Articles | Volume 26, issue 18
https://doi.org/10.5194/hess-26-4637-2022
https://doi.org/10.5194/hess-26-4637-2022
Research article
 | 
22 Sep 2022
Research article |  | 22 Sep 2022

Spatiotemporal responses of the crop water footprint and its associated benchmarks under different irrigation regimes to climate change scenarios in China

Zhiwei Yue, Xiangxiang Ji, La Zhuo, Wei Wang, Zhibin Li, and Pute Wu

Related authors

A gridded dataset of consumptive water footprints, evaporation, transpiration, and associated benchmarks related to crop production in China during 2000–2018
Wei Wang, La Zhuo, Xiangxiang Ji, Zhiwei Yue, Zhibin Li, Meng Li, Huimin Zhang, Rong Gao, Chenjian Yan, Ping Zhang, and Pute Wu
Earth Syst. Sci. Data, 15, 4803–4827, https://doi.org/10.5194/essd-15-4803-2023,https://doi.org/10.5194/essd-15-4803-2023, 2023
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Stochastic approaches
Check dam impact on sediment loads: example of the Guerbe River in the Swiss Alps – a catchment scale experiment
Ariel Henrique do Prado, David Mair, Philippos Garefalakis, Chantal Schmidt, Alexander Whittaker, Sebastien Castelltort, and Fritz Schlunegger
Hydrol. Earth Syst. Sci., 28, 1173–1190, https://doi.org/10.5194/hess-28-1173-2024,https://doi.org/10.5194/hess-28-1173-2024, 2024
Short summary
Controls on flood managed aquifer recharge through a heterogeneous vadose zone: hydrologic modeling at a site characterized with surface geophysics
Zach Perzan, Gordon Osterman, and Kate Maher
Hydrol. Earth Syst. Sci., 27, 969–990, https://doi.org/10.5194/hess-27-969-2023,https://doi.org/10.5194/hess-27-969-2023, 2023
Short summary
Bridging the scale gap: obtaining high-resolution stochastic simulations of gridded daily precipitation in a future climate
Qifen Yuan, Thordis L. Thorarinsdottir, Stein Beldring, Wai Kwok Wong, and Chong-Yu Xu
Hydrol. Earth Syst. Sci., 25, 5259–5275, https://doi.org/10.5194/hess-25-5259-2021,https://doi.org/10.5194/hess-25-5259-2021, 2021
Short summary
3D multiple-point geostatistical simulation of joint subsurface redox and geological architectures
Rasmus Bødker Madsen, Hyojin Kim, Anders Juhl Kallesøe, Peter B. E. Sandersen, Troels Norvin Vilhelmsen, Thomas Mejer Hansen, Anders Vest Christiansen, Ingelise Møller, and Birgitte Hansen
Hydrol. Earth Syst. Sci., 25, 2759–2787, https://doi.org/10.5194/hess-25-2759-2021,https://doi.org/10.5194/hess-25-2759-2021, 2021
Short summary
News media coverage of conflict and cooperation dynamics of water events in the Lancang–Mekong River basin
Jing Wei, Yongping Wei, Fuqiang Tian, Natalie Nott, Claire de Wit, Liying Guo, and You Lu
Hydrol. Earth Syst. Sci., 25, 1603–1615, https://doi.org/10.5194/hess-25-1603-2021,https://doi.org/10.5194/hess-25-1603-2021, 2021

Cited articles

Ahmadi, M., Etedali, H. R., and Elbeltagi, A.: Evaluation of the effect of climate change on maize water footprint under RCPs scenarios in Qazvin plain, Iran, Agr. Water Manage., 254, 106969, https://doi.org/10.1016/j.agwat.2021.106969, 2021. 
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, 300, FAO, Rome, Italy, ISBN 9251042195, 1998. 
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L., Flato, G. M., Kharin, V. V., Lee, W. G., and Merryfield, W. J.: Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases, Geophys. Res. Lett., 38, 387–404, https://doi.org/10.1029/2010GL046270, 2011. 
Arunrat, N., Pumijumnong, N., Sereenonchai, S., Chareonwong, U., and Wang, C.: Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand, Sci. Total Environ., 726, 137864, https://doi.org/10.1016/j.scitotenv.2020.137864, 2020. 
Download
Short summary
Facing the increasing challenge of sustainable crop supply with limited water resources due to climate change, large-scale responses in the water footprint (WF) and WF benchmarks of crop production remain unclear. Here, we quantify the effects of future climate change scenarios on the WF and WF benchmarks of maize and wheat in time and space in China. Differences in crop growth between rain-fed and irrigated farms and among furrow-, sprinkler-, and micro-irrigated regimes are identified.