Articles | Volume 27, issue 9
https://doi.org/10.5194/hess-27-1929-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1929-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revisiting the hydrological basis of the Budyko framework with the principle of hydrologically similar groups
Yuchan Chen
Guangdong Province Data Center of Terrestrial and Marine Ecosystems
Carbon Cycle, Guangdong Province Key Laboratory for Climate Change and
Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen
University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
Xiuzhi Chen
CORRESPONDING AUTHOR
Guangdong Province Data Center of Terrestrial and Marine Ecosystems
Carbon Cycle, Guangdong Province Key Laboratory for Climate Change and
Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen
University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
Meimei Xue
Guangdong Province Data Center of Terrestrial and Marine Ecosystems
Carbon Cycle, Guangdong Province Key Laboratory for Climate Change and
Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen
University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
Chuanxun Yang
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,
Guangzhou, 510640, China
College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
Wei Zheng
Guangdong Province Data Center of Terrestrial and Marine Ecosystems
Carbon Cycle, Guangdong Province Key Laboratory for Climate Change and
Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen
University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
Jun Cao
Institute of Ecological Civilization and Green Development, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510635, China
Wenting Yan
Guangdong Province Data Center of Terrestrial and Marine Ecosystems
Carbon Cycle, Guangdong Province Key Laboratory for Climate Change and
Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen
University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
Wenping Yuan
Guangdong Province Data Center of Terrestrial and Marine Ecosystems
Carbon Cycle, Guangdong Province Key Laboratory for Climate Change and
Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen
University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China
Related authors
No articles found.
Sylvain Schmitt, Fabian J. Fischer, James G. C. Ball, Nicolas Barbier, Marion Boisseaux, Damien Bonal, Benoit Burban, Xiuzhi Chen, Géraldine Derroire, Jeremy W. Lichstein, Daniela Nemetschek, Natalia Restrepo-Coupe, Scott Saleska, Giacomo Sellan, Philippe Verley, Grégoire Vincent, Camille Ziegler, Jérôme Chave, and Isabelle Maréchaux
Geosci. Model Dev., 18, 5205–5243, https://doi.org/10.5194/gmd-18-5205-2025, https://doi.org/10.5194/gmd-18-5205-2025, 2025
Short summary
Short summary
We evaluate the capability of TROLL 4.0, a simulator of forest dynamics, to represent tropical forest structure, diversity, dynamics, and functioning in two Amazonian forests. Evaluation data include forest inventories, carbon and water fluxes between the forest and the atmosphere, and leaf area and canopy height from remote sensing products. The model realistically predicts the structure and composition as well as the seasonality of carbon and water fluxes at both sites.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Xueqin Yang, Qingling Sun, Liusheng Han, Jie Tian, Wenping Yuan, Liyang Liu, Wei Zheng, Mei Wang, Yunpeng Wang, and Xiuzhi Chen
Earth Syst. Sci. Data, 17, 3293–3314, https://doi.org/10.5194/essd-17-3293-2025, https://doi.org/10.5194/essd-17-3293-2025, 2025
Short summary
Short summary
Understanding how leaves absorb carbon from the atmosphere is essential for predicting changes in global forests. Young leaves play a key role in this process, but their efficiency has been difficult to measure at large scales. Using satellite data, we developed a new method to track the seasonal patterns of young leaves’ photosynthetic capacity from 2001 to 2018. Our dataset helps scientists better understand forest growth and how ecosystems respond to climate change.
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 17, 2193–2216, https://doi.org/10.5194/essd-17-2193-2025, https://doi.org/10.5194/essd-17-2193-2025, 2025
Short summary
Short summary
Rice is a vital staple crop that plays a crucial role in food security in China. However, long-term high-resolution rice distribution maps in China are lacking. This study developed a new rice-mapping method, mitigating the impact of cloud contamination and missing data in optical remote sensing observations on rice mapping. The resulting dataset, CCD-Rice (China Crop Dataset-Rice), achieved high accuracy and showed a strong correlation with statistical data.
Yangyang Fu, Xiuzhi Chen, Chaoqing Song, Xiaojuan Huang, Jie Dong, Qiongyan Peng, and Wenping Yuan
Earth Syst. Sci. Data, 17, 95–115, https://doi.org/10.5194/essd-17-95-2025, https://doi.org/10.5194/essd-17-95-2025, 2025
Short summary
Short summary
This study proposed the Winter-Triticeae Crops Index (WTCI), which had great performance and stable spatiotemporal transferability in identifying winter-triticeae crops in 66 countries worldwide, with an overall accuracy of 87.7 %. The first global 30 m resolution distribution maps of winter-triticeae crops from 2017 to 2022 were further produced based on the WTCI method. The product can serve as an important basis for agricultural applications.
Ruoque Shen, Qiongyan Peng, Xiangqian Li, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-147, https://doi.org/10.5194/essd-2024-147, 2024
Manuscript not accepted for further review
Short summary
Short summary
Rice is a vital staple crop that plays a crucial role in food security in China. However, long-term high-resolution rice distribution maps in China are lacking. This study developed a new rice mapping method using to address the challenges of cloud contamination and missing data in optical remote sensing observations. The resulting dataset, CCD-Rice (China Crop Dataset-Rice), achieved high accuracy and showed strong correlation with statistical data.
Daju Wang, Peiyang Ren, Xiaosheng Xia, Lei Fan, Zhangcai Qin, Xiuzhi Chen, and Wenping Yuan
Earth Syst. Sci. Data, 16, 2465–2481, https://doi.org/10.5194/essd-16-2465-2024, https://doi.org/10.5194/essd-16-2465-2024, 2024
Short summary
Short summary
This study generated a high-precision dataset, locating forest harvested carbon and quantifying post-harvest wood emissions for various uses. It enhances our understanding of forest harvesting and post-harvest carbon dynamics in China, providing essential data for estimating the forest ecosystem carbon budget and emphasizing wood utilization's impact on carbon emissions.
Kai Yan, Jingrui Wang, Rui Peng, Kai Yang, Xiuzhi Chen, Gaofei Yin, Jinwei Dong, Marie Weiss, Jiabin Pu, and Ranga B. Myneni
Earth Syst. Sci. Data, 16, 1601–1622, https://doi.org/10.5194/essd-16-1601-2024, https://doi.org/10.5194/essd-16-1601-2024, 2024
Short summary
Short summary
Variations in observational conditions have led to poor spatiotemporal consistency in leaf area index (LAI) time series. Using prior knowledge, we leveraged high-quality observations and spatiotemporal correlation to reprocess MODIS LAI, thereby generating HiQ-LAI, a product that exhibits fewer abnormal fluctuations in time series. Reprocessing was done on Google Earth Engine, providing users with convenient access to this value-added data and facilitating large-scale research and applications.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Ruoque Shen, Baihong Pan, Qiongyan Peng, Jie Dong, Xuebing Chen, Xi Zhang, Tao Ye, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 15, 3203–3222, https://doi.org/10.5194/essd-15-3203-2023, https://doi.org/10.5194/essd-15-3203-2023, 2023
Short summary
Short summary
Paddy rice is the second-largest grain crop in China and plays an important role in ensuring global food security. This study developed a new rice-mapping method and produced distribution maps of single-season rice in 21 provincial administrative regions of China from 2017 to 2022 at a 10 or 20 m resolution. The accuracy was examined using 108 195 survey samples and county-level statistical data, and we found that the distribution maps have good accuracy.
Xueqin Yang, Xiuzhi Chen, Jiashun Ren, Wenping Yuan, Liyang Liu, Juxiu Liu, Dexiang Chen, Yihua Xiao, Qinghai Song, Yanjun Du, Shengbiao Wu, Lei Fan, Xiaoai Dai, Yunpeng Wang, and Yongxian Su
Earth Syst. Sci. Data, 15, 2601–2622, https://doi.org/10.5194/essd-15-2601-2023, https://doi.org/10.5194/essd-15-2601-2023, 2023
Short summary
Short summary
We developed the first time-mapped, continental-scale gridded dataset of monthly leaf area index (LAI) in three leaf age cohorts (i.e., young, mature, and old) from 2001–2018 data (referred to as Lad-LAI). The seasonality of three LAI cohorts from the new Lad-LAI product agrees well at eight sites with very fine-scale collections of monthly LAI. The proposed satellite-based approaches can provide references for mapping finer spatiotemporal-resolution LAI products with different leaf age cohorts.
Giacomo Grassi, Clemens Schwingshackl, Thomas Gasser, Richard A. Houghton, Stephen Sitch, Josep G. Canadell, Alessandro Cescatti, Philippe Ciais, Sandro Federici, Pierre Friedlingstein, Werner A. Kurz, Maria J. Sanz Sanchez, Raúl Abad Viñas, Ramdane Alkama, Selma Bultan, Guido Ceccherini, Stefanie Falk, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Anu Korosuo, Joana Melo, Matthew J. McGrath, Julia E. M. S. Nabel, Benjamin Poulter, Anna A. Romanovskaya, Simone Rossi, Hanqin Tian, Anthony P. Walker, Wenping Yuan, Xu Yue, and Julia Pongratz
Earth Syst. Sci. Data, 15, 1093–1114, https://doi.org/10.5194/essd-15-1093-2023, https://doi.org/10.5194/essd-15-1093-2023, 2023
Short summary
Short summary
Striking differences exist in estimates of land-use CO2 fluxes between the national greenhouse gas inventories and the IPCC assessment reports. These differences hamper an accurate assessment of the collective progress under the Paris Agreement. By implementing an approach that conceptually reconciles land-use CO2 flux from national inventories and the global models used by the IPCC, our study is an important step forward for increasing confidence in land-use CO2 flux estimates.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Haicheng Zhang, Ronny Lauerwald, Pierre Regnier, Philippe Ciais, Kristof Van Oost, Victoria Naipal, Bertrand Guenet, and Wenping Yuan
Earth Syst. Dynam., 13, 1119–1144, https://doi.org/10.5194/esd-13-1119-2022, https://doi.org/10.5194/esd-13-1119-2022, 2022
Short summary
Short summary
We present a land surface model which can simulate the complete lateral transfer of sediment and carbon from land to ocean through rivers. Our model captures the water, sediment, and organic carbon discharges in European rivers well. Application of our model in Europe indicates that lateral carbon transfer can strongly change regional land carbon budgets by affecting organic carbon distribution and soil moisture.
Quandi Niu, Xuecao Li, Jianxi Huang, Hai Huang, Xianda Huang, Wei Su, and Wenping Yuan
Earth Syst. Sci. Data, 14, 2851–2864, https://doi.org/10.5194/essd-14-2851-2022, https://doi.org/10.5194/essd-14-2851-2022, 2022
Short summary
Short summary
In this paper we generated the first national maize phenology product with a fine spatial resolution (30 m) and a long temporal span (1985–2020) in China, using Landsat images. The derived phenological indicators agree with in situ observations and provide more spatial details than moderate resolution phenology products. The extracted maize phenology dataset can support precise yield estimation and deepen our understanding of the response of agroecosystem to global warming in the future.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Yidi Xu, Philippe Ciais, Le Yu, Wei Li, Xiuzhi Chen, Haicheng Zhang, Chao Yue, Kasturi Kanniah, Arthur P. Cracknell, and Peng Gong
Geosci. Model Dev., 14, 4573–4592, https://doi.org/10.5194/gmd-14-4573-2021, https://doi.org/10.5194/gmd-14-4573-2021, 2021
Short summary
Short summary
In this study, we implemented the specific morphology, phenology and harvest process of oil palm in the global land surface model ORCHIDEE-MICT. The improved model generally reproduces the same leaf area index, biomass density and life cycle fruit yield as observations. This explicit representation of oil palm in a global land surface model offers a useful tool for understanding the ecological processes of oil palm growth and assessing the environmental impacts of oil palm plantations.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Jie Dong, Yangyang Fu, Jingjing Wang, Haifeng Tian, Shan Fu, Zheng Niu, Wei Han, Yi Zheng, Jianxi Huang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 3081–3095, https://doi.org/10.5194/essd-12-3081-2020, https://doi.org/10.5194/essd-12-3081-2020, 2020
Short summary
Short summary
For the first time, we produced a 30 m winter wheat distribution map in China for 3 years during 2016–2018. Validated with 33 776 survey samples, the map had perfect performance with an overall accuracy of 89.88 %. Moreover, the method can identify planting areas of winter wheat 3 months prior to harvest; that is valuable information for production predictions and is urgently necessary for policymakers to reduce economic loss and assess food security.
Yuan Zhang, Ana Bastos, Fabienne Maignan, Daniel Goll, Olivier Boucher, Laurent Li, Alessandro Cescatti, Nicolas Vuichard, Xiuzhi Chen, Christof Ammann, M. Altaf Arain, T. Andrew Black, Bogdan Chojnicki, Tomomichi Kato, Ivan Mammarella, Leonardo Montagnani, Olivier Roupsard, Maria J. Sanz, Lukas Siebicke, Marek Urbaniak, Francesco Primo Vaccari, Georg Wohlfahrt, Will Woodgate, and Philippe Ciais
Geosci. Model Dev., 13, 5401–5423, https://doi.org/10.5194/gmd-13-5401-2020, https://doi.org/10.5194/gmd-13-5401-2020, 2020
Short summary
Short summary
We improved the ORCHIDEE LSM by distinguishing diffuse and direct light in canopy and evaluated the new model with observations from 159 sites. Compared with the old model, the new model has better sunny GPP and reproduced the diffuse light fertilization effect observed at flux sites. Our simulations also indicate different mechanisms causing the observed GPP enhancement under cloudy conditions at different times. The new model has the potential to study large-scale impacts of aerosol changes.
Cited articles
Ahmed, K., Shahid, S., Wang, X., Nawaz, N., and Khan, N.: Evaluation of
gridded precipitation datasets over arid regions of Pakistan, Water, 11,
210, https://doi.org/10.3390/w11020210, 2019.
Beaudoing, H. and Rodell, M.: GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 degree V2.1, GES DISC [data set], https://doi.org/10.5067/SXAVCZFAQLNO, 2020.
Bierhuizen, J.: Some observations on the relation between transpiration and
soil moisture, Neth. J. Agr. Sci., 6, 94–98,
https://doi.org/10.18174/njas.v6i2.17713, 1958.
Budyko, M. I.: Climate and life, Academic Press, New York, 508 pp., ISBN 0121394506, 1974.
Caracciolo, D., Pumo, D., and Viola, F.: Budyko's based method for annual
runoff characterization across different climatic areas: an application to
United States, Water Resour. Manag., 32, 3189–3202, https://doi.org/10.1007/s11269-018-1984-7, 2018.
Cavanaugh, M. L., Kurc, S. A., and Scott, R. L.: Evapotranspiration
partitioning in semiarid shrubland ecosystems: a two-site evaluation of soil
moisture control on transpiration, Ecohydrology, 4, 671–681,
https://doi.org/10.1002/eco.157, 2011.
Chen, X. and Sivapalan, M.: Hydrological basis of the Budyko curve:
Data-guided exploration of the mediating role of soil moisture,
Water Resour. Res., 56, e2020WR028221,
https://doi.org/10.1029/2020WR028221, 2020.
Choudhury, B.: Evaluation of an empirical equation for annual evaporation
using field observations and results from a biophysical model,
J. Hydrol., 216, 99–110, https://doi.org/10.1016/S0022-1694(98)00293-5, 1999.
Degefu, M. A., Bewket, W., and Amha, Y.: Evaluating performance of 20 global
and quasi-global precipitation products in representing drought events in
Ethiopia I: Visual and correlation analysis, Weather and Climate Extremes,
35, 100416, https://doi.org/10.1016/j.wace.2022.100416, 2022.
de Lavenne, A. and Andréassian, V.: Impact of climate seasonality on
catchment yield: A parameterization for commonly-used water balance
formulas, J. Hydrol., 558, 266–274,
https://doi.org/10.1016/j.jhydrol.2018.01.009, 2018.
Du, X., Silwal, G., and Faramarzi, M.: Investigating the impacts of glacier
melt on stream temperature in a cold-region watershed: Coupling a glacier
melt model with a hydrological model, J. Hydrol., 605, 127303, https://doi.org/10.1016/j.jhydrol.2021.127303, 2022.
Ducharne, A., Laval, K., and Polcher, J.: Sensitivity of the hydrological
cycle to the parametrization of soil hydrology in a GCM, Clim. Dynam.,
14, 307–327, https://doi.org/10.1007/s003820050226, 1998.
Feng, X.: Global maps of seasonality indices, HydroShare [data set], http://www.hydroshare.org/resource/ff287c90c9e947a78e351c8d07d9d3f3 (last access: 11 April 2022), 2019.
Fiedler, K. and Döll, P.: Global modelling of continental water storage changes – sensitivity to different climate data sets, Adv. Geosci., 11, 63–68, https://doi.org/10.5194/adgeo-11-63-2007, 2007.
Frölicher, T. L., Fischer, E. M., and Gruber, N.: Marine heatwaves under
global warming, Nature, 560, 360–364, https://doi.org/10.1038/s41586-018-0383-9, 2018.
Fu, B.: On the calculation of the evaporation from land surface, Chinese
Journal of Atmospheric Sciences, 5, 23–31, https://doi.org/10.3878/j.issn.1006-9895.1981.01.03, 1981.
Gan, G., Liu, Y., and Sun, G.: Understanding interactions among climate,
water, and vegetation with the Budyko framework, Earth-Sci. Rev., 212,
103451, https://doi.org/10.1016/j.earscirev.2020.103451, 2021.
Gao, M., Chen, X., Liu, J., and Zhang, Z.: Regionalization of annual runoff
characteristics and its indication of co-dependence among
hydro-climate–landscape factors in Jinghe River Basin, China,
Stoch. Env. Res. Risk. A, 32, 1613–1630,
10.1007/s00477-017-1494-9, 2018.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
Goswami, M. and O'Connor, K. M.: A “monster” that made the SMAR conceptual
model “right for the wrong reasons”, Hydrolog. Sci. J., 55,
913–927, https://doi.org/10.1080/02626667.2010.505170, 2010.
Goswami, U. P. and Goyal, M. K.: Relative Contribution of Climate Variables
on Long-Term Runoff Using Budyko Framework, in: Water Resources Management
and Sustainability, Springer, 147–159, https://doi.org/10.1007/978-981-16-6573-8_7, 2022.
GRDC: Watershed Boundaries of GRDC Stations/Global Runoff Data Centre, Federal Institute of Hydrology (BfG), GRDC [data set], https://www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/222_WSB/watershedBoundaries.html (last access: 16 April 2021), 2011.
GRDC: GRDC discharge data, GRDC [data set], https://www.bafg.de/GRDC/EN/02_srvcs/21_tmsrs/riverdischarge_node.html (last access: 16 April 2021), 2021,
Guan, X., Zhang, J., Yang, Q., and Wang, G.: Quantifying the effects of
climate and watershed structure changes on runoff variations in the Tao
River basin by using three different methods under the Budyko framework,
Theor. Appl. Climatol., 151, 1–14, https://doi.org/10.1007/s00704-021-03894-5, 2022.
Guo, A., Chang, J., Wang, Y., Huang, Q., Guo, Z., and Li, Y.: Uncertainty
analysis of water availability assessment through the Budyko framework,
J. Hydrol., 576, 396–407,
https://doi.org/10.1016/j.jhydrol.2019.06.033, 2019.
Havranek, W. M. and Benecke, U.: The influence of soil moisture on water
potential, transpiration and photosynthesis of conifer seedlings,
Plant and Soil, 49, 91–103, https://doi.org/10.1007/BF02149911, 1978.
Hu, Z., Zhou, Q., Chen, X., Li, J., Li, Q., Chen, D., Liu, W., and Yin, G.:
Evaluation of three global gridded precipitation data sets in central Asia
based on rain gauge observations, Int. J. Climatol., 38,
3475–3493, https://doi.org/10.1002/joc.5510, 2018.
Jiao, L., Lu, N., Fang, W., Li, Z., Wang, J., and Jin, Z.: Determining the
independent impact of soil water on forest transpiration: a case study of a
black locust plantation in the Loess Plateau, China, J. Hydrol.,
572, 671–681, https://doi.org/10.1016/j.jhydrol.2019.03.045,
2019.
Jin, Y., Liu, J., Lin, L., Wang, A., and Chen, X.: Exploring hydrologically
similar catchments in terms of the physical characteristics of upstream
regions, Hydrol. Res., 49, 1467–1483,
https://doi.org/10.2166/nh.2017.191, 2017.
Kanishka, G. and Eldho, T.: Watershed classification using isomap technique
and hydrometeorological attributes, J. Hydrol. Eng., 22,
04017040, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001562,
2017.
Kanishka, G. and Eldho, T.: Streamflow estimation in ungauged basins using
watershed classification and regionalization techniques,
J. Earth Syst. Sci., 129, 1–18,
https://doi.org/10.1007/s12040-020-01451-8, 2020.
Kim, D. and Chun, J. A.: Revisiting a Two-Parameter Budyko Equation With the
Complementary Evaporation Principle for Proper Consideration of Surface
Energy Balance, Water Resour. Res., 57, e2021WR030838,
https://doi.org/10.1029/2021WR030838, 2021.
Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J., and Harrington, R.
A.: Grouped Response Units for Distributed Hydrologic Modeling,
J. Water Res. Pl., 119, 289–305,
https://doi.org/10.1061/(ASCE)0733-9496(1993)119:3(289), 1993.
Lei, H., Yang, D., and Huang, M.: Impacts of climate change and vegetation
dynamics on runoff in the mountainous region of the Haihe River basin in the
past five decades, J. Hydrol., 511, 786–799,
https://doi.org/10.1016/j.jhydrol.2014.02.029, 2014.
Li, D., Pan, M., Cong, Z., Zhang, L., and Wood, E.: Vegetation control on
water and energy balance within the Budyko framework, Water Resour. Res., 49, 969–976, https://doi.org/10.1002/wrcr.20107,
2013.
Li, Y., Li, F., Shangguan, D., and Ding, Y.: A new global gridded glacier
dataset based on the Randolph Glacier Inventory version 6.0,
J. Glaciol., 67, 773–776, https://doi.org/10.1017/jog.2021.28,
2021.
Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan,
W., Zhang, X., and Zhao, X.: The global land surface satellite (GLASS)
product suite, B. Am. Meteorol. Soc., 102,
E323–E337, https://doi.org/10.1175/BAMS-D-18-0341.1, 2021.
Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang, Y., Long, D.,
and Feng, M.: Quantifying the impacts of climate change and ecological
restoration on streamflow changes based on a Budyko hydrological model in
China's Loess Plateau, Water Resour. Res., 51, 6500–6519,
https://doi.org/10.1002/2014WR016589, 2015.
Liu, Q. and Liang, L.: Impacts of climate change on the water balance of a
large nonhumid natural basin in China, Theor. Appl. Climatol.,
121, 489–497, https://doi.org/10.1007/s00704-014-1255-3, 2015.
Liu, J., You, Y., Zhang, Q., and Gu, X.: Attribution of streamflow changes
across the globe based on the Budyko framework, Sci. Total Environ., 794, 148662,
https://doi.org/10.1016/j.scitotenv.2021.148662, 2021.
Liu, J., Long, A., Deng, X., Yin, Z., Deng, M., An, Q., Gu, X., Li, S., and
Liu, G.: The Impact of Climate Change on Hydrological Processes of the
Glacierized Watershed and Projections, Remote Sens., 14, 1314,
https://doi.org/10.3390/rs14061314, 2022.
Liu, S., Wang, X., Zhang, L., Kong, W., Gao, H., and Xiao, C.: Effect of
glaciers on the annual catchment water balance within Budyko framework,
Advances in Climate Change Research, 13, 51–62,
https://doi.org/10.1016/j.accre.2021.10.004, 2022.
Metselaar, K. and de Jong van Lier, Q.: The shape of the transpiration
reduction function under plant water stress, Vadose Zone J., 6,
124–139, https://doi.org/10.2136/vzj2006.0086, 2007.
Mezentsev, V.: Back to the computation of total evaporation, Meteorologia i
Gidrologia, 5, 24–26, 1955.
Milly, P. and Shmakin, A.: Global modeling of land water and energy
balances. Part II: Land-characteristic contributions to spatial variability,
J. Hydrometeorol., 3, 301–310,
https://doi.org/10.1175/1525-7541(2002)003<0301:Gmolwa>2.0.Co;2, 2002.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10,
282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
National Earth System Science Data: The GLASS FVC product, National Earth System Science Data [data set], http://www.glass.umd.edu/05D/FVC/ (last access: 22 December 2021), 2020.
Ning, T., Li, Z., and Liu, W.: Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework, Hydrol. Earth Syst. Sci., 21, 1515–1526, https://doi.org/10.5194/hess-21-1515-2017, 2017.
NOAANCEI: Monthly National Climate Report for July 2011, NOAA National Centers for Environmental Information, https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/201107 (last access: 8 June 2022), 2011.
Padrón, R. S., Gudmundsson, L., Greve, P., and Seneviratne, S. I.:
Large-scale controls of the surface water balance over land: Insights from a
systematic review and meta-analysis, Water Resour. Res., 53,
9659–9678, https://doi.org/10.1002/2017WR021215, 2017.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V.: Scikit-learn:
Machine learning in Python, J. Mach. Learn. Res., 12,
2825–2830, 2011.
Rau, P., Bourrel, L., Labat, D., Frappart, F., Ruelland, D., Lavado, W.,
Dewitte, B., and Felipe, O.: Hydroclimatic change disparity of Peruvian
Pacific drainage catchments, Theor. Appl. Climatol., 134,
139-153, https://doi.org/10.1007/s00704-017-2263-x, 2018.
Rodell, M., Houser, P., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., and Bosilovich, M.: The
global land data assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004.
Roderick, M. L. and Farquhar, G. D.: A simple framework for relating
variations in runoff to variations in climatic conditions and catchment
properties, Water Resour. Res., 47, W00G07, https://doi.org/10.1029/2010wr009826, 2011.
Salaudeen, A., Ismail, A., Adeogun, B. K., Ajibike, M. A., and Zubairu, I.:
Evaluation of ground-based, daily, gridded precipitation products for Upper
Benue River basin, Nigeria, Engineering and Applied Science Research, 48,
397–405, https://doi.org/10.14456/easr.2021.42, 2021.
Santra, P., Das, B. S., and Chakravarty, D.: Delineation of hydrologically
similar units in a watershed based on fuzzy classification of soil hydraulic
properties, Hydrol. Process., 25, 64–79,
https://doi.org/10.1002/hyp.7820, 2011.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., and Ziese, M.: GPCC Full Data Monthly Product Version 2018 at 0.5∘: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data, DWD [data set], https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_050, 2018.
Schwarzel, K., Zhang, L., Montanarella, L., Wang, Y., and Sun, G.: How
afforestation affects the water cycle in drylands: A process-based
comparative analysis, Glob. Change Biol., 26, 944–959, https://doi.org/10.1111/gcb.14875, 2020.
Scientific Data Curation Team: Metadata record for: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, figshare [data set], https://doi.org/10.6084/m9.figshare.11980500.v1, 2020.
Sinha, J., Jha, S., and Goyal, M. K.: Influences of watershed
characteristics on long-term annual and intra-annual water balances over
India, J. Hydrol., 577, 123970,
https://doi.org/10.1016/j.jhydrol.2019.123970, 2019.
Sivapalan, M.: Process complexity at hillslope scale, process simplicity at
the watershed scale: is there a connection?, Hydrol. Process., 17,
1037–1041, https://doi.org/10.1002/hyp.5109, 2003.
Tixeront, J.: Prévision des apports des cours d'eau, in: Symposium, surface waters: hold at the occasion of the General Assembly of Berkeley of the I.U.G.G./World Meteorological Organization and International Association of Scientific Hydrology, International Association of Scientific Hydrology, Gentbrugge, Belgique, 118–126, LCCN 66038288, 1964.
Turc, L.: The water balance of soils: relation between precipitation,
evaporation and flow, Ann. Agron, 5, 491–569, 1954.
UNEP: World atlas of desertification, United Nations Environment Programme, UNEP [data set], https://wedocs.unep.org/20.500.11822/30300 (last access: 16 April 2021), 1997.
Verhoef, A. and Egea, G.: Modeling plant transpiration under limited soil
water: Comparison of different plant and soil hydraulic parameterizations
and preliminary implications for their use in land surface models,
Agr. Forest Meteorology, 191, 22–32,
https://doi.org/10.1016/j.agrformet.2014.02.009, 2014.
Vora, A. and Singh, R.: Satellite based Budyko framework reveals the human
imprint on long-term surface water partitioning across India, J. Hydrol., 602, 126770,
https://doi.org/10.1016/j.jhydrol.2021.126770, 2021.
Walsh, R. and Lawler, D.: Rainfall seasonality: description, spatial
patterns and change through time, Weather, 36, 201–208,
https://doi.org/10.1002/j.1477-8696.1981.tb05400.x, 1981.
Wang, D. and Tang, Y.: A one-parameter Budyko model for water balance
captures emergent behavior in Darwinian hydrologic models, Geophys.
Res. Lett., 41, 4569–4577,
https://doi.org/10.1002/2014gl060509, 2014.
Wang, F., Xia, J., Zou, L., Zhan, C., and Liang, W.: Estimation of
time-varying parameter in Budyko framework using long short-term memory
network over the Loess Plateau, China, J. Hydrol., 607, 127571, https://doi.org/10.1016/j.jhydrol.2022.127571, 2022.
Wang, H., Lv, X., and Zhang, M.: Sensitivity and attribution analysis of
vegetation changes on evapotranspiration with the Budyko framework in the
Baiyangdian catchment, China, Ecol. Indic., 120, 106963,
https://doi.org/10.1016/j.ecolind.2020.106963, 2021.
Wang, Y., Bredemeier, M., Bonell, M., Yu, P., Feger, K.-H., Xiong, W., and Xu, L.: Comparison between a statistical approach and paired catchment study in estimating water yield response to afforestation, in: Revisiting Experimental Catchment Studies in Forest Hydrology: Proceedings of a Workshop held during the XXV IUGG General Assembly in Melbourne, June–July 2011, edited by: Webb, A. A., Bonell, M., Bren, L., Lane, P. N. J., McGuire, D., Neary, D. G., Nettles, J., Scott, D. F., Stednick, J., and Wang, Y., International Association of Hydrological Sciences (IAHS), 3–11, ISBN 9781907161315, 2012.
Xu, X., Liu, W., Scanlon, B. R., Zhang, L., and Pan, M.: Local and global
factors controlling water-energy balances within the Budyko framework,
Geophys. Res. Lett., 40, 6123–6129,
https://doi.org/10.1002/2013gl058324, 2013.
Yang, D., Shao, W., Yeh, P. J. F., Yang, H., Kanae, S., and Oki, T.: Impact
of vegetation coverage on regional water balance in the nonhumid regions of
China, Water Resour. Res., 45, W00A14, https://doi.org/10.1029/2008WR006948, 2009.
Yang, H., Yang, D., Lei, Z., and Sun, F.: New analytical derivation of the
mean annual water-energy balance equation, Water Resour. Res., 44, W03410,
https://doi.org/10.1029/2007wr006135, 2008.
Yang, H., Qi, J., Xu, X., Yang, D., and Lv, H.: The regional variation in
climate elasticity and climate contribution to runoff across China, J. Hydrol., 517, 607–616,
https://doi.org/10.1016/j.jhydrol.2014.05.062, 2014.
Yao, J., Mao, W., Yang, Q., Xu, X., and Liu, Z.: Annual actual
evapotranspiration in inland river catchments of China based on the Budyko
framework, Stoch. Env. Res. Risk. A, 31,
1409–1421, https://doi.org/10.1007/s00477-016-1271-1, 2017.
Yao, W., Xiao, P., Shen, Z., Wang, J., and Jiao, P.: Analysis of the
contribution of multiple factors to the recent decrease in discharge and
sediment yield in the Yellow River Basin, China, J. Geogr. Sci., 26, 1289–1304,
https://doi.org/10.1007/s11442-016-1227-7, 2016.
Yu, K., Zhang, X., Xu, B., Li, P., Zhang, X., Li, Z., and Zhao, Y.:
Evaluating the impact of ecological construction measures on water balance
in the Loess Plateau region of China within the Budyko framework, J. Hydrol., 601, 126596, https://doi.org/10.1016/j.jhydrol.2021.126596, 2021.
Zhang, L., Dawes, W., and Walker, G.: Response of mean annual
evapotranspiration to vegetation changes at catchment scale, Water Resour. Res., 37, 701–708, https://doi.org/10.1029/2000WR900325,
2001.
Zhang, S., Yang, Y., McVicar, T. R., and Yang, D.: An analytical solution
for the impact of vegetation changes on hydrological partitioning within the
Budyko framework, Water Resour. Res., 54, 519–537,
https://doi.org/10.1002/2017wr022028, 2018.
Zhou, G., Wei, X., Chen, X., Zhou, P., Liu, X., Xiao, Y., Sun, G., Scott, D.
F., Zhou, S., and Han, L.: Global pattern for the effect of climate and land
cover on water yield, Nat. Commun., 6, 1–9,
https://doi.org/10.1038/ncomms6918, 2015.
Short summary
This study addresses the quantification and estimation of the watershed-characteristic-related parameter (Pw) in the Budyko framework with the principle of hydrologically similar groups. The results show that Pw is closely related to soil moisture and fractional vegetation cover, and the relationship varies across specific hydrologic similarity groups. The overall satisfactory performance of the Pw estimation model improves the applicability of the Budyko framework for global runoff estimation.
This study addresses the quantification and estimation of the watershed-characteristic-related...