Articles | Volume 27, issue 5
https://doi.org/10.5194/hess-27-1011-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1011-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
River hydraulic modeling with ICESat-2 land and water surface elevation
Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Sino-Danish College, University of Chinese Academy of Sciences,
Beijing 100049, China
Suxia Liu
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Chaoyang district, Beijing, China
Sino-Danish College, University of Chinese Academy of Sciences,
Beijing 100049, China
Xingguo Mo
Key Laboratory of Water Cycle and Related Land Surface Processes,
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Chaoyang district, Beijing, China
Sino-Danish College, University of Chinese Academy of Sciences,
Beijing 100049, China
Karina Nielsen
Department of Geodesy and Earth Observation, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Heidi Ranndal
Department of Geodesy and Earth Observation, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Liguang Jiang
School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
Jun Ma
Hydrology Bureau, Yellow River Water Conservancy Commission,
Zhengzhou, Henan 450004, China
Peter Bauer-Gottwein
Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Related authors
No articles found.
Theerapol Charoensuk, Claudia Katrine Corvenius Lorentzen, Anne Beukel Bak, Jakob Luchner, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 29, 5065–5097, https://doi.org/10.5194/hess-29-5065-2025, https://doi.org/10.5194/hess-29-5065-2025, 2025
Short summary
Short summary
The objective of this study is to enhance the performance of 1D–2D flood models using satellite Earth observation data. The main factor influencing a 1D–2D flood model is the accuracy of the digital elevation model (DEM). Two workflows are introduced to improve the 1D–2D flood model: (1) in the DEM analysis workflow, 10 DEM products are evaluated using the ICESat-2 ATL08 benchmark, while (2) in the flood map analysis workflow, flood extent maps derived from multi-mission satellite datasets are compared with simulated flood maps.
Jérôme Benveniste, Salvatore Dinardo, Luciana Fenoglio-Marc, Christopher Buchhaupt, Michele Scagliola, Marcello Passaro, Karina Nielsen, Marco Restano, Américo Ambrózio, Giovanni Sabatino, Carla Orrù, and Beniamino Abis
Proc. IAHS, 385, 457–463, https://doi.org/10.5194/piahs-385-457-2024, https://doi.org/10.5194/piahs-385-457-2024, 2024
Short summary
Short summary
This paper presents the RDSAR, SAR/SARin & FF-SAR altimetry processors available in the ESA Altimetry Virtual Lab (AVL) hosted on the EarthConsole® platform. An overview on processors and features as well as preliminary analyses using AVL output data are reported to demonstrate the quality of the ESA Altimetry Virtual Lab altimetry services in providing innovative solutions to the radar altimetry community. https://earthconsole.eu//
Xinyu Chen, Liguang Jiang, Yuning Luo, and Junguo Liu
Earth Syst. Sci. Data, 15, 4463–4479, https://doi.org/10.5194/essd-15-4463-2023, https://doi.org/10.5194/essd-15-4463-2023, 2023
Short summary
Short summary
River flow is experiencing changes under the impacts of climate change and human activities. For example, flood events are occurring more often and are more destructive in many places worldwide. To deal with such issues, hydrologists endeavor to understand the features of extreme events as well as other hydrological changes. One key approach is analyzing flow characteristics, represented by hydrological indices. Building such a comprehensive global large-sample dataset is essential.
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023, https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary
Short summary
Res-CN fills a gap in a comprehensive and extensive dataset of reservoir-catchment characteristics for 3254 Chinese reservoirs with 512 catchment-level attributes and significantly enhanced spatial and temporal coverage (e.g., 67 % increase in water level and 225 % in storage anomaly) of time series of reservoir water level (data available for 20 % of 3254 reservoirs), water area (99 %), storage anomaly (92 %), and evaporation (98 %), supporting a wide range of applications and disciplines.
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022, https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Short summary
A data gap of 338 Chinese reservoirs with their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) during 2010–2021. Validation against the in situ observations of 93 reservoirs indicates the relatively high accuracy and reliability of the datasets. The unique and novel remotely sensed dataset would benefit studies involving many aspects (e.g., hydrological models, water resources related studies, and more).
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Liguang Jiang, Silja Westphal Christensen, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 6359–6379, https://doi.org/10.5194/hess-25-6359-2021, https://doi.org/10.5194/hess-25-6359-2021, 2021
Short summary
Short summary
River roughness and geometry are essential to hydraulic river models. However, measurements of these quantities are not available in most rivers globally. Nevertheless, simultaneous calibration of channel geometric parameters and roughness is difficult as they compensate for each other. This study introduces an alternative approach of parameterization and calibration that reduces parameter correlations by combining cross-section geometry and roughness into a conveyance parameter.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Cecile M. M. Kittel, Liguang Jiang, Christian Tøttrup, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 25, 333–357, https://doi.org/10.5194/hess-25-333-2021, https://doi.org/10.5194/hess-25-333-2021, 2021
Short summary
Short summary
In poorly instrumented catchments, satellite altimetry offers a unique possibility to obtain water level observations. Improvements in instrument design have increased the capabilities of altimeters to observe inland water bodies, including rivers. In this study, we demonstrate how a dense Sentinel-3 water surface elevation monitoring network can be established at catchment scale using publicly accessible processing platforms. The network can serve as a useful supplement to ground observations.
Cited articles
Arias, P., Bellouin, N., Coppola, E., Jones, C., Krinner, G., Marotzke, J.,
Naik, V., Plattner, G.-K., Rojas, M., Sillmann, J., Storelvmo, T., Thorne,
P., Trewin, B., Achutarao, K., Adhikary, B., Armour, K., Bala, G., Barimalala, R., Berger, S., and Zickfeld, K.: Climate Change 2021: The
Physical Science Basis, in: Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, Technical Summary, Cambridge, UK and New York, NY, https://www.ipcc.ch/report/ar6/wg1/chapter/technical-summary/ (last access: 27 February 2023), 2021.
Bjerklie, D. M., Birkett, C. M., Jones, J. W., Carabajal, C., Rover, J. A.,
Fulton, J. W., and Garambois, P.-A.: Satellite remote sensing estimation of
river discharge: Application to the Yukon River Alaska, J. Hydrol., 561, 1000–1018, https://doi.org/10.1016/j.jhydrol.2018.04.005, 2018.
Boergens, E., Buhl, S., Dettmering, D., Klüppelberg, C., and Seitz, F.:
Combination of multi-mission altimetry data along the Mekong River with
spatio-temporal kriging, J. Geod., 91, 519–534, https://doi.org/10.1007/s00190-016-0980-z, 2017.
Chen, Y., Vogel, A., Wagg, C., Xu, T., Iturrate-Garcia, M., Scherer-Lorenzen, M., Weigelt, A., Eisenhauer, N., and Schmid, B.: Drought-exposure history increases complementarity between plant species in response to a subsequent drought, Nat. Commun., 13, 3217, https://doi.org/10.1038/s41467-022-30954-9, 2022.
Coppo Frias, M.: Hydraulic calibration with ICESat-2 land and water surface elevation observations, Zenodo [code], https://doi.org/10.5281/zenodo.6570492, 2022.
Dingman, S.: Analytical derivation of at-a-station hydraulic–geometry
relations, J. Hydrol., 334, 17–27, https://doi.org/10.1016/j.jhydrol.2006.09.021, 2007.
Domeneghetti, A., Tarpanelli, A., Brocca, L., Barbetta, S., Moramarco, T.,
Castellarin, A., and Brath, A.: The use of remote sensing-derived water
surface data for hydraulic model calibration, Remote Sens. Environ, 149,
130–141, https://doi.org/10.1016/j.rse.2014.04.007, 2014.
Domeneghetti, A., Molari, G., Tourian, M. J., Tarpanelli, A., Behnia, S.,
Moramarco, T., Sneeuw, N., and Brath, A.: Testing the use of single- and
multi-mission satellite altimetry for the calibration of hydraulic models,
Adv. Water. Resour., 151, 103887, https://doi.org/10.1016/j.advwatres.2021.103887, 2021.
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global
optimization for conceptual rainfall-runoff models, Water Resour. Res., 28,
1015–1031, https://doi.org/10.1029/91WR02985, 1992.
Duan, Q. Y., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution
approach for effective and efficient global minimization, J. Optim. Theor.
Appl., 76, 501–521, https://doi.org/10.1007/BF00939380, 1993.
Durand, M., Neal, J., Rodríguez, E., Andreadis, K. M., Smith, L. C., and Yoon, Y.: Estimating reach-averaged discharge for the River Severn from measurements of river water surface elevation and slope, J. Hydrol., 511, 92–104, https://doi.org/10.1016/j.jhydrol.2013.12.050, 2014.
Garambois, P.-A. and Monnier, J.: Inference of effective river properties
from remotely sensed observations of water surface, Adv. Water Resour., 79,
103–120, https://doi.org/10.1016/j.advwatres.2015.02.007, 2015.
Garambois, P.-A., Larnier, K., Monnier, J., Finaud-Guyot, P., Verley, J.,
Montazem, A.-S., and Calmant, S.: Variational estimation of effective channel and ungauged anabranching river discharge from multi-satellite water heights of different spatial sparsity, J. Hydrol., 581, 124409,
https://doi.org/10.1016/j.jhydrol.2019.124409, 2020.
Havnø, K., Madsen, M. N., and Dørge, J.: MIKE 11 – a generalized river
modelling package, in: Computer Models of Watershed Hydrology, Water Resource Publications, LLC, 733–782, ISBN 13:987-1-887201-74-2, ISBN 10:1-887201-74-2, 1995.
Houska, T., Kraft, P., Chamorro-Chavez, A., and Breuer, L.: SPOTting Model
Parameters Using a Ready-Made Python Package, PLoS One, 10, e0145180,
https://doi.org/10.1371/journal.pone.0145180, 2015.
Jasinski, M., Stoll, J., Hancock, D., Robbins, J., Nattala, J., Morison, J.,
Jones, B., Ondrusek, M., Pavelsky, T., Parrish, C., and Carabajal, C.:
Algorithm Theoretical Basis Document (ATBD) for Along Track Inland Surface
Water Data, ATL13, Release 5, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/RI5QTGTSVHRZ, 2021a.
Jasinski, M., Stoll, J., Hancock, D., Robbins, J., Nattala, J., Morison, J.,
Ondrusek, M., Pavelsky, T., Parrish, C., and Carabajal, C.: ATL13 Along
Track Surface Water Data, Release 004 Algorithm Notes and Known Issues,
NASA National Snow and Ice Data Center Distributed Active Archive Center, Greenbelt, MD, https://nsidc.org/sites/nsidc.org/files/technical-references/ICESat2_ATL13_Known_Issues_v004.pdf
(last access: 21 March 2022), 2021b.
Jasinski, M. F., Stoll, J. D., Hancock, D., Robbins, J., Nattala, J., Morison, J., Jones, B. M., Ondrusek, M. E., Pavelsky, T. M., Parrish, C., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data, Version 5 [Data Set], NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/ATLAS/ATL13.005, 2021c.
Jiang, L., Schneider, R., Andersen, O., and Bauer-Gottwein, P.: CryoSat-2
Altimetry Applications over Rivers and Lakes, Water, 9, 211, https://doi.org/10.3390/w9030211, 2017.
Jiang, L., Madsen, H., and Bauer-Gottwein, P.: Simultaneous calibration of
multiple hydrodynamic model parameters using satellite altimetry observations of water surface elevation in the Songhua River, Remote Sens. Environ., 225, 229–247, https://doi.org/10.1016/j.rse.2019.03.014, 2019.
Kittel, C. M. M., Hatchard, S., Neal, J. C., Nielsen, K., Bates, P. D., and
Bauer-Gottwein, P.: Hydraulic Model Calibration Using CryoSat-2 Observations
in the Zambezi Catchment, Water Resour. Res., 57, e2020WR029261, https://doi.org/10.1029/2020WR029261, 2021a.
Kittel, C. M. M., Jiang, L., Tøttrup, C., and Bauer-Gottwein, P.: Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B, Hydrol. Earth Syst. Sci., 25, 333–357,
https://doi.org/10.5194/hess-25-333-2021, 2021b.
Larsen, S., Karaus, U., Claret, C., Sporka, F., Hamerlík, L., and Tockner, K.: Flooding and hydrologic connectivity modulate community
assembly in a dynamic river-floodplain ecosystem, PLoS One, 14, e0213227,
https://doi.org/10.1371/journal.pone.0213227, 2019.
Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and
Wood, E. F.: Inroads of remote sensing into hydrologic science during the
WRR era, Water Resour. Res., 51, 7309–7342, https://doi.org/10.1002/2015WR017616, 2015.
Li, Y., Choi, J.-I., Choic, Y., and Kim, J.: A simple and efficient outflow
boundary condition for the incompressible Navier–Stokes equations, Eng. Appl. Comput. Fluid Mech., 11, 69–85, https://doi.org/10.1080/19942060.2016.1247296, 2017.
Malou, T., Garambois, P.-A., Paris, A., Monnier, J., and Larnier, K.:
Generation and analysis of stage-fall-discharge laws from coupled hydrological-hydraulic river network model integrating sparse multi-satellite data, J. Hydrol., 603, 126993, https://doi.org/10.1016/j.jhydrol.2021.126993, 2021.
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B.,
Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R.,
Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith,
B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sens. Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017.
Nelder, J. A. and Mead, R.: A Simplex Method for Function Minimization, Comput. J., 7, 308–313, https://doi.org/10.1093/comjnl/7.4.308, 1965.
Neumann, T. A., Brenner, A., Hancock, D., Robbins, J., Saba, J., Harbeck,
K., Gibbons, A., Lee, J., Luthcke, T., and Rebold, T.: ATLAS/ICESat-2 L2A
Global Geolocated Photon Data, Version 5 [data set], NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/ATLAS/ATL03.005, 2021.
Nielsen, K., Zakharova, E., Tarpanelli, A., Andersen, O. B., and Benveniste,
J.: River levels from multi mission altimetry, a statistical approach,
Remote Sens. Environ., 270, 112876, https://doi.org/10.1016/j.rse.2021.112876, 2022.
Paiva, R. C. D., Collischonn, W., Bonnet, M.-P., de Gonçalves, L. G. G.,
Calmant, S., Getirana, A., and Santos da Silva, J.: Assimilating in situ and
radar altimetry data into a large-scale hydrologic-hydrodynamic model for
streamflow forecast in the Amazon, Hydrol. Earth Syst. Sci., 17, 2929–2946,
https://doi.org/10.5194/hess-17-2929-2013, 2013.
Paris, A., Dias de Paiva, R., Santos da Silva, J., Medeiros Moreira, D.,
Calmant, S., Garambois, P.-A., Collischonn, W., Bonnet, M.-P., and Seyler, F.: Stage-discharge rating curves based on satellite altimetry and modeled
discharge in the Amazon basin, Water Resour. Res., 52, 3787–3814,
https://doi.org/10.1002/2014WR016618, 2016.
Parrish, C. E., Magruder, L. A., Neuenschwander, A. L., Forfinski-Sarkozi,
N., Alonzo, M., and Jasinski, M.: Validation of ICESat-2 ATLAS Bathymetry
and Analysis of ATLAS's Bathymetric Mapping Performance, Remote Sens., 11, 1634, https://doi.org/10.3390/rs11141634, 2019.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016.
Pujol, L., Garambois, P.-A., Finaud-Guyot, P., Monnier, J., Larnier, K.,
Mosé, R., Biancamaria, S., Yesou, H., Moreira, D., Paris, A., and Calmant, S.: Estimation of multiple inflows and effective channel by assimilation of multi-satellite hydraulic signatures: The ungauged anabranching Negro river, J. Hydrol., 591, 125331, https://doi.org/10.1016/j.jhydrol.2020.125331, 2020.
Saltelli, A., Tarantola, S., and Chan, K. P.-S.: A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output,
Technometrics, 41, 39–56, https://doi.org/10.1080/00401706.1999.10485594, 1999.
Scherer, D., Schwatke, C., Dettmering, D., and Seitz, F.: ICESat-2 Based
River Surface Slope and Its Impact on Water Level Time Series From Satellite
Altimetry, Water Resour. Res., 58, e2022WR032842, https://doi.org/10.1029/2022WR032842, 2022.
Shen, Y., Liu, D., Jiang, L., Yin, J., Nielsen, K., Bauer-Gottwein, P., Guo,
S., and Wang, J.: On the Contribution of Satellite Altimetry-Derived Water
Surface Elevation to Hydrodynamic Model Calibration in the Han River, Remote
Sens., 12, 4087, https://doi.org/10.3390/rs12244087, 2020.
Tarpanelli, A., Camici, S., Nielsen, K., Brocca, L., Moramarco, T., and
Benveniste, J.: Potentials and limitations of Sentinel-3 for river discharge
assessment, Adv. Space Res., 68, 593–606, https://doi.org/10.1016/j.asr.2019.08.005, 2021.
Villadsen, H., Andersen, O. B., Stenseng, L., Nielsen, K., and Knudsen, P.:
CryoSat-2 altimetry for river level monitoring – Evaluation in the Ganges–Brahmaputra River basin, Remote Sens. Environ., 168, 80–89,
https://doi.org/10.1016/j.rse.2015.05.025, 2015.
Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software
package: Theory, concepts, and MATLAB implementation, Environ. Model. Softw., 75, 273–316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.
Xu, N., Zheng, H., Ma, Y., Yang, J., Liu, X., and Wang, X.: Global Estimation and Assessment of Monthly Lake/Reservoir Water Level Changes Using ICESat-2 ATL13 Products, Remote Sens., 13, 2744, https://doi.org/10.3390/rs13142744, 2021.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and Pavelsky, T. M.: MERIT Hydro: A High-Resolution Global Hydrography Map Based
on Latest Topography Dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.
Yoon, Y., Durand, M., Merry, C. J., and Rodriguez, E.: Improving Temporal
Coverage of the SWOT Mission Using Spatiotemporal Kriging, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 6, 1719–1729, https://doi.org/10.1109/JSTARS.2013.2257697, 2013.
Zhang, Y., Li, Z., Ge, W., Chen, X., Xu, H., and Guan, H.: Evaluation of the
impact of extreme floods on the biodiversity of terrestrial animals, Sci. Total Environ., 790, 148227, https://doi.org/10.1016/j.scitotenv.2021.148227, 2021.
Short summary
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the model, we can make estimations of discharge and water surface elevation, which are important indicators in flooding risk assessment. ICESat-2 data give an added value, thanks to the 0.7 m resolution, which allows the measurement of narrow river streams. In addition, ICESat-2 provides measurements on the river dry portion geometry that can be included in the model.
This paper uses remote sensing data from ICESat-2 to calibrate a 1D hydraulic model. With the...