarra, M., Hartmann, A., and Andreo, B.:
Combining Experimental Methods and Modeling to Quantify the Complex Recharge Behavior of Karst Aquifers, Water Resour. Res., 55, 1384–1404, https://doi.org/10.1029/2017WR021819, 2019.
Ollivier, C., Mazzilli, N., Olioso, A., Chalikakis, K., Carrière, S. D., Danquigny, C., and Emblanch, C.:
Karst recharge-discharge semi distributed model to assess spatial variability of flows, Sci. Total Environ., 703, 134368, https://doi.org/10.1016/j.scitotenv.2019.134368, 2020.
Parajka, J., Blöschl, G., and Merz, R.:
Regional calibration of catchment models: Potential for ungauged catchments, Water Resour. Res., 43, W06406, https://doi.org/10.1029/2006WR005271, 2007.
Perrin, J., Jeannin, P. Y., and Zwahlen, F.:
Epikarst storage in a karst aquifer: A conceptual model based on isotopic data, Milandre test site, Switzerland, J. Hydrol., 279, 106–124, https://doi.org/10.1016/S0022-1694(03)00171-9, 2003.
Radulovic, M., Stevanovic, Z., and Radulovic, M.:
A new approach in assessing recharge of highly karstified terrains-Montenegro case studies, Environ. Earth Sci., 65, 2221–2230, https://doi.org/10.1007/s12665-011-1378-0, 2011.
Ries, F., Lange, J., Schmidt, S., Puhlmann, H., and Sauter, M.:
Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region, Hydrol. Earth Syst. Sci., 19, 1439–1456, https://doi.org/10.5194/hess-19-1439-2015, 2015.
Sappa, G., Vitale, S., and Ferranti, F.:
Identifying karst aquifer recharge areas using environmental isotopes: A case study in central Italy, Geosciences (Switzerland), Geosci. J., 8, 351, https://doi.org/10.3390/geosciences8090351, 2018.
Sarrazin, F., Hartmann, A., Pianosi, F., Rosolem, R., and Wagener, T.:
V2Karst V1.1: a parsimonious large-scale integrated vegetation–recharge model to simulate the impact of climate and land cover change in karst regions, Geosci. Model Dev., 11, 4933–4964, https://doi.org/10.5194/gmd-11-4933-2018, 2018.
Saxton, K. E., Rawls, W. J., Romberger, J. S., and Papendick, R. I.:
Estimating Generalized Soil-water Characteristics from Texture, Soil. Sci. Soc. Am. J., 50, 1031–1036, https://doi.org/10.2136/sssaj1986.03615995005000040039x, 1986.
Schaffitel, A., Schuetz, T., and Weiler, M.:
Fluxes from soil moisture measurements (FluSM v1.0): a data-driven water balance framework for permeable pavements, Geosci. Model Dev., 14, 2127–2142, https://doi.org/10.5194/gmd-14-2127-2021, 2021.
Schulla, J.:
Hydrologische Modellierung von Flussgebieten zur Abschätzung der Folgen von Klimaäderungen, Geographisches Institut ETH Zürich, Zürich, Switzerland, 161 pp., 1997.
Stevanović, Z.:
Karst waters in potable water supply: a global scale overview, Environ. Earth Sci., 78, 662, https://doi.org/10.1007/s12665-019-8670-9, 2019.
Tobin, B. W., Polk, J. S., Arpin, S. M., Shelley, A., and Taylor, C.:
A conceptual model of epikarst processes across sites, seasons, and storm events, J. Hydrol., 596, 125692, https://doi.org/10.1016/j.jhydrol.2020.125692, 2021.
Tooth, A. F. and Fairchild, I. J.:
Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland, J. Hydrol., 273, 51–68, 2003.
Union européenne – SOeS, CORINE Land Cover, last access: 11 January 2023, 2006.
Vogel, R. M. and Kroll, C. N.: Estimation of baseflow recession constants. Water Resour. Manage., 10,
303–320, https://doi.org/10.1007/BF00508898, 1996.
WaBoA (Ed.):
Wasser und Boden Atlas (WaBoA) von Baden-Wuerttemberg [Water and Soil Atlas of Baden-Wuerttemberg], Publication Umweltverwaltung Baden-Württemberg, http://www.hydrology.uni-freiburg.de/forsch/waboa/waboa2004/pages/03home/fs_home.htm (last access: 11 January 2023), 2012.
Wiekenkamp, I., Huisman, J. A., Bogena, H. R., Lin, H. S., and Vereecken, H.:
Spatial and temporal occurrence of preferential flow in a forested headwater catchment, J. Hydrol., 534, 139–149, https://doi.org/10.1016/j.jhydrol.2015.12.050, 2016.
Williams, P. W.: The role of the epikarst in karst and cave hydrogeology: a review, Int. J. Speleol., 37, 1–10, https://doi.org/10.5038/1827-806X.37.1.1, 2008.
Worthington, S. R. H., Davies, G. J., and Alexander, E. C.:
Enhancement of bedrock permeability by weathering, Earth. Sci. Rev., 160, 188–202, https://doi.org/10.1016/j.earscirev.2016.07.002, 2016.
Xu, C.-Y. and Chen, D.:
Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany, Hydrol. Process., 19, 3717–3734. https://doi.org/10.1002/hyp.5853, 2005.
Xu, Z., Massei, N., Padilla, I., Hartmann, A., and Hu, B.:
Characterization, modeling, and remediation of karst in a changing environment, Environ. Earth Sci., 77, 476, https://doi.org/10.1007/s12665-018-7660-7, 2018.
Yeh, J.:
One-Dimensional Steady State Infiltration in Heterogeneous Soils, Water Resour. Res., 2149–2158, https://doi.org/10.1029/WR025i010p02149, 1989.
Short summary
Karstic recharge processes have mainly been explored using discharge analysis despite the high influence of the heterogeneous surface on hydrological processes. In this paper, we introduce an event-based method which allows for recharge estimation from soil moisture measurements. The method was tested at a karst catchment in Germany but can be applied to other karst areas with precipitation and soil moisture data available. It will allow for a better characterization of karst recharge processes.
Karstic recharge processes have mainly been explored using discharge analysis despite the high...