Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4773-2022
Special issue:
https://doi.org/10.5194/hess-26-4773-2022
Opinion article
 | 
29 Sep 2022
Opinion article |  | 29 Sep 2022

HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists

Riccardo Rigon, Giuseppe Formetta, Marialaura Bancheri, Niccolò Tubini, Concetta D'Amato, Olaf David, and Christian Massari

Related authors

On understanding mountainous carbonate basins of the Mediterranean using parsimonious modeling solutions
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023,https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment
Niccolò Tubini and Riccardo Rigon
Geosci. Model Dev., 15, 75–104, https://doi.org/10.5194/gmd-15-75-2022,https://doi.org/10.5194/gmd-15-75-2022, 2022
Short summary
A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021,https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary
Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data
Wuletawu Abera, Giuseppe Formetta, Luca Brocca, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 21, 3145–3165, https://doi.org/10.5194/hess-21-3145-2017,https://doi.org/10.5194/hess-21-3145-2017, 2017
Short summary
Age-ranked hydrological budgets and a travel time description of catchment hydrology
Riccardo Rigon, Marialaura Bancheri, and Timothy R. Green
Hydrol. Earth Syst. Sci., 20, 4929–4947, https://doi.org/10.5194/hess-20-4929-2016,https://doi.org/10.5194/hess-20-4929-2016, 2016
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Comment on “Are soils overrated in hydrology?” by Gao et al. (2023)
Ying Zhao, Mehdi Rahmati, Harry Vereecken, and Dani Or
Hydrol. Earth Syst. Sci., 28, 4059–4063, https://doi.org/10.5194/hess-28-4059-2024,https://doi.org/10.5194/hess-28-4059-2024, 2024
Short summary
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024,https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024,https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024,https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024,https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary

Cited articles

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, s., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X.: Google Brain, A system for large-scale machine learning, in: OSDI'16: Proc. 12th USENIX Symposium on Operating Systems Design and Implementation, 265–283, USENIX Association, 2016 a
Abbaszadeh, P., Moradkhani, H., and Daescu, D. N.: The quest for model uncertainty quantification: A hybrid ensemble and variational data assimilation framework, Water Resour. Res., 55, 2407–2431, 2019. a
Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models, Water Resour. Res., 55, 378–390, 2019. a
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
Download
Short summary
The Digital Earth (DE) metaphor is very useful for both end users and hydrological modelers. We analyse different categories of models, with the view of making them part of a Digital eARth Twin Hydrology system (called DARTH). We also stress the idea that DARTHs are not models in and of themselves, rather they need to be built on an appropriate information technology infrastructure. It is remarked that DARTHs have to, by construction, support the open-science movement and its ideas.
Special issue