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Abstract. Adaptation to future climate change with lim-
ited water resources is a major global challenge to sus-
tainable and sufficient crop production. However, the large-
scale responses of the crop water footprint and its associ-
ated benchmarks under various irrigation regimes to future
climate change scenarios remain unclear. The present study
quantified the responses of the maize and wheat water foot-
print (WF) per unit yield (m3 t−1) as well as the correspond-
ing WF benchmarks under two Representative Concentra-
tion Pathway (RCP) scenarios, RCP2.6 and RCP8.5, in the
2030s, 2050s, and 2080s at a 5 arcmin grid level in China.
The AquaCrop model with the outputs of six global climate
models from Phase 5 of the Coupled Model Intercomparison
Project (CMIP5) as its input data was used to simulate the
WFs of maize and wheat. The differences among rain-fed
wheat and maize and furrow-, micro-, and sprinkler-irrigated
wheat and maize were identified. Compared with the baseline
year (2013), the maize WF will increase under both RCP2.6
and RCP8.5 (by 17 % and 13 %, respectively) until the 2080s.
The wheat WF will increase under RCP2.6 (by 12 % until the
2080s) and decrease (by 12 %) under RCP8.5 until the 2080s,
with a higher increase in the wheat yield and a decrease in
the wheat WF due to the higher CO2 concentration in 2080s
under RCP8.5. The WF will increase the most for rain-fed
crops. Relative to rain-fed crops, micro-irrigation and sprin-

kler irrigation result in the smallest increases in the WF for
maize and wheat, respectively. These water-saving manage-
ment techniques will mitigate the negative impact of climate
change more effectively. The WF benchmarks for maize and
wheat in the humid zone (an approximate overall average
of 680 m3 t−1 for maize and 873 m3 t−1 for wheat at the
20th percentile) are 13 %–32 % higher than those in the arid
zone (which experiences an overall average of 601 m3 t−1 for
maize and 753 m3 t−1 for wheat). The differences in the WF
benchmarks among various irrigation regimes are more sig-
nificant in the arid zone, where they can be as high as 57 %
for the 20th percentile: WF benchmarks of 1020 m3 t−1 for
sprinkler-irrigated wheat and 648 m3 t−1 for micro-irrigated
wheat. Nevertheless, the WF benchmarks will not respond
to climate changes as dramatically as the WF in the same
area, especially in areas with limited agricultural develop-
ment. The present study demonstrated that the observed dif-
ferent responses to climate change in terms of crop water
consumption, water use efficiency, and WF benchmarks un-
der different irrigation regimes cannot be ignored. It also lays
the foundation for future investigations into the influences of
irrigation methods, RCPs, and crop types on the WF and its
benchmarks in response to climate change in all agricultural
regions worldwide.
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1 Introduction

The progressive decline in water resource availability is a
major impediment to global food production security (Pastor
et al., 2019; Trnka et al., 2019; Konapala et al., 2020). Food
crops are the main source of human nutrition (Myers et al.,
2017; Lobell and Gourdji, 2012). Humans depend on food
crops for ∼ 47 % of their daily protein intake (FAO, 2021).
However, as a result of human activity, the climate system is
changing, and global warming is a significant characteristic
of this process (IPCC, 2021). Since the 1980s, each succes-
sive decade has been warmer than any preceding decade after
1850 (Kappelle, 2020). Climate change affects water con-
sumption and crop yield by altering precipitation, tempera-
ture, carbon dioxide (CO2) concentration, and other factors
during crop growth (Hatfield and Dold, 2019). Crop adap-
tation to future climate change with limited water resources
has become a major challenge in sustainable crop production
and supply worldwide.

The water footprint (WF) per unit crop (m3 t−1; Hoekstra,
2003) is reported as the amount of water consumed by the
crop per unit yield during crop growth within a certain re-
gion. It includes the blue WF (surface and groundwater), the
green WF (precipitation that will not become runoff), and the
gray WF (freshwater that assimilates pollutants from human
activities) (Hoekstra et al., 2011). The blue and green WFs
are collectively known as the consumptive WF, and the gray
WF is also called the degradative WF (Hoekstra, 2013). Un-
like traditional crop water productivity and other agricultural
water metrics, the WF covers water consumption, sources,
and spatiotemporal dimensions during the crop growth pe-
riod. Therefore, the water consumption intensity and effi-
ciency for the irrigated and rain-fed growing modes may be
compared. The WF is an effective indicator of the sustain-
ability of regional water use and optimal water resource allo-
cation (Xu et al., 2019; Mali et al., 2021). The present study
focuses exclusively on the consumptive WF, which depends
on crop yield and the intensity of water consumption per unit
of planted area.

Several studies have been conducted on the responses of
the WF to future climate change. Nevertheless, no consensus
has been reached. Certain scholars believe that future climate
change will weaken food crop production security. Ahmadi
et al. (2021) reported that the maize WF in the Qazvin Plain
of India will increase by 42 % and 147 % under RCP4.5 and
RCP8.5 (where RCP denotes Representative Concentration
Pathway), respectively, by 2061–2080. Zheng et al. (2020)
found that the rice yield in the Henan and Jiangsu provinces
(China) will decrease, whereas the WF will increase under
four RCPs at various stages of the 21st century. Other schol-
ars believe that the crop yield may actually benefit from fu-
ture increases in precipitation and atmospheric CO2 concen-
tration. Jans et al. (2021) considered the combined effects
of changes in climatic factors, such as temperature, precip-
itation, and rising atmospheric CO2 concentration, and pre-

dicted that the global cotton yield will increase by > 50 %
and that the WF will decrease by 30 % between 2011 and
2099 under RCP8.5. Arunrat et al. (2020) found that the
yield of individual and large-scale rice farms in Thailand will
increase by 1 %–30 % and 2 %–31 %, respectively, whereas
the WF will decrease by 10 %–43 % and 1 %–67 %, respec-
tively, in the present century under RCP4.5. Significant spa-
tiotemporal differences in the WF under various irrigation
management techniques have been confirmed at both the
site (Chukalla et al., 2015) and regional (Wang et al., 2019)
scales. However, current large-scale studies on the responses
of the WF to environmental change are usually based on sim-
ulations assuming adequate furrow irrigation. These studies
exclude comparisons between various irrigation techniques
and the differences in their influences on crop WFs. Although
Dai et al. (2020) optimized maize and wheat cropping pat-
terns under RCP4.5 and RCP8.5 in the Huaihe River basin
in China by 2050 and took various irrigation modes into ac-
count, they only considered blue water.

The magnitude and constitution of the crop WF vary
widely among regions and areas (Mekonnen and Hoekstra,
2011). To encourage water users to reduce the WF to a rea-
sonable level, Hoekstra (2013, 2014) recommended estab-
lishing WF benchmarks for different products because they
facilitate prudent water allocation and fair water resource
sharing among sectors and users (Hoekstra, 2013). On the
large-scale, specific WF benchmarks can be set for crops
grown on different farms within the same region (Mekon-
nen and Hoekstra, 2014). A previous study demonstrated the
sensitivity of WF benchmarks to climate zones (Zhuo et al.,
2016a). WF benchmarks significantly differ among irrigation
regimes, especially in arid zones (Wang et al., 2019); how-
ever, little is known about the responses of WF benchmarks
under different irrigation regimes to future climate change.

To investigate the influence of future climate change on
the large-scale WF and WF benchmarks under diverse irri-
gation regimes, maize and wheat grown in mainland China
were the subjects of this study. We used the outputs of six
global climate models (GCMs) – three models each for rel-
atively wet and dry climate outputs (Table 1) – that were
included in Phase 5 of the Coupled Model Intercomparison
Project (CMIP5). We then used the AquaCrop model to sim-
ulate the spatiotemporal responses of the blue and green WFs
and the corresponding WF benchmarks for wheat and maize
in the 2030s (2020–2049), 2050s (2040–2069), and 2080s
(2070–2099) under RCP2.6 and RCP8.5 at a 5 arcmin grid
resolution. We distinguished between rain-fed and irrigated
growing modes and among furrow-, micro-, and sprinkler-
irrigated regimes.

As of 2019, China was the world’s second largest maize
and largest wheat producer, accounting for 23 % and 17 %
of total global production, respectively (FAO, 2021). China’s
cereal production has helped stabilize global food produc-
tion and supply. In 2019, the respective planted areas of
maize and wheat in China were 41× 106 and 24× 106 ha,
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Table 1. Inventory of global climate models (GCMs) used in the current study.

GCM Institute Reference Type

CCCMA-CanESM2 Canadian Centre for Climate Modelling and Analysis Arora et al. (2011),
von Salzen et al. (2013)

Wet

CESM1-CAM5 National Science Foundation, Department of Energy,
National Center for Atmospheric Research

Hurrell et al. (2013)

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory Delworth et al. (2006),
Donner et al. (2011)

FIO-ESM The First Institute of Oceanography, State Oceanic
Administration, China

Qiao et al. (2013) Dry

GISS-E2R NASA Goddard Institute for Space Studies Schmidt et al. (2006, 2014)

IPSL-CM5A-MR Institute Pierre Simon Laplace Dufresne et al. (2013)

and they accounted for 25 % and 14 % of the national to-
tal croplands, respectively (NBSC, 2021). Cereal production
consumes substantial volumes of water in China, and these
quantities change over time. Zhuo et al. (2019) reported that
maize water consumption increased by 49 % between 2000
and 2013 as planted areas and feed demand increased. Con-
versely, Wang et al. (2019) reported that areas planted with
wheat and irrigated areas decreased and water consumption
slightly declined (4.4 %) from 2000 to 2014. Other studies
have reported that maize and wheat consume relatively more
water in the north than in the south of China (Tian et al.,
2019; Wang et al., 2019). Developing water-saving irriga-
tion has become an important way to alleviate the promi-
nent contradiction between water resource utilization and
grain production in China. According to NBSC (2021), the
area of water-saving irrigation projects in China in 2019 was
37×106 ha, including 7×106 ha for micro-irrigation. There-
fore, micro-irrigation does apply to food crops in China, de-
spite the limited area under this form of management. For
instance, in Xinjiang Province, the area of micro-irrigated
maize and wheat was 0.033×106 ha in 2009 (CIDDC, 2022),
although wheat dominated, accounting for 0.031× 106 ha of
the aforementioned area (Wang et al., 2011). Meanwhile,
some scholars have conducted research on micro-irrigated
maize (Bai and Gao, 2021; Guo et al., 2021) and wheat (Li et
al., 2021; Zain et al., 2021) in China, especially in the north.
Therefore, the water consumption rates of these staple crops
using different irrigation management techniques under fu-
ture climate change scenarios should be closely monitored
to ensure water supply and food crop production security
in China and worldwide. Compared to existing literature on
the evaluation of crop production WFs under climate change
scenarios (e.g., Karandish et al., 2022), the innovations of
the current research are embodied in two points. The present
study, for the first time, clarifies large-scale spatiotemporal
responses of the WF to future climate change scenarios un-
der different irrigation regimes. This analysis is also the first

to explore the large-scale future changes in WF benchmarks
under different irrigation management techniques.

2 Method and data

2.1 Research setup

We studied the spatiotemporal responses of the blue and
green WFs and the corresponding WF benchmarks for two
crops (maize and wheat) to future climate change under two
climate change scenarios (RCP2.6 and RCP8.5) using four
different growing modes (rain-fed crops and furrow-, micro-,
and sprinkler-irrigated crops). First, we determined the base-
line year. Second, we considered different growing modes
to quantify the WF and the corresponding WF benchmarks
of two crops in the baseline year and future year levels un-
der two climate change scenarios. Finally, the spatiotemporal
responses of the crop WF and the corresponding WF bench-
marks to future climate change were analyzed (Fig. 1).

2.2 Determining the baseline year

The determination of the baseline year is needed for a com-
parison between future and current conditions. Climate de-
termines the annual variability in the WF (Zhuo et al., 2014),
and the baseline year should be determined when there is
a relative balance between aridity and moisture. Hence, the
aridity index (AI) was used here. The annual reference evap-
otranspiration (ET0, mm) and precipitation (PR, mm) in
China were calculated (Harris et al., 2014). Then, the AI
was calculated, and climate change trends from 2000 to 2014
were analyzed. The year 2013 was designated as the baseline
because its drought level was nearest the 15-year national
average. The AI was calculated according to the method of
Middleton and Thomas (1997):

AI=
PR
ET0

. (1)
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Figure 1. Flow chart for the study.

2.3 Water footprint per unit crop calculation

The WF (m3 t−1) comprises the blue WF (WFb, m3 t−1) and
the green WF (WFg, m3 t−1):

WF=WFb+WFg, (2)

where WFb and WFg were calculated as the quotient of the
blue (CWUb, m3 ha−1) and green (CWUg, m3 ha−1) com-
ponents of crop water use (CWU, m3 ha−1) and crop yield
(Y , t ha−1), respectively. CWUb and CWUg were equivalent
to the cumulation of daily evapotranspiration (ET, mm d−1)
throughout the whole crop growth period (Hoekstra et al.,
2011):

WFb =
CWUb

Y
=

10×
lgp∑
d=1

ETb

Y
, (3)

WFg =
CWUg

Y
=

10×
lgp∑
d=1

ETg

Y
. (4)

Here, ETb and ETg (mm) refer to the blue and green water
evapotranspiration, respectively, and lgp refers to the num-
ber of days of the crop growth period. The coefficient, 10,
is a unit conversion factor, transforming the water depth of
ET (mm) into the water amount per unit land area of CWU
(m3 ha−1).

The ET and Y per grid for each crop were simulated by
the AquaCrop model based on the dynamic daily soil water

balance (Mekonnen and Hoekstra, 2010):

S[t] = S[t−1]+PR[t]+ IRR[t]+CR[t]−ET[t]−RO[t]
−DP[t], (5)

where S[t] and S[t−1] (mm) refer to the water content in soil
when the day (t) ends and begins, respectively; PR[t] (mm)
is the amount of precipitation on day t ; IRR[t] (mm) is the
amount of water used for irrigation; CR[t] (mm) is the cap-
illary rise to the crop root zone from the shallow ground-
water; RO[t] (mm) is the water lost by surface runoff due
to precipitation; and DP[t] (mm) is the water lost by deep
percolation caused by excessive precipitation or irrigation. It
was assumed that CR[t]= 0, as the ground water depth was
> 1 m (Allen et al., 1998). RO[t] was calculated using the Soil
Conservation Service curve number (CN) equation (USDA,
1964; Rallison, 1980):

RO[t] =

(
PR[t]− Ia

)2
PR[t]+ S− Ia

, (6)

S = 254
(

100
CN
− 1

)
. (7)

Here, S (mm) is the potential maximum water storage, and
Ia (mm) is the initial amount of water loss before the runoff
formation.

By tracking the daily flow of water in and out of the crop
root zone, we separated the daily blue and green soil water
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balances (Zhuo et al., 2016b):

Sb[t] = Sb[t−1]+
(
PR[t]+ IRR[t]−RO[t]

)
×

IRR[t]
PR[t]+ IRR[t]

−
(
DP[t]+ET[t]

)
×

Sb[t−1]

S[t−1]
, (8)

Sg[t] = Sg[t−1]+
(
PR[t]+ IRR[t]−RO[t]

)
×

PR[t]
PR[t]+ IRR[t]

−
(
DP[t]+ET[t]

)
×

Sg[t−1]

S[t−1]
. (9)

Here, Sb[t] and Sb[t−1] (mm) are the blue water content in
soil when the day (t) ends and begins, respectively; and Sg[t]
and Sg[t−1] (mm) are the green water content in soil when
the day (t) ends and begins, respectively. It is assumed that
the initial soil water content before the crop growth period is
green water.

In AquaCrop, the daily transpiration (Tr[t], mm) calculates
the daily shoot biomass production (B, kg) using the normal-
ized crop biomass water productivity (WP∗, kg m−2) (Raes et
al., 2017):

B =WP∗×
∑ Tr[t]

ET0[t]
, (10)

where WP∗ is normalized to consider the CO2 concentration,
reference evapotranspiration (ET0), and crop classes (C3 or
C4) so that it is applicable to various locations and seasons.
Water productivity remains constant for specific crops. Y , as
the harvestable portion of final B, is calculated by multiply-
ing B by the adjusted reference harvest index (HI0, %):

Y = fHI×HI0×B, (11)

where fHI is a correction factor for HI0. This considers the
water and temperature stresses during the crop growth pe-
riod. Being consistent with the existing widely used scaling
method (Mekonnen and Hoekstra, 2011; Zhuo et al., 2016b,
c, 2019; Wang et al., 2019; Mialyk et al., 2022), the sim-
ulated Y per grid for each crop in 2013 was validated via
scaling model simulation outputs to correspond to the crop
yield statistics data at the provincial level (NBSC, 2021).
With the consistent scaling factors for the Y simulation and
crop parameters including the crop calendar, WP∗, HI0, and
the maximum root depth, which represent the existing agri-
cultural production level, climate was the only variable for
future scenario simulations.

In the simulation, different growing modes, namely rain-
fed crops and three different irrigation management tech-
niques (furrow-, micro-, and sprinkler-irrigated regimes),
were considered. The irrigation schedule of three irrigation
techniques in the model was the “Generation of Irrigation
Schedule”, namely the generation of an irrigation schedule
by specifying a time and depth criterion for planning or eval-
uating a potential irrigation strategy. The time criterion we
used was allowable depletion (%), namely the percentage of
the readily available soil water (RAW) that can be depleted

before irrigation water has to be applied. The depth criterion
we used was back to field capacity (±mm), which describes
the extra water on top of the amount of irrigation water re-
quired to bring the root zone back to field capacity. The water
quality was expressed by the electrical conductivity (dS m−1)
of the irrigation water. The soil surface wetted (%), an indica-
tive value for the fraction of soil surface wetted, was used to
select irrigation techniques. Table 2 shows the parameters of
three irrigation techniques (Raes et al., 2017). We can adjust
the simulated ET and Y according to the performance of the
irrigation schedule.

2.4 Benchmarking the consumptive WF in crop
production

Based on the work of Mekonnen and Hoekstra (2014), we
ranked the grid-level WF for each crop in ascending order of
size against the corresponding cumulative percentages of the
total crop production. The annual WF of 20 % or 25 % of the
producers with the highest water productivity in China was
set as the annual WF benchmark. The climate zones should
be divided when the WF benchmarks are established (Zhuo
et al., 2016a). To this end, the AI partitioned China into arid
(< 0.5) and humid (> 0.5) zones based on the annual ET0 and
PR from 2000 to 2014 at a 30 arcmin grid resolution (Fig. 2)
(Harris et al., 2014).

2.5 Data sources

Monthly climate data from 2000 to 2014 at a resolution of
30 arcmin, including maximum air temperature (Tx), min-
imum air temperature (Tn), precipitation (PR), and refer-
ence evapotranspiration (ET0), were derived from the Cli-
matic Research Unit gridded Time Series (CRU TS, ver-
sion 3.24) dataset (Harris et al., 2014; CEDA, 2018). The
mean annual atmospheric CO2 concentration (ppm) from
2000 to 2014 was obtained from the Mauna Loa Observatory,
Hawaii, USA (NOAA, 2018). The downscaled outputs of six
GCMs at a 5 arcmin grid resolution for the 2030s, 2050s, and
2080s were obtained from the Climate Change, Agriculture
and Food Security (CCAFS) database (Navarro-Racines et
al., 2020; CCAFS, 2015). As the CCAFS database has no
ET0 data, we calculated ET0 for each climate scenario using
temperature inputs via the Food and Agriculture Organiza-
tion (FAO) Penman–Monteith method with missing data as
described by Allen et al. (1998). The projected CO2 concen-
trations under RCP2.6 and RCP8.5 were obtained from van
Vuuren et al. (2007) and Riahi et al. (2007), respectively. To
make the model simulation more cohesive with the actual sit-
uation in China, we reset the maximum root depth (Zx) ac-
cording to the FAO-56 recommendation (Allen et al., 1998).
The FAO-56 recommended values provide a clear range of
Zx values for each type of crop for typical climatic zones.
In addition, we further combined the literature research on
maize and wheat in China to reset the HI0 (Zhuo et al.,

https://doi.org/10.5194/hess-26-4637-2022 Hydrol. Earth Syst. Sci., 26, 4637–4656, 2022
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Table 2. Parameters of three irrigation techniques.

Irrigation From Time criterion Depth criterion Water quality Soil surface

technique day Allowable Back to field Electrical conductivity wetted (%)
depletion (%) capacity (±mm) (dS m−1)

Furrow 1 50 10 1.5 80
Micro 1 20 10 0 40
Sprinkler 1 50 10 1.5 100

Figure 2. Regions and climate zones of mainland China.

2016c). The other parameters used in AquaCrop were de-
rived from Raes et al. (2017). Soil texture data and soil wa-
ter capacity data at a 5 arcmin grid resolution were acquired
from the International Soil Reference and Information Centre
(ISRIC) Soil and Terrain database (Dijkshoorn et al., 2008)
and the ISRIC World Inventory of Soil Emission Poten-
tials (ISRIC-WISE) dataset (Batjes, 2012), respectively. The
planted areas for each irrigated or rain-fed crop at a 5 arcmin
grid resolution were acquired from the MIRCA2000 dataset
(Portmann et al., 2010). We divided these planted areas into
different parts subjected to various irrigation techniques us-
ing statistical yearbook data (NBSC, 2021). Provincial-level
crop yield statistics data were procured from the National
Bureau of Statistics of China (NBSC, 2021).

3 Results

3.1 Future climate change trends in areas planted with
maize and wheat

In the baseline year of 2013, the average annual refer-
ence evapotranspiration (ET0) and precipitation (PR) in the
planted areas of the two crops were 941 and 727 mm, respec-
tively. Compared with this baseline level, the average annual
ET0 and PR in the planted areas of the two crops will both
increase under the two abovementioned RCPs, and the in-
crease in ET0 will exceed that of PR. ET0 will increase by
17 % and 29 % under RCP2.6 and RCP8.5, respectively, un-
til the 2080s. However, PR will increase by 8 % and 14 %,
respectively. Thus, the increases under RCP8.5 (18 %–29 %
and 3 %–14 % for ET0 and PR, respectively) will be much
higher than those under RCP2.6 (16 %–17 % and 4 %–8 %

Hydrol. Earth Syst. Sci., 26, 4637–4656, 2022 https://doi.org/10.5194/hess-26-4637-2022
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for ET0 and PR, respectively). Climate change will be rela-
tively more intense under RCP8.5. The increases in ET0 were
found to be concentrated from April to August (14–39 mm),
while the increases in PR were concentrated between June
and August (8–20 and 12–28 mm, respectively). However,
PR will decline in May, July, November, and December, and
it will decline more in May (≤ 9 mm until the 2030s) (Fig. 3a,
b). Water and heat resources were unevenly distributed in the
planted areas of the two crops in 2013. ET0 was relatively
higher on the east coast and in North China. The PR distri-
bution was comparatively higher in the south and lower in
the north (Fig. S4 in the Supplement). Compared with 2013,
ET0 and PR for the most heavily planted areas will increase
under both scenarios until the 2080s. The areas with a rela-
tively greater increase in ET0 will be mainly distributed in
the southwest and northeast (Fig. 3c, e), whereas PR was
observed to increase relatively faster in the northwest and
Jing-Jin (Fig. 3d, f). ET0 mainly decreased in Xinjiang and
Inner Mongolia (Fig. 3c, e), and PR mainly decreased in Xin-
jiang and Tibet as well as on the northeast and south coasts
(Fig. 3d, f). However, the areas in which ET0 was observed
to decrease are 86 %–94 % smaller than those in which PR
decreased.

3.2 The WF distribution in the baseline year 2013

The national average WF for wheat (1008 m3 t−1) was higher
than that for maize (813 m3 t−1) in the baseline year of
2013. The corresponding blue WF proportions were 37 %
and 20 %, respectively. The reason for this discrepancy is that
maize is a C4 crop, whereas wheat is a C3 crop. C4 crops
have a relatively higher CO2 fixation efficiency and a faster
photosynthetic rate than C3 crops. Hence, maize can accu-
mulate comparatively more yield than wheat under the same
water consumption conditions (Wang et al., 2012). Figure 4
shows that the high WFg values were mainly distributed in
areas with relatively higher precipitation during crop growth
(i.e., abundant green water resources). The main component
of the WF is the WFg; therefore, the high maize WF was
mainly distributed in the northwest (Fig. 4a), whereas the
high wheat WF was mainly distributed in the southwest and
on the south coast (Fig. 4b). Elevated ET0 and insufficient
precipitation can increase blue water consumption in food
production. Thus, the high WFb values were mainly dis-
tributed in areas with uneven water and heat resource dis-
tributions during crop growth. The high maize WFb values
were mainly distributed in northwest and on the east coast
(Fig. 4c), whereas the high WFb values of wheat were mainly
distributed in North China (Fig. 4d). In all grids, the pro-
portions of the WFb and WFg were up to 68 % (wheat in
Xinjiang) (Table S2) and 98 % (maize in Hainan) (Table S1),
respectively.

A comparison of rain-fed crops and irrigation techniques
demonstrated that the WFs of maize and wheat under furrow
and sprinkler irrigation conditions were higher than those un-

der a rain-fed regime in 2013. The WFs of micro-irrigated
crops were lower than those of rain-fed crops. The WF of
maize (850 m3 t−1) and wheat (1170 m3 t−1) was highest
under furrow and sprinkler irrigation regimes, respectively.
For wheat, using all three irrigation techniques, WFb was
dominant (54 %–65 %). However, WFb for maize was only
dominant under micro-irrigation conditions (61 %). Micro-
irrigated (9.55 t ha−1 for maize and 5.46 t ha−1 for wheat)
and rain-fed (5.76 t ha−1 for maize and 4.51 t ha−1 for wheat)
crops had the highest and lowest yield, respectively, in 2013.
The response of the maize yield to a rain-fed regime and var-
ious irrigation techniques was stronger than that of the wheat
yield (Fig. 4e, f).

3.3 Spatiotemporal responses of the WF to future
climate change

On national average, compared with the baseline year of
2013, the maize WF will increase by 17 % and 13 % un-
der RCP2.6 and RCP8.5, respectively, until the 2080s. The
WF of wheat will increase under RCP2.6 (by 12 % until the
2080s), but it will decrease by 12 % under RCP8.5 until the
2080s (Fig. 5a). The increases in the CO2 concentration and,
by extension, yield gain will be lower under RCP2.6 than
under RCP8.5. During the same period, the increases in the
WF under RCP2.6 will be 1 %–3 % higher for maize and
2 %–10 % higher for wheat than those under RCP8.5. There
will be relatively smaller differences in the CO2 concentra-
tion between climate scenarios for the 2030s (431 ppm un-
der RCP2.6 and 449 ppm under RCP8.5). Thus, the differ-
ences in the WF between the RCPs will be smaller before the
2030s and larger after the 2050s. The WF of irrigated wheat
under RCP8.5 will decline by 3 % until the 2050s and by
15 % until the 2080s. The increase in the WF will be high-
est under a rain-fed regime, and the WF of rain-fed maize
and wheat under RCP2.6 will increase by 19 % and 24 %, re-
spectively, until the 2080s. By contrast, the WF of irrigated
maize and wheat under RCP2.6 will only increase by 13 %
and 7 %, respectively, until the 2080s (Fig. 5a). A compari-
son of the various irrigation techniques demonstrated that the
WFs of wheat and maize respond differently under the same
scenario. The increase in the WF amplitude for maize will
be highest under furrow-irrigated conditions (14 % and 11 %
under RCP2.6 and RCP8.5 until the 2080s, respectively) and
lowest under micro-irrigated conditions (5 % and 2 % under
RCP2.6 and RCP8.5 until the 2080s, respectively). The WF
of sprinkler-irrigated wheat under RCP8.5 will decline by
1 % until the 2030s. The WF of wheat under a micro-irrigated
regime had the highest increase (9 % until the 2080s under
RCP2.6) and the lowest decrease (14 % until the 2080s under
RCP8.5). The WF of wheat under sprinkler-irrigated condi-
tions had the lowest increase (only 2 % until the 2080s under
RCP2.6) and the highest decrease (19 % until the 2080s un-
der RCP8.5) (Fig. 5b).
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Figure 3. Future climate projections for the zones planted with maize and wheat in China.

The spatial distribution of the relative changes in the maize
and wheat WFs from 2013 to the 2080s showed regional
differences. The WF will increase for 90 %–93 % of all ar-
eas planted with maize (Fig. 6a, b), and it will increase for
78 % of all areas planted with wheat under RCP2.6 (Fig. 6c)
and decrease for 81 % of all areas planted with wheat un-
der RCP8.5 (Fig. 6d). Increases in ET0 lead to increases
in the WF, while decreases in PR lead to increases in WFb
(Fig. S6). Hence, the regions with relatively greater increases
in the WF were mainly distributed where ET0 strongly in-
creased and PR slightly increased or even decreased. In
Yunnan, the maize WF increased by 44 % and 38 % under
RCP2.6 and RCP8.5, respectively. In Guangxi, the wheat WF
increased by 50 % and 16 % under RCP2.6 and RCP8.5, re-

spectively (Table S5). Comparison of rain-fed crops and var-
ious irrigation techniques revealed that the WF of each crop
responded uniquely to latitudinal and longitudinal climate
change under the same scenario. The responses of the maize
WF to climate change with latitude were relatively consis-
tent: it increased by 27 %–43 % at 19–26 and ∼ 51◦ N lati-
tude and decreased at ∼ 44◦ N latitude. By contrast, the re-
sponses of the WF for rain-fed maize were more sensitive
at ∼ 40 and ∼ 52◦ N latitude. The responses of the maize
WF vary widely within the 74–100◦ E longitudinal range.
The WF of maize under a rain-fed regime and furrow and
sprinkler irrigation declined at 74–90◦ E longitude. The in-
crease in the WF for maize under a rain-fed regime at 93–
98◦ E longitude was 3 %–51 % higher than the increase in
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Figure 4. The WFs of maize and wheat in China in 2013.

Figure 5. The WFs of maize and wheat in 2013 as well as future year levels under various climate change scenarios in China.
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Figure 6. Spatial distributions in relative changes 1 (%) in the WF (bottom left of each panel) by longitude (top of each panel) and latitude
(right of each panel) under different irrigation regimes applied to both crops (wheat and maize) under two scenarios (RCP2.6 and RCP8.5)
from 2013 to the 2080s.

the WF for maize under furrow and sprinkler irrigation. The
WF of micro-irrigated maize decreased at 74–95◦ E longi-
tude (Fig. 6a, b). The responses of the wheat WF to climate
change with latitude and longitude were relatively consistent.
However, in certain areas, there were large differences in the
wheat WF between a rain-fed regime and the three irrigation
techniques. The WF of wheat under a rain-fed regime de-
creased at 74–80◦ E longitude (by more than the WF of wheat
under the three irrigation techniques within the same longi-
tudinal range). The increases in the WF of wheat under a
rain-fed regime at ∼ 93 and ∼ 122◦ E longitude and ∼ 22◦ N
latitude were significantly higher than the increases in the
WF of wheat under the three irrigation regimes (Fig. 6c, d).

The WF is determined by both crop yield (Y ) and crop wa-
ter use (CWU). We compared the relationships between the
relative changes in the WF (1WF) and the corresponding Y

(1Y ) and CWU (1CWU) (Fig. 7). The 1WF of maize and
wheat under future climate change scenarios was inversely
proportional to 1Y and directly proportional to 1CWU.
Nevertheless, 1WF was relatively more sensitive to 1Y .

When 1Y was 25 %, the 1WF of wheat under RCP2.6 and
maize was approximately −25 %, while the 1WF of wheat
under RCP8.5 was approximately −10 %. When the 1CWU
was 25 %, the 1WF of wheat under RCP2.6 and maize was
∼ 20 %, while the 1WF of wheat under RCP8.5 was ap-
proximately −8 % (Fig. 7a, b). The responses of the 1WF
of maize were more sensitive to 1Y and 1CWU than those
of wheat. The responses of the 1WF of maize and wheat
under RCP2.6 were more sensitive to 1Y and 1CWU than
those under RCP8.5. Comparison of rain-fed regimes and
various irrigation techniques revealed that the correlation be-
tween the 1WF and 1Y was stronger for rain-fed crops. For
rain-fed maize, R2 can reach 0.55 (Fig. 7a). The 1WF and
1CWU were strongly correlated for irrigated crops, and the
1WF and 1CWU were especially strongly correlated for
crops under micro-irrigated regimes (R2 can reach 0.98 for
wheat) (Fig. 7b). We also determined that the relationship be-
tween 1WFb and 1CWUb was similar but more significant
than that between 1WF and 1CWU (Fig. 7c).
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Figure 7. Relationships between relative changes 1 (%) in (a) Y and the corresponding WF, (b) CWU and the corresponding WF, and
(c) CWUb and the corresponding WFb of two crops under RCP2.6 and RCP8.5 from 2013 to the 2080s.

3.4 Spatiotemporal WF benchmark responses to
climate change

Table 3 shows the WF benchmarks of maize and wheat
among various irrigation regimes and climate zones in 2013
as well as future year levels. The WF benchmarks of maize
and wheat in the humid zone were 13 %–32 % higher than
those in the arid zone, which is similar to results obtained
by Wang et al. (2019). In the same climate zone, the WF
benchmarks of wheat were generally 2 %–35 % higher than
those of maize. However, in the humid zone, the WF bench-
mark for the 25th production percentile of maize was 3 %
higher than that of wheat under RCP8.5 in the 2080s. In
the arid zone, the WF benchmarks of rain-fed maize were
13 %–34 % higher than those of irrigated maize. In the hu-

mid zone of the future, the WF benchmarks of rain-fed wheat
were 2 %–7 % higher than those of irrigated wheat. In gen-
eral, the WF benchmarks of sprinkler-irrigated crops were
higher, whereas those of micro-irrigated crops were lower.
The differences in the WF benchmarks among various irri-
gation regimes were more significant in the arid zone. The
WF benchmarks of the crops under micro-irrigation regimes
were 30 %–38 % lower than those under sprinkler irrigation
in the arid zone. The difference in the humid zone was only
8 %–14 %, which is also consistent with the study by Wang et
al. (2019). In the humid zone, however, the WF benchmarks
of maize under furrow irrigation were 7 %–21 % higher than
those under sprinkler irrigation.

Compared with the baseline year of 2013, the changes in
the maize and wheat WF benchmarks under future climate
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Table 3. The WF benchmarks (m3 t−1) of maize and wheat for different climate zones (arid and humid) in 2013 as well as future year levels
under two climate change scenarios (RCP2.6 and RCP8.5) in China.

Climate Crop Type WF (m3 t−1) at different production percentiles∗

zones 20th 25th

2013 RCP2.6 RCP8.5 2013 RCP2.6 RCP8.5

Arid Maize Total 601 (577, 576, 580) (589, 584, 566) 623 (661, 658, 655) (655, 652, 634)
Irrigated 522 (505, 504, 506) (503, 503, 496) 548 (508, 507, 511) (507, 509, 501)
Furrow 618 (658, 658, 658) (654, 654, 642) 654 (693, 693, 691) (689, 687, 674)
Micro 466 (455, 454, 456) (456, 454, 440) 477 (459, 458, 460) (458, 460, 446)
Sprinkler 700 (727, 725, 723) (722, 719, 708) 706 (729, 729, 726) (724, 721, 710)
Rain-fed 599 (661, 661, 662) (652, 649, 630) 618 (682, 679, 671) (672, 667, 652)

Wheat Total 753 (776, 764, 781) (765, 707, 620) 768 (829, 816, 828) (809, 756, 666)
Irrigated 754 (776, 764, 781) (765, 707, 620) 768 (830, 816, 829) (810, 757, 666)
Furrow 830 (850, 840, 850) (830, 774, 680) 940 (885, 875, 887) (868, 809, 712)
Micro 648 (701, 690, 705) (694, 643, 562) 670 (717, 705, 721) (707, 654, 572)
Sprinkler 1020 (1003, 998, 1007) (989, 920, 811) 1032 (1034, 1028, 1038) (1019, 948, 837)
Rain-fed 692 (743, 734, 753) (729, 692, 618) 692 (790, 772, 791) (769, 737, 653)

Humid Maize Total 680 (761, 754, 752) (756, 752, 739) 718 (813, 807, 807) (809, 806, 785)
Irrigated 743 (905, 905, 908) (902, 900, 881) 782 (939, 939, 944) (937, 936, 916)
Furrow 762 (925, 926, 930) (921, 921, 901) 801 (943, 942, 948) (940, 939, 919)
Micro 649 (709, 704, 707) (694, 696, 683) 660 (734, 726, 732) (721, 726, 708)
Sprinkler 713 (770, 771, 768) (764, 762, 750) 737 (813, 814, 812) (808, 806, 793)
Rain-fed 631 (712, 703, 707) (710, 702, 678) 656 (744, 737, 737) (740, 736, 716)

Wheat Total 873 (933, 932, 946) (921, 851, 752) 887 (944, 942, 957) (931, 860, 760)
Irrigated 887 (914, 914, 924) (900, 841, 744) 897 (925, 926, 937) (912, 849, 752)
Furrow 887 (914, 914, 925) (901, 841, 744) 896 (925, 927, 937) (913, 849, 752)
Micro 820 (821, 826, 838) (804, 753, 665) 833 (830, 839, 849) (812, 759, 671)
Sprinkler 933 (949, 944, 955) (936, 872, 770) 946 (958, 953, 964) (944, 880, 777)
Rain-fed 812 (973, 958, 984) (950, 863, 757) 831 (989, 973, 998) (964, 877, 763)

∗ The three numbers in parentheses are the values for the 2030s, 2050s and 2080s.

change scenarios are similar to the changes in the WF. How-
ever, the WF benchmark for the 20th production percentile
of maize will decline by 2 %–6 % in the arid zone. The WF
benchmarks of wheat under RCP8.5 will decrease by 2 %–
6 % and 13 %–18 % until the 2050s and the 2080s, respec-
tively. The increasing range of the WF benchmark for the
25th production percentile of maize was 7 %–8 % higher in
the humid zone than that in the arid zone. The increasing
range of the WF benchmark for the 20th production per-
centile of wheat was 4 %–5 % higher in the humid zone than
that in the arid zone. The WF benchmarks of maize and
wheat increased to a greater extent under RCP2.6 but de-
creased to a greater extent under RCP8.5. The WF bench-
marks of rain-fed crops increased more than those of irri-
gated crops in the same climate zone. Nevertheless, the in-
crease in the WF benchmarks was 7 %–11 % lower for rain-
fed maize than for irrigated maize in the humid zone. The
WF benchmarks of maize and wheat generally increased
relatively more under furrow irrigation regimes and com-
paratively less under sprinkler irrigation. However, under

RCP2.6, the growth rate of the WF benchmark for the 20th
production percentile of wheat was 5 %–6 % higher under a
micro-irrigation regime than that under furrow irrigation in
the arid zone. The increase in the WF benchmark for the 20th
production percentile of wheat was 0.19 %–2 % higher under
sprinkler irrigation than that under micro-irrigation in the hu-
mid zone (Table 3).

Figure 8 shows the spatial distribution of the relative
changes in the WFs of maize and wheat compared with the
benchmark for the 25th production percentile in 2013 and
the 2080s. In 2013, the WF for 81 % and 79 % of the areas
planted with maize and wheat, respectively, was higher than
its benchmark. The areas planted with maize with a WF be-
low the benchmark were distributed mainly in Xinjiang in
the arid zone and in northeastern Inner Mongolia in the hu-
mid zone (Fig. 8a). The areas planted with wheat with a WF
below the benchmark were distributed mainly in Xinjiang in
the arid zone and in Qinghai (Fig. 8d). Under future climate
change scenarios, the areas planted with maize and wheat
with a WF below the benchmark will slightly decrease in the
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Figure 8. Relative changes 1 (%) in the WFs of maize and wheat compared with the benchmark for the 25th production percentile in
2013 and in the 2080s under RCP2.6 and RCP8.5 in different climate zones of China. Please note that 1 mile in the scale bar represents
approximately 1.61 km.

2080s. These areas are mainly distributed in Heilongjiang,
Tibet, southern Gansu, and Sichuan in the humid zone for
maize; for wheat, they are mainly distributed in Henan and
Tibet in the humid zone and in Qinghai. This is because the
annual ET0 will increase relatively faster in Heilongjiang and
Tibet, which will lead to a greater increase in the WFb. The
annual PR in other regions will significantly increase, which
will result in a greater increase in the WFg. Areas planted
with maize and wheat under RCP8.5 with a WF below the
benchmark will decrease by 5 % and 4 %, respectively, until
the 2080s.

3.5 Discussion

This study analyzed and compared the responses of the WF
and WF benchmarks of wheat and maize under a rain-fed
regime and various irrigation conditions and forecasted their
responses to future climate change scenarios in China. On the
background that the annual ET0 and PR will both increase
but ET0 will increase faster, the maize WF will increase un-
der both the RCP2.6 and RCP8.5 scenarios. The wheat WF
will increase under RCP2.6 but will decrease under RCP8.5
until the 2080s. Rain-fed crops were found to have higher
ranges of increasing WF values, which is consistent with
Rosa et al. (2020). The increasing ranges of maize and wheat
WF values were lowest under micro-irrigated and sprinkler-
irrigated conditions, respectively. Therefore, the implemen-
tation of water-saving irrigation techniques (micro-irrigation
and sprinkler irrigation) may help mitigate the adverse ef-

fects of future climate change on agriculture, which is in line
with Dai et al. (2020). Under future climate change, the WF
benchmarks will be modified in a manner resembling that for
the WF. However, the former changes will not be as signifi-
cant as the latter in the same area.

In 2013, the WF of maize was lower than that of wheat.
Nevertheless, the maize WF is expected to increase more
rapidly than the wheat WF under future climate change sce-
narios. C4 crops, such as maize, have higher photosynthetic
rates than C3 crops, such as wheat. However, C4 crops are
less sensitive to elevated atmospheric CO2 than C3 crops
(Bowes, 1993). Hence, while the maize yield is higher than
the wheat yield, the former increases less than the latter. We
compared the current results against those of previous studies
in Table 4. The differences that we determined for the rela-
tive changes in the maize and wheat WFs between years and
RCPs resembled those reported by Zhuo et al. (2016d). How-
ever, these authors also considered other factors, such as har-
vested crop area, technology, diet, and population, that could
partially offset the adverse effects of future climate change.
Therefore, the maize and wheat WFs will decline in the fu-
ture according to Zhuo et al. (2016d). Fader et al. (2010)
studied relative global-scale changes in the maize WF for
2050. Their analysis was conducted in the opposite direction
of that of the present study on China. Moreover, the two stud-
ies differed in terms of climate scenario, research area, and
crop model. The winter wheat WF in Germany and Italy will
decline by 2050 according to Garofalo et al. (2019). Never-
theless, our research showed that the winter wheat WF will
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Table 4. Comparison of the results between current and previous studies.

Reference Year Study case Scenario Relative changes in the WF (%)

Zhuo et al. (2016d) 2030 China maize RCP2.6/RCP8.5 −38 to −32/−10 to 0
China wheat −25 to −17/−20 to −11

2050 China maize −51 to −43/−22 to −8
China wheat −36 to −27/−38 to −27

Current study 2030s (2020–2049) China maize RCP2.6/RCP8.5 17/16
China wheat 11/9

2050s (2040–2069) China maize 16/15
China wheat 10/0.20

Fader et al. (2010) 2041–2070 Global maize SRES A2 −0.44 to −0.35

Current study 2050s (2040–2069) China maize RCP2.6/RCP8.5 16/15

Garofalo et al. (2019) 2050 Germany winter wheat RCP4.5/RCP8.5 −24/−26
Italy winter wheat −5/−6

Current study 2050s (2040–2069) China winter wheat RCP2.6/RCP8.5 10/0.60

increase in China by 2050. The crop water use in Germany
and Italy changes less than that in China. However, our ob-
served differences in the relative changes in the WF between
RCPs were consistent with those of Garofalo et al. (2019) –
namely, under RCP8.5, the WF will either decrease more or
increase less.

In the future, the spatial distributions of the maize and
wheat WFs will change considerably. By contrast, the spa-
tial distributions of the WF benchmarks will undergo negli-
gible change. This phenomenon is comparatively more pro-
nounced in areas with limited agricultural development. In
2013, Guizhou and Guangxi had the highest maize and wheat
WFs (1317 and 3720 m3 t−1, respectively; Tables S1, S2). In
the humid zone, the maize WF in Guizhou and the wheat
WF in Guangxi will increase by 37 % and 50 %, respec-
tively, under RCP2.6 and by 33 % and 16 %, respectively,
under RCP8.5 until the 2080s (Table S5). Nevertheless, the
WF benchmarks for the 25th production percentile of maize
and wheat in the humid zone will only increase by 12 % and
8 %, respectively, under RCP2.6, whereas they will increase
by 9 % and decrease by 14 %, respectively, under RCP8.5.
These areas will, nonetheless, have great potential for agri-
cultural water conservation in the future. If the maize and
wheat WFs in various regions of China can be reduced to the
benchmark for the 25th production percentile, the total CWU
can be reduced by 45× 109–66× 109 m3 (∼ 14 %–17 %).
Rain-fed agriculture can save 27×109–40×109 m3 (∼ 18 %–
22 %) of water, which is more than that conserved by irriga-
tion. In irrigated agriculture, furrow irrigation has a compar-
atively high water-saving potential (17× 109–22× 109 m3;
∼ 11 %–12 %). To optimize the agricultural water-saving po-
tential in China, we must either reduce the WF or prevent it
from increasing, either by enhancing crop yield or decreas-

ing CWU. However, this goal can only be realized with the
support of relevant policies and management practices. The
annual PR is relatively low, and the ET0 is relatively high in
North China. The shortage of water for agriculture is a ma-
jor bottleneck in the development of local agriculture in this
region. However, furrow irrigation is mainly applied in these
areas (Fig. S3). Hence, irrigation water use efficiency is low
and the WFb is high. High-efficiency, water-saving micro-
irrigation and sprinkler irrigation could replace furrow irri-
gation in these areas, thereby decreasing the CWU and WF.
The planted areas in the south have abundant precipitation
but a limited distribution (Fig. S2) and high WF (Fig. 4a,
b). The WF can be mitigated by implementing ground cover
techniques (e.g., straw return, mulch) to reduce soil evapo-
ration and by improving farmer skills. The WF can also be
reduced by optimizing the structure of crop planting. Crops
and varieties best adapted to the local climate conditions and
climate change can lower irrigation requirements and reduce
the WF.

To make climate models comparable and promote their de-
velopment, the World Climate Research Program (WCRP)
has developed and promoted the CMIP since 1995 (Meehl
et al., 1997, 2000). Its current iteration is Phase 6 (CMIP6),
which will be used in the forthcoming Sixth Assessment
Report (AR6) by the Intergovernmental Panel on Climate
Change (IPCC). GCMs and their associated research results
based on CMIP5 provided vital support for the IPCC’s Fifth
Assessment Report (IPCC AR5). CMIP5 proposed four RCP
scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) by con-
sidering greenhouse gas (GHG) emissions and concentra-
tions, atmospheric pollutant concentrations, and land use in
the 21st century (Moss et al., 2008). However, no specific so-
cioeconomic assumptions were made. The Scenario Model
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Intercomparison Project (ScenarioMIP), as the primary ac-
tivity within CMIP6, will provide a series of new climate sce-
narios that consider social factors related to climate change
adaptation and impacts. They will be based on the combined
application of Shared Socioeconomic Pathway (SSP) scenar-
ios and RCPs, and they will compensate for the limitations
of the RCPs in CMIP5 (O’Neill et al., 2016). The climate
models in CMIP5 and CMIP6 can both effectively simulate
changes in potential evapotranspiration (Liu et al., 2020) and
precipitation (Müller et al., 2021) in most parts of the world.
Müller et al. (2021) reported that CMIP5 and CMIP6 sim-
ulate increasing trends in temperature in a similar fashion.
Nevertheless, the simulation generated by CMIP6 is higher
than that generated by CMIP5. Notwithstanding, CMIP5 and
CMIP6 are reasonably consistent and similar in terms of their
abilities to predict future climate changes. This study focused
on the responses of crop production to future climate change.
It mainly considered the influences of GHG emission- and
concentration-driven climate change and excluded the influ-
ences of alterations in socioeconomic development. There-
fore, we implemented CMIP5 in our current research.

There are two methods for establishing WF benchmarks
(Hoekstra, 2013). Method 1 is based on yield accumulation
statistical analysis. Due to the variability in the WFs found
across regions and among producers within a region, we can
select the WF of 20 % or 25 % of the producers with the high-
est water productivity as the WF benchmark for each crop
(Mekonnen and Hoekstra, 2014). Method 2 is based on the
available optimal technique analysis. We can compare the
WFs at each location under different agricultural manage-
ment practices and take the WF associated with optimal prac-
tice, which results in the smallest WF, as the WF benchmark
(Chukalla et al., 2015). Both methods establish WF bench-
marks based on the maximum reasonable water consump-
tion in each step of the product’s supply chain (Hoekstra,
2014). Method 1 is suitable for large-scale application. The
differences in environmental conditions (such as climate) and
development conditions should be comprehensively consid-
ered (Mekonnen and Hoekstra, 2014; Zhuo et al., 2016a).
The drawback of Method 1 is that no matter what spatial
scope one uses to group producers, there will still be vari-
ability from place to place within that scope, even if the dif-
ferences in regional environmental and development condi-
tions are taken into account (Schyns et al., 2022). Method 2
is suitable for smaller scales and overcomes this drawback
of Method 1 to some extent. The drawback of Method 2 is
that it has the higher requirements with respect to the setting
and simulation of different agricultural management prac-
tices. We mainly want to explore the response of the large-
scale WF to future climate change under specific irrigation
regimes – that is, each irrigation technique has its corre-
sponding WF benchmarks. Thus, only one agricultural man-
agement practice – irrigation – is considered here. Therefore,
we choose Method 1. A combination of methods should be
established; hence, if conditions permit, we strongly recom-

mend that Method 1 and Method 2 are combined to estab-
lish small-scale WF benchmarks. Different agricultural man-
agement practices, such as irrigation, mulching techniques,
and so on, can be combined to further determine WF bench-
marks.

The sources of uncertainty in research on the responses
of crop production to climate change include GCMs, climate
scenarios, crop models, and their interactions (Wang et al.,
2020). Semenov and Stratonovitch (2010) proposed that the
use of multiple GCMs can reduce the uncertainty associ-
ated with them. We selected three GCMs each for wet and
dry climate outputs to encompass a broad climate prediction
scenario. To objectively and comprehensively project the fu-
ture climate change trends of China, we selected two extreme
RCPs, namely RCP2.6 and RCP8.5. Wang et al. (2020) sug-
gested that crop models are the main source of uncertainty in
predicting wheat yield in China under future climate change.
The application of various crop models and parameter set-
tings inevitably lead to different yield forecasts (Asseng et
al., 2013). Hence, the use of AquaCrop alone may introduce
uncertainty into WF forecasting.

The present study had certain limitations in terms of the
assumptions it made for the simulation. First, we assumed
that the crop parameters (such as planting calendar, HI0, and
Zx) for each crop were constant on a spatiotemporal scale un-
der identical growing modes (irrigated or a rain-fed regime).
Yoon and Choi (2020) proposed that future increases in tem-
perature and precipitation might shorten the crop growth pe-
riod. Xiao et al. (2020) indicated that the winter wheat and
summer maize growing periods will be lengthened and short-
ened, respectively, under future climate change. However, we
did not consider future changes in the crop growth period.
Second, we assumed a constant soil surface moisture rate for
each grid under the various irrigation techniques. Third, it
was assumed that the observed changes in the planted areas
in 2013 were based on the 2000 raster database, and we ig-
nored the migration of planted areas. Finally, we assumed
that the areas planted with maize and wheat will not change
in the future and that they would remain consistent with the
baseline year (2013). Thus, we did not consider future devel-
opment of cultivated lands.

The core content of this study was to quantify the re-
sponses of the maize and wheat WFs and WF benchmarks to
future climate change under various irrigation regimes. Fu-
ture research must improve the accuracy of the crop model
simulation and reduce the uncertainty of climate prediction
associated with using different GCMs. Moreover, this study
only considered future climate change scenarios. Future in-
vestigations should also consider the influence of changes in
technological development, land use, growing modes, and so
on.
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4 Conclusions

This study explored the responses of the maize and wheat
WFs and WF benchmarks to future climate change in China.
The crops were subjected to various irrigation regimes. The
year 2013 was the baseline, and the WF and its benchmarks
were quantified for each crop under a rain-fed regime and us-
ing irrigation (furrow-, micro-, and sprinkler-irrigated) man-
agement techniques in the 2030s, 2050s, and 2080s under
RCP2.6 and RCP8.5 at a 5 arcmin grid scale. The AquaCrop
model with the outputs of six GCMs from CMIP5 as its input
data was used to simulate the WFs of maize and wheat. The
results show the following:

1. Compared with 2013, the annual ET0 and PR in the ar-
eas planted with maize and wheat in China will both
increase; however, the former will increase faster than
the latter.

2. The maize WF will increase under both RCP2.6 and
RCP8.5 (by 17 % and 13 %, respectively) until the
2080s. The wheat WF will increase under RCP2.6 (by
12 % until the 2080s) but decrease (by 12 %) under
RCP8.5 until the 2080s. Rain-fed crops were found to
be more vulnerable to the adverse impacts of future cli-
mate change, and their WF values increased to a greater
extent than that of irrigated crops. Micro-irrigation and
sprinkler irrigation resulted in the lowest increases in
the WF for maize and wheat, respectively. Hence, these
water-saving irrigation practices effectively mitigated
the negative impact of climate change.

3. Within different climate zones and under various ir-
rigation regimes, there will be significant differences
in the responses of the WF benchmarks to future cli-
mate change. The changes in the WF and its bench-
marks will be similar in response to future climate
change. The rate of increase in the WF benchmarks
for sprinkler-irrigated crops will generally be lower
than those for rain-fed, micro-irrigated, and furrow-
irrigated crops within the same climate zone. However,
the change in the spatial distribution of the WF bench-
marks will not be as significant as that of the WF it-
self. Moreover, this difference will be more pronounced
in regions with low agricultural development. Addition-
ally, this study also demonstrated that the agricultural
water in China still has substantial water-saving poten-
tial and can be effectively conserved.
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