Articles | Volume 26, issue 14
https://doi.org/10.5194/hess-26-3863-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3863-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Analysis of high streamflow extremes in climate change studies: how do we calibrate hydrological models?
Department of Civil, Environmental and Mechanical Engineering,
University of Trento, 38123 Trento, Italy
Diego Avesani
Department of Civil, Environmental and Mechanical Engineering,
University of Trento, 38123 Trento, Italy
Patrick Zulian
Department of Civil, Environmental and Mechanical Engineering,
University of Trento, 38123 Trento, Italy
Aldo Fiori
Department of Engineering, Roma Tre University, 00154 Rome, Italy
Alberto Bellin
Department of Civil, Environmental and Mechanical Engineering,
University of Trento, 38123 Trento, Italy
Related authors
Andrea Galletti, Soroush Zarghami Dastjerdi, and Bruno Majone
Earth Syst. Sci. Data, 17, 3353–3373, https://doi.org/10.5194/essd-17-3353-2025, https://doi.org/10.5194/essd-17-3353-2025, 2025
Short summary
Short summary
IAR-HP (Italian Alpine Region HydroPower) is a detailed inventory of large hydropower systems in Italy's Alpine Region, aimed at improving their inclusion in hydrological modeling by providing relevant information with a consistent level of detail. It includes structural, geographic, and operational data for over 300 hydropower plants and their related reservoirs and water intakes. Validated through modeling, IAR-HP accurately reproduces observed hydropower, capturing 96.2 % of actual production.
Giulio Bongiovanni, Michael Matiu, Alice Crespi, Anna Napoli, Bruno Majone, and Dino Zardi
Earth Syst. Sci. Data, 17, 1367–1391, https://doi.org/10.5194/essd-17-1367-2025, https://doi.org/10.5194/essd-17-1367-2025, 2025
Short summary
Short summary
EEAR-Clim is a new and unprecedented observational dataset gathering in situ daily measurements of air temperature and precipitation from a network of about 9000 weather stations covering the European Alps. Data collected, including time series from recordings up to 2020 and time series significantly enhancing data coverage at high elevations, were tested for quality and homogeneity. The dataset aims to serve as a powerful tool for better understanding climate change over the European Alpine region.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Andrea Galletti, Soroush Zarghami Dastjerdi, and Bruno Majone
Earth Syst. Sci. Data, 17, 3353–3373, https://doi.org/10.5194/essd-17-3353-2025, https://doi.org/10.5194/essd-17-3353-2025, 2025
Short summary
Short summary
IAR-HP (Italian Alpine Region HydroPower) is a detailed inventory of large hydropower systems in Italy's Alpine Region, aimed at improving their inclusion in hydrological modeling by providing relevant information with a consistent level of detail. It includes structural, geographic, and operational data for over 300 hydropower plants and their related reservoirs and water intakes. Validated through modeling, IAR-HP accurately reproduces observed hydropower, capturing 96.2 % of actual production.
Giulio Bongiovanni, Michael Matiu, Alice Crespi, Anna Napoli, Bruno Majone, and Dino Zardi
Earth Syst. Sci. Data, 17, 1367–1391, https://doi.org/10.5194/essd-17-1367-2025, https://doi.org/10.5194/essd-17-1367-2025, 2025
Short summary
Short summary
EEAR-Clim is a new and unprecedented observational dataset gathering in situ daily measurements of air temperature and precipitation from a network of about 9000 weather stations covering the European Alps. Data collected, including time series from recordings up to 2020 and time series significantly enhancing data coverage at high elevations, were tested for quality and homogeneity. The dataset aims to serve as a powerful tool for better understanding climate change over the European Alpine region.
Diego Avesani, Yi Nan, and Fuqiang Tian
EGUsphere, https://doi.org/10.5194/egusphere-2025-664, https://doi.org/10.5194/egusphere-2025-664, 2025
Short summary
Short summary
Our study explores how different data sources (snow cover, glacier mass balance, and water isotopes) can improve hydrological modeling in large mountain basins. Using a Bayesian framework, we show that isotopes are particularly useful for reducing uncertainty in low-flow conditions, while snow and glacier data help during melt seasons. By addressing equifinality, our approach enhances model reliability, improving water management and streamflow predictions in mountainous regions.
Luciano Pavesi, Elena Volpi, and Aldo Fiori
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, https://doi.org/10.5194/nhess-24-4507-2024, https://doi.org/10.5194/nhess-24-4507-2024, 2024
Short summary
Short summary
Several sources of uncertainty affect flood risk estimation for reliable assessment for investment, insurance and risk management. Here, we consider the uncertainty of large-scale flood hazard modeling, providing a range of risk values that show significant variability depending on geomorphic factors and land use types. This allows for identifying the critical points where single-value estimates may underestimate the risk and the areas of vulnerability for prioritizing risk reduction efforts.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Michael Matiu, Alice Crespi, Giacomo Bertoldi, Carlo Maria Carmagnola, Christoph Marty, Samuel Morin, Wolfgang Schöner, Daniele Cat Berro, Gabriele Chiogna, Ludovica De Gregorio, Sven Kotlarski, Bruno Majone, Gernot Resch, Silvia Terzago, Mauro Valt, Walter Beozzo, Paola Cianfarra, Isabelle Gouttevin, Giorgia Marcolini, Claudia Notarnicola, Marcello Petitta, Simon C. Scherrer, Ulrich Strasser, Michael Winkler, Marc Zebisch, Andrea Cicogna, Roberto Cremonini, Andrea Debernardi, Mattia Faletto, Mauro Gaddo, Lorenzo Giovannini, Luca Mercalli, Jean-Michel Soubeyroux, Andrea Sušnik, Alberto Trenti, Stefano Urbani, and Viktor Weilguni
The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, https://doi.org/10.5194/tc-15-1343-2021, 2021
Short summary
Short summary
The first Alpine-wide assessment of station snow depth has been enabled by a collaborative effort of the research community which involves more than 30 partners, 6 countries, and more than 2000 stations. It shows how snow in the European Alps matches the climatic zones and gives a robust estimate of observed changes: stronger decreases in the snow season at low elevations and in spring at all elevations, however, with considerable regional differences.
Cited articles
Aich, V., Liersch, S., Vetter, T., Fournet, S., Andersson, J. C. M., Calmanti,
S., Van Weert, F. H. A., Hattermann, F. F., and Paton, E. N.: Flood projections
within the Niger River Basin under future land use and climate change, Sci.
Total Environ., 562, 666–677, https://doi.org/10.1016/j.scitotenv.2016.04.021, 2016.
Arnell, N. W.: Uncertainty in the relationship between climate forcing and hydrological response in UK catchments, Hydrol. Earth Syst. Sci., 15, 897–912, https://doi.org/10.5194/hess-15-897-2011, 2011.
Avesani, D., Galletti, A., Piccolroaz, S., Bellin, A., and Majone, B.: A dual
layer MPI continuous large-scale hydrological model including Human Systems,
Environ. Model. Softw., 139, 105003, https://doi.org/10.1016/j.envsoft.2021.105003,
2021.
Avesani, D., Zanfei, A., Di Marco, N., Galletti, A., Ravazzolo, F., Righetti, M.,
and Majone, B.: Short-term hydropower optimization driven by innovative
time-adapting econometric model, Appl. Energy, 310, 118510, https://doi.org/10.1016/j.apenergy.2021.118510, 2022.
Bard, A., Renard, B., Lang, M., Giuntoli, I., Korck, J., Koboltschnig, G.,
Janža, M., D'Amico, M., and Volken, D.: Trends in the hydrologic regime of
Alpine rivers, J. Hydrol., 529, 1823–1837,
https://doi.org/10.1016/j.jhydrol.2015.07.052, 2015.
Bellin, A., Majone, B., Cainelli, O., Alberici, D., and Villa, F.: A
continuous coupled hydrological and water resources management model,
Environ. Model. Softw., 75, 176–192, https://doi.org/10.1016/j.envsoft.2015.10.013,
2016.
Beven, K. J. and Binley, A.: The future of distributed models: Model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–298,
https://doi.org/10.1002/hyp.3360060305, 1992.
Beven, K. and Westerberg, I.: On red herrings and real herrings:
disinformation and information in hydrological inference, Hydrol. Process.,
25, 1676–1680, https://doi.org/10.1002/hyp.7963, 2011.
Blazkova, S. and Beven, K.: A limits of acceptability approach to model
evaluation and uncertainty estimation in flood frequency estimation by
continuous simulation: Skalka catchment, Czech Republic, Water Resour. Res.,
45, W00B16, https://doi.org/10.1029/2007WR006726, 2009.
Bouwer, L. M.: Projections of Future Extreme Weather Losses Under Changes in
Climate and Exposure, Risk Anal., 33, 915–930,
https://doi.org/10.1111/j.1539-6924.2012.01880.x, 2013.
Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter
instability: a source of additional uncertainty in estimating the
hydrological impacts of climate change?, J. Hydrol., 476, 410–425,
https://doi.org/10.1016/j.jhydrol.2012.11.012, 2013.
Brigode, P., Paquet, E., Bernardara, P., Gailhard, J., Garavaglia, F.,
Ribstein, P., Bourgin, F., Perrin, C., and Andréassian, V.: Dependence of
model-based extreme flood estimation on the calibration period: the case
study of the Kamp River (Austria), Hydrolog. Sci. J., 60,
1424–1437, doi.org/10.1080/02626667.2015.1006632, 2015.
Brunner, M. I., Farinotti, D., Zekollari, H., Huss, M., and Zappa, M.: Future shifts in extreme flow regimes in Alpine regions, Hydrol. Earth Syst. Sci., 23, 4471–4489, https://doi.org/10.5194/hess-23-4471-2019, 2019.
Buytaert, W. and De Bièvre, B.: Water for cities: the impact of climate
change and demographic growth in the tropical Andes, Water Resour. Res., 48,
W08503, https://doi.org/10.1029/2011WR011755, 2012.
Calenda, G., Mancini, C. P., and Volpi, E.: Selection of the probabilistic
model of extreme floods: The case of the River Tiber in Rome, J. Hydrol.,
371, 1–11, https://doi.org/10.1016/j.jhydrol.2009.03.010, 2009.
Chiew, F., Teng, J., Vaze, J., Post, D., Perraud, J., Kirono, D., and Viney,
N.: Estimating climate change impact on runoff across southeast Australia,
Method, results, and implications of the modeling method, Water Resour.
Res., 45, W10414, https://doi.org/10.1029/2008WR007338, 2009.
Chiogna, G., Majone, B., Cano Paoli, K., Diamantini, E., Stella, E.,
Mallucci, S., Lencioni, V., Zandonai, F., and Bellin, A.: A review of
hydrological and chemical stressors in the Adige basin and its ecological
status, Sci. Tot. Env., 540, 429–443, https://doi.org/10.1016/j.scitotenv.2015.06.149,
2016.
Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S.,
Wood, A. W., Fowler, H. J., Prudhomme, C., Arnold, J. R., and Brekke, L. D.:
Characterizing Uncertainty of the Hydrologic Impacts of Climate Change,
Curr. Clim. Change Rep., 2, 55–64, https://doi.org/10.1007/s40641-016-0034-x, 2016.
Conover, W. J.: Practical Nonparametric Statistics, Third edition, Wiley
Series in Probability and Statistics: Applied Probability and Statistics
Section, John Wiley & Sons. INC., New York, ISBN 9780471160687, 1999.
Diamantini, E., Lutz, S. R., Mallucci, S., Majone, B., Merz, R., and Bellin,
A.: Driver detection of water quality trends in three large European river
basins, Sci. Total Environ., 612, 49–62,
doi.org/10.1016/j.scitotenv.2017.08.172, 2018.
Di Sante, F., Coppola, E., and Giorgi, F.: Projections of river floods in
Europe using EURO-CORDEX, CMIP5 and CMIP6 simulations, Int. J. Climatol., 41, 3203–3221, https://doi.org/10.1002/joc.7014, 2019.
Earth System Grid Federation: EURO-CORDEX, euro-cordex [data set], https://www.euro-cordex.net/060378/index.php.en, last access: 15 July 2022.
Eden, J. M., Widmann, M., Maraun, D., and Vrac, M.: Comparison of GCM- and
RCM-simulated precipitation following stochastic postprocessing, J. Geophys.
Res.-Atmos., 119, 11040–11053, https://doi.org/10.1002/2014JD021732, 2014.
Efron, B.: The jackknife, the bootstrap, and other resampling plans,
Society of Industrial and Applied Mathematics CBMS-NSF Monographs, 38, ISBN 0898711797, 1982.
Fenicia, F., Kavetski, D., Reichert, P., and Albert, C.: Signature-domain
calibration of hydrological models using approximate Bayesian computation:
Empirical analysis of fundamental properties. Water Resour. Res., 54,
3958–3987, https://doi.org/10.1002/2017WR021616, 2018.
Fiori, A., Cvetkovic, V., Dagan, G., Attinger, S., Bellin, A., Dietrich, P.,
Zech, A., and Teutsch, G.: Debates-stochastic subsurface hydrology from theory to practice: The
relevance of stochastic subsurface hydrology to practical problems of
contaminant transport and remediation. What is characterization and
stochastic theory good for?, Water Resour. Res., 52, 9228–9234,
https://doi.org/10.1002/2015WR017525, 2016.
Galletti, A., Avesani, D., Bellin, A., and Majone, B.: Detailed simulation of
storage hydropower systems in large Alpine watersheds, J. Hydrol., 603,
127125, https://doi.org/10.1016/j.jhydrol.2021.127125, 2021.
Gampe, D., Nikulin, G., and Ludwig, R.: Using an ensemble of regional climate
models to assess climate change impacts on water scarcity in European river
basins, Sci. Total Environ., 573, 1503–1518, https://doi.org/10.1016/j.scitotenv.2016.08.053, 2016.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J. and
Stoffel, M.: 21st century climate change in the European Alps, A
review, Sci. Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Goovaerts, P.: Geostatistics for natural resources evaluation, Oxford
University Press, 483 p., ISBN 9780195115383, 1997.
Grubbs, F. E.: Procedures for Detecting Outlying Observations in Samples,
Technometrics 11, 1–21, https://doi.org/10.1080/00401706.1969.10490657, 1969.
Gumbel, E. J.: The return period of flood flows, Ann. Math Stat., 12,
163–190, 1941.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition
of the mean squared error and NSE performance criteria: Implications for
improving hydrological modelling, J. Hydrol., 377, 80–91, 2009.
Guthke, A.: Defensible model complexity: A call for data-based and
goal-oriented model choice, Groundwater, 55, 646–650,
https://doi.org/10.1111/gwat.12554, 2017.
Hargreaves, G. H. and Samani, Z. A.: Estimating potential evapotranspiration,
J. Irrig. Drain. Eng., 108, 225–230, 1989.
Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H.: Updated
high-resolution grids of monthly climatic observations – the CRU TS3.10
dataset, Int. J. Climatol., 34, 623–642, https://doi.org/10.1002/joc.3711, 2014.
Hattermann, F. F., Vetter, T., Breuer, L., Su, B., Daggupati, P., Donnelly,
C., Fekete, B., Florke F., Gosling, S.N., Hoffmann, P., Liersch, S., Masaki,
Y., Motovilov, Y., Muller, C., Samaniego, L., Stacke, T., Wada, Y., Yang,
T., and Krysnaova, V.: Environ. Res. Lett., 13, 015006,
https://doi.org/10.1088/1748-9326/aa9938, 2018.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P.
D., and New, M.: A European daily high-resolution gridded dataset of
surface temperature and precipitation, J. Geophys. Res., 113, D20119,
https://doi.org/10.1029/2008JD010201, 2008.
Heistermann, M. and Kneis, D.: Benchmarking quantitative precipitation
estimation by conceptual rainfall-runoff modeling, Water Resour. Res., 47,
W06514, https://doi.org/10.1029/2010WR009153, 2011.
Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol.,
282, 104–115, https://doi.org/10.1016/S0022-1694(03)00257-9, 2003.
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.: Bayesian
model averaging: A tutorial, Stat. Sci., 14, 382–417, 1999.
Hofstra, N., Haylock, M., New, M., and Jones, P. D.: Testing E-OBS European
high-resolution gridded data set of daily precipitation and surface
temperature, J. Geophys. Res., 114, D21101, https://doi.org/10.1029/2009JD011799, 2009.
Hofstra, N., New, M., and McSweeney, C.: The influence of interpolation and
station network density on the distributions and trends of climate variables
in gridded daily data, Clim. Dyn. 35, 841–858, https://doi.org/10.1007/s00382-009-0698-1, 2010.
Honti, M., Scheidegger, A., and Stamm, C.: The importance of hydrological uncertainty assessment methods in climate change impact studies, Hydrol. Earth Syst. Sci., 18, 3301–3317, https://doi.org/10.5194/hess-18-3301-2014, 2014.
Hosking, J. R.: Maximum-likelihood estimation of the parameters of the
generalized extreme-value distribution, Appl. Stat., 34, 301–310,
https://doi.org/10.2307/2347483, 1985.
Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M.,
Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G.,
Ratto, S.M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi,
C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily
precipitation in the Alps: development and analysis of a high-resolution
grid dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34,
1657–1675, https://doi.org/10.1002/joc.3794, 2014.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G.,
Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S.,
Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S.,
Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S.,
Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiuou, P.: EURO-CORDEX: new high-resolution
climate change projections for European impact research, Reg. Environ.
Chang., 14, 563–578, 2014.
Journel, A. G. and Rossi, M. E.: When do we need a trend model in kriging?,
Math. Geol., 21, 715–739, https://doi.org/10.1007/BF00893318, 1989.
Kennedy, J. and Eberhart, R.: Particle swarm optimization, Proceedings of
IEEE International Conference on Neural Networks, Institute of Electrical
& Electronics Engineering, University of Western Australia, Perth,
Western Australia, 1942–1948, https://doi.org/10.1109/ICNN.1995.488968, 1995.
Kleinen, T. and Petschel-Held, G.: Integrated assessment of changes in
flooding probabilities due to climate change, Clim. Change, 81, 283–312,
https://doi.org/10.1007/s10584-006-9159-6, 2007.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kundzewicz, Z., Mata, L., Arnell, N., Döll, P., Kabat, P., Jiménez,
B., Miller, K., Oki, T., Shen, Z., and Shiklomanov, I.: Freshwater resources
and their management, in: Climate change: Impacts, adaptation and
vulnerability, Contribution of Working Group II to the Fourth Assessment
Report of the Intergovernmental Panel of Climate Change, edited by: Parry,
M., Canziani, O., Palutikof, J., van der Linden, P., and Hanson, C., Cambridge University Press, Cambridge, UK, 173–210, 2007.
Laio, F., Allamano, P., and Claps, P.: Exploiting the information content of hydrological ”outliers” for goodness-of-fit testing, Hydrol. Earth Syst. Sci., 14, 1909–1917, https://doi.org/10.5194/hess-14-1909-2010, 2010.
Laiti, L., Mallucci, S., Piccolroaz, S., Bellin, A., Zardi, D., Fiori, A.,
Nikulin, G., and Majone, B.: Testing the hydrological coherence of
high-resolution gridded precipitation and temperature datasets, Water Resour. Res., 54, 1999–2016, https://doi.org/10.1002/2017WR021633, 2018.
Landelius, T., Dahlgren, P., Gollvik, S., Jansson, A., and Olsson, E.: A
high-resolution regional reanalysis for Europe, Part 2: 2D analysis of
surface temperature, precipitation and wind, Q. J. R. Meteorol. Soc., https://doi.org/10.1002/qj.2813, 2016.
Larsen, S., Majone, B., Zulian, P., Stella, E., Bellin, A., Bruno, M. C.,
and Zolezzi, G.: Combining hydrologic simulations and stream-network models
to reveal flow-ecology relationships in a large Alpine catchment, Water Resour. Res., 57, e2020WR028496, https://doi.org/10.1029/2020WR028496,
2021.
Lespinas, F., Ludwig, W., and Heussner, S.: Hydrological and climatic
uncertainties associated with modeling the impact of climate change on water
resources of small Mediterranean coastal rivers, J. Hydrol., 511, 403–422,
https://doi.org/10.1016/j.jhydrol.2014.01.033, 2014.
Lindenschmidt, K. E.: Using stage frequency distributions as objective
functions for model calibration and global sensitivity analyses, Environ.
Model. Softw., 92, 169–175, https://doi.org/10.1016/j.envsoft.2017.02.027,
2017.
Lutz, S. R., Mallucci, S., Diamantini, E., Majone, B., Bellin, A., and Merz,
R.: Hydroclimatic and water quality trends across three Mediterranean river
basins, Sci. Tot. Env., 571, 1392–1406, https://doi.org/10.1016/j.scitotenv.2016.07.102,
2016.
Majone, B., Bertagnoli, A., and Bellin, A.: A non-linear runoff generation
model in small Alpine catchments, J. Hydrol., 385, 300–312, https://doi.org/10.1016/j.jhydrol.2010.02.033, 2010.
Majone, B., Bovolo, C. I., Bellin, A., Blenkinsop, S., and Fowler, J.:
Modeling the impacts of future climate change on water resources for the
Gállego river basin, Spain, Water Resour. Res., 48, W01512,
https://doi.org/10.1029/2011WR010985, 2012.
Majone, B., Villa, F., Deidda, R., and Bellin, A.: Impact of climate change and
water use policies on hydropower potential in the south-eastern Alpine
region, Sci. Tot. Env., 543, 965–980,
https://doi.org/10.1016/j.scitotenv.2015.05.009, 2016.
Mallucci, S., Majone, B., and Bellin, A.: Detection and attribution of
hydrological changes in a large Alpine river basin, J. Hydrol.,
575, 1214–1229, https://doi.org/10.1016/j.jhydrol.2019.06.020, 2019.
Mcmillan, H., Westerberg, I., and Branger, F.: Five guidelines for
selecting hydrological signatures. Hydrol. Process., 31,
4757–4761, https://doi.org/10.1002/hyp.11300, 2017.
Meresa, H. K. and Romanowicz, R. J.: The critical role of uncertainty in projections of hydrological extremes, Hydrol. Earth Syst. Sci., 21, 4245–4258, https://doi.org/10.5194/hess-21-4245-2017, 2017.
Michel, C., Andreassian, V., and Perrin, C.: Soil Conservation Service Curve
Number method: How to mend a wrong soil moisture accounting procedure?,
Water Resour. Res., 41, W02011, https://doi.org/10.1029/2004WR003191, 2005.
Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., and Kumar, R.: On the choice of calibration metrics for “high-flow” estimation using hydrologic models, Hydrol. Earth Syst. Sci., 23, 2601–2614, https://doi.org/10.5194/hess-23-2601-2019, 2019.
Montanari, A. and Toth, E.: Calibration of hydrological models in the
spectral domain: An opportunity for scarcely gauged basins?, Water Resour.
Res., 43, W05434, https://doi.org/10.1029/2006WR005184, 2007.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren,
L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K.,
Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G.,
Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C.,
Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev. V.: “Panta Rhei-Everything Flows”: Change in
hydrology and society – The IAHS Scientific Decade 2013–2022, Hydrol. Sci. J., 58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088,
2013.
Muñoz, E., Arumí, J. L., and Rivera, D.: Watersheds are not static:
Implications of climate variability and hydrologic dynamics in modelling,
Bosque (Valdivia), 34, 7–11, https://doi.org/10.4067/S0717-92002013000100002,
2013.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I. A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Ngongondo, C., Li, L., Gong, L., Xu, C., and Alemawm, B. F: Flood frequency
under changing climate in the upper Kafue River basin, southern Africa: a
large scale hydrological model application, Stoch. Environ. Res. Risk.
Assess., 27, 1883–1898, https://doi.org/10.1007/s00477-013-0724-z, 2013.
Pearson, K.: On the criterion that a given system of deviations from the
probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling, Philosophical
Magazine Series 5, 302, 157–175, 1900.
Pechlivanidis, I. G., Arheimer, B., Donnelly, C., Hundecha, Y., Huang, S.,
Aich, V., Samaniego, L., Eisner, S., and Shi, P.: Analysis of hydrological
extremes at different hydro-climatic regimes under present and future
conditions, Clim. Change, 141, 467–481, https://doi.org/10.1007/s10584-016-1723-0,
2017.
Peel, M. C. and Blöschl, G.: Hydrological modelling in a changing
world, Prog. Phys. Geog., 35, 249–261,
https://doi.org/10.1177/0309133311402550, 2011.
Perrin, C., Oudin, L., Andreassian, V., Rojas-Serna, C., Michel, C., and
Mathevet, T.: Impact of limited streamflow data on the efficiency and the
parameters of rainfall-runoff models, Hydrolog. Sci. J., 52,
131–151, https://doi.org/10.1623/hysj.52.1.131, 2007.
Piccolroaz, S., Majone, B., Palmieri, F., Cassiani, G., and Bellin, A.: On
the use of spatially distributed, time-lapse microgravity surveys to inform
hydrological modeling, Water Resour. Res., 51, 7270–7288,
https://doi.org/10.1002/2015WR016994, 2015.
Piccolroaz, S., Di Lazzaro, M., Zarlenga, A., Majone, B., Bellin, A., and Fiori, A.: HYPERstream: a multi-scale framework for streamflow routing in large-scale hydrological model, Hydrol. Earth Syst. Sci., 20, 2047–2061, https://doi.org/10.5194/hess-20-2047-2016, 2016.
Protter, M. H. and Morrey, C. B.: College Calculus with Analytic Geometry, Second Edition (1 January 1970),
Addison-Wesley VLSI Systems Series, Addison-Wesley Publishing Company, ISBN 9780201060010, 1977.
Rango, A. and Martinec, J.: Revisiting the degree-day method for snowmelt
computations, J. Am. Water Resour. Assoc., 31, 657–669,
https://doi.org/10.1111/j.1752-1688.1995.tb03392.x, 1995.
Rinaldo, A., Marani, A., and Rigon, R.: Geomorphological dispersion, Water
Resour. Res., 27, 513–525, https://doi.org/10.1029/90WR02501, 1991.
Schaefli, B. and Gupta, H. V.: Do Nash values have value?, Hydrol.
Process., 21, 2075–2080, https://doi.org/10.1002/hyp.6825, 2007.
Seibert, J. and Beven, K. J.: Gauging the ungauged basin: how many discharge measurements are needed?, Hydrol. Earth Syst. Sci., 13, 883–892, https://doi.org/10.5194/hess-13-883-2009, 2009.
Smirnov, N. V.: Estimate of deviation between empirical distribution
functions in two independent samples, (Russian) Bull. Moscow Univ., 2,
3–16, 1939.
Taye, M. T., Ntegeka, V., Ogiramoi, N. P., and Willems, P.: Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin, Hydrol. Earth Syst. Sci., 15, 209–222, https://doi.org/10.5194/hess-15-209-2011, 2011.
Thirel, G., Andréassian, V., Perrin, C., Audouy, J.-N., Berthet, L.,
Edwards, P., Folton, N.,
Furusho, C., Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J.,
Ruelland, D., and Vaze, J.: Hydrology under change: an evaluation
protocol to investigate how hydrological models deal with changing
catchments, Hydrol. Sci. J., 60, 1184–1199,
https://doi.org/10.1080/02626667.2014.967248, 2014.
Thornton, P. K., Ericksen P. J., Herrero M., and Challinor, A. J.: Climate
variability and vulnerability to climate change: a review, Glob. Change
Biol., 20, 3313–3328, https://doi.org/10.1111/gcb.12581, 2014.
Todd, M. C., Taylor, R. G., Osborn, T. J., Kingston, D. G., Arnell, N. W., and Gosling, S. N.: Uncertainty in climate change impacts on basin-scale freshwater resources – preface to the special issue: the QUEST-GSI methodology and synthesis of results, Hydrol. Earth Syst. Sci., 15, 1035–1046, https://doi.org/10.5194/hess-15-1035-2011, 2011.
Vaze, J., Post, D. A., Chiew, F. H. S., Perraud, J. M., Viney, N. R., and Teng, J.:
Climate non-stationarity – validity of calibrated rainfall-runoff models for
use in climate change studies, J. Hydrol. 394, 447–457,
https://doi.org/10.1016/j.jhydrol.2010.09.018, 2010.
Vetter, T., Reinhardt, J., Flörke, M., van Griensven, A., Hattermann,
F., Huang, S., Koch, H., Pechlivanidis, I.G., Plötner, S., Seidou, O.,
Su, B., Vervoort, R. W., and Krysanova, V.: Evaluation of sources of
uncertainty in projected hydrological changes under climate change in
large-scale river basins, Clim. Change, 141, 419–433,
https://doi.org/10.1007/s10584-016-1794-y, 2017.
Vogel, R. M. and Fennessey, N. M.: Flow-Duration Curves. 1: New
Interpretation and Confidence-Intervals, Planning and
Management, J. Water Res., 120, 485–504, https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(485),
1994.
Vrzel, J., Ludwig, R., Gampe, D., and Ogrinc, N.: Hydrological system
behavior of an alluvial aquifer under climate change, Sci. Total Environ.,
649, 1179–1188, https://doi.org/10.1016/j.scitotenv.2018.08.396, 2019.
Wang, W., Chen, X., Shi, P., and van Gelder, P. H. A. J. M.: Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China, Hydrol. Earth Syst. Sci., 12, 207–221, https://doi.org/10.5194/hess-12-207-2008, 2008.
Wang, A. and Solomatine, D. P.: Practical Experience of Sensitivity
Analysis: Comparing Six Methods, on Three Hydrological Models, with Three
Performance Criteria, Water, 11, 1062, https://doi.org/10.3390/w11051062, 2019.
Weibull, W.: A statistical theory of strength of materials., Ing. Vetensk.
Akad. Handl., 151, 1–45, 1939.
Westerberg, I. K., Guerrero, J.-L., Younger, P. M., Beven, K. J., Seibert, J., Halldin, S., Freer, J. E., and Xu, C.-Y.: Calibration of hydrological models using flow-duration curves, Hydrol. Earth Syst. Sci., 15, 2205–2227, https://doi.org/10.5194/hess-15-2205-2011, 2011.
Wilby, R. L. and Harris, I.: A framework for assessing uncertainties in
climate change impacts: Low-flow scenarios for the River Thames, UK, Water
Resour. Res., 42, W02419, https://doi.org/10.1029/2005WR004065, 2006.
Wilcke, R. A. I. and Bärring, L.: Selecting regional climate scenarios for
impact modelling studies, Environ. Model. Softw., 78, 191–201,
10.1016/j.envsoft.2016.01.002, 2016.
Wu, Q., Liu, S., Cai, Y., Li, X., and Jiang, Y.: Improvement of hydrological model calibration by selecting multiple parameter ranges, Hydrol. Earth Syst. Sci., 21, 393–407, https://doi.org/10.5194/hess-21-393-2017, 2017.
Yang, W., Andréasson, J., Graham, L. P., Olsson, J., Rosberg, J., and
Wetterhall, F.: Distribution based scaling to improve usability of regional
climate model projections for hydrological climate change impacts studies,
Hydrol. Res., 41, 211–229, 10.2166/nh.2010.004, 2010.
Yapo, P. O., Gupta, H. V., Sorooshian, S.: Automatic calibration of conceptual
rainfall-runoff models: sensitivity to calibration data. J. Hydrol. 181,
23–48, https://doi.org/10.1016/0022-1694(95)02918-4, 1996.
Zolezzi, G., Bellin, A., Bruno, M. C., Maiolini, B., and Siviglia, A.:
Assessing hydrological alterations at multiple temporal scales: Adige River,
Italy, Water Resour. Res., 45, W12421, https://doi.org/10.1029/2008WR007266, 2009.
Short summary
In this work, we introduce a methodology for devising reliable future high streamflow scenarios from climate change simulations. The calibration of a hydrological model is carried out to maximize the probability that the modeled and observed high flow extremes belong to the same statistical population. Application to the Adige River catchment (southeastern Alps, Italy) showed that this procedure produces reliable quantiles of the annual maximum streamflow for use in assessment studies.
In this work, we introduce a methodology for devising reliable future high streamflow scenarios...