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Abstract. Climate change impact studies on hydrological ex-
tremes often rely on hydrological models with parameters in-
ferred through calibration procedures using observed meteo-
rological data as input forcing. We show that this procedure
can lead to a biased evaluation of the probability distribu-
tion of high streamflow extremes when climate models are
used. As an alternative approach, we introduce a method-
ology, coined “Hydrological Calibration of eXtremes” (Hy-
CoX), in which the calibration of the hydrological model, as
driven by climate model output, is carried out by maximizing
the probability that the modeled and observed high stream-
flow extremes belong to the same statistical population. The
application to the Adige River catchment (southeastern Alps,
Italy) by means of HYPERstreamHS, a distributed hydrolog-
ical model, showed that this procedure preserves statistical
coherence and produces reliable quantiles of the annual max-
imum streamflow to be used in assessment studies.

1 Introduction

The recognition that an altered climate may severely im-
pact water availability and exacerbate floods and droughts
has led to a flourish of climate change impact assessment
studies over the past decades. Several studies have investi-
gated the likely impact of climate change on hydrology us-
ing hydrological modeling performed with meteorological
forcing obtained from an ensemble of projections from mul-
tiple climate models under different greenhouse gas emis-
sion scenarios (e.g., Kundzewicz et al., 2007; Todd et al.,
2011; Wilby and Harris, 2006, for a comprehensive review).
A wealth of studies have focused on long-term annual and/or

seasonal changes in hydrological variables such as runoff,
streamflow, snowmelt and soil moisture (e.g., Chiew et al.,
2009; Majone et al., 2012; Buytaert and De Bièvre, 2012).
Far fewer studies have addressed projected changes in hy-
drological extremes (i.e., floods and droughts), although they
are expected to exert profound and dramatic impacts on agri-
culture, the economy, human health, energy and many other
water-related sectors (e.g., Arnell 2011; Taye et al., 2011;
Bouwer, 2013; Thornton et al., 2014).

The role of hydrological calibration and the way to per-
form it in climate change impact studies has been much de-
bated in the hydrological community (e.g., Peel and Blöschl,
2011; Muñoz et al., 2013; Montanari et al., 2013; Thirel et
al., 2014). According to the most commonly used approach,
the hydrological model is first calibrated against the observed
streamflow using observed meteorological data as input. The
calibrated hydrological model is then run with climate mod-
els as input to assess the projected changes in selected indica-
tors, including those related to extremes (e.g., flow quantiles;
see Ngongondo et al., 2013; Aich et al., 2016; Pechlivani-
dis et al., 2017; Vetter et al., 2017; Hattermann et al., 2018).
The drawbacks of such an approach are, however, twofold:
(1) optimality in the reproduction of the time series of ob-
served streamflow does not automatically imply optimality
in the reproduction of extremes; and (2) due to epistemic un-
certainty, a model calibrated with a given set of observations
may respond differently when fed with projections obtained
from climate change scenarios. Concerning this latter aspect,
some studies have shown that the calibrated model parame-
ters depend on the climatic characteristics of the input forc-
ing used for the calibration of the hydrological model (e.g.,
Vaze et al., 2010; Laiti et al., 2018). Although recognized,
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this additional source of uncertainty is mostly ignored in cli-
mate change impact studies.

Several studies have suggested that observed streamflow
extremes provide valuable information about the hydrologi-
cal behavior of investigated catchments (Grubbs, 1969; Laio
et al., 2010). Similarly, Perrin et al. (2007) and Seibert and
Beven (2009) concluded that a limited number of stream-
flow extremes encapsulate a significant amount of informa-
tion that may be useful for hydrological model calibration.
Beven and Westerberg (2011) also suggested that, when deal-
ing with extremes, including the entire time series might
not be informative. This occurs, for instance, when stream-
flow extremes belong to a different population than ordi-
nary flows (e.g., Calenda et al, 2009), such that the latter
does not provide useful information for inferring the former.
Hence, quantifying the influence of such extreme events on
model calibration is still a challenge in hydrological studies
(Brigode et al., 2015) as well as quantifying the uncertainty
associated with these estimates (Honti et al., 2014).

To overcome the aforementioned limitations, we propose
an innovative methodology in which the calibration of a hy-
drological model, as driven by climate models, is conducted
by maximizing the probability that the modeled and observed
streamflow extremes belong to the same population within
the reference period. While the approach is exemplified in
this work for high streamflows (given the broad interest in the
topic), it can be applied to low flows as well (e.g., for drought
assessment). The methodology, coined “Hydrological Cali-
bration of eXtremes” (HyCoX), specifically targets climate
change impact assessment studies and relies on the use of the
two-sample Kolmogorov–Smirnov statistic (Smirnov, 1939)
as an efficiency metric during the calibration procedure. We
emphasize that the suggested approach is, by definition, a
“goal-oriented” framework, as recently discussed in Fiori et
al. (2016), Guthke (2017) and Laiti et al. (2018).

Studies adopting the two-sample Kolmogorov–Smirnov
test to evaluate whether simulated hydrological variables are
distributed according to a given probability distribution (e.g.,
Kleinen and Petschel-Held, 2007) are relatively common in
the literature. This statistical test has also been used to detect
changes in hydrological variables (e.g., Wang et al., 2008) as
well as to verify if calibrated parameters of a hydrological
model belong to a given probability distribution (e.g., Wu et
al., 2017; Wang and Solomatine, 2019). This notwithstand-
ing, we are not aware of existing studies adopting this sta-
tistical test in the context of hydrological model calibration
oriented to the reproduction of extremes.

Therefore, the main objective of the present work is
twofold. From one side, we introduce the HyCoX framework
and assess its capability to reproduce observed high stream-
flow extremes using climate models, applied to the same time
frame as that of the observational data, as input. On the other,
the strength of the proposed methodology is tested against
the commonly adopted procedure of calibrating the model
using observational data.

The paper is organized as follows: Sect. 2 presents the hy-
drological modeling framework, the calibration metrics and
the adopted statistical test; a description of the study area,
the climate change projections, the observational hydrom-
eteorological datasets and the setup of the simulations are
summarized in Sect. 3; the main findings are presented and
discussed in Sect. 4; and, finally, conclusions are drawn in
Sect. 5.

2 Methods

2.1 Hydrological modeling

Hydrological simulations were performed at a daily
timescale with the HYPERstreamHS model (Avesani et al.,
2021; Laiti et al., 2018; Larsen et al., 2021); HYPER-
streamHS couples the HYPERstream routing scheme, re-
cently proposed by Piccolroaz et al. (2016), with a contin-
uous module for surface and subsurface flow generation. The
HYPERstream routing scheme is specifically designed to fa-
cilitate coupling with climate models and, in general, with
gridded climate datasets. HYPERstream can share the same
computational grid as that of any overlaying product provid-
ing the meteorological forcing while still preserving the ge-
omorphological dispersion of the river network (Rinaldo et
al., 1991), irrespective of the grid resolution. This “perfect
upscaling” (see Piccolroaz et al., 2016) is obtained via the
application of suitable transfer functions derived from a high-
resolution digital elevation model (DEM) of the study area.
Separation between surface flow and infiltration was ob-
tained using the continuous Soil Conservation Service Curve
Number (SCS-CN) model (Michel et al., 2005); this model
receives the total precipitation given by the sum of rainfall
and snowmelt as input, with the latter being evaluated by
the degree-day model coupled with mass balance, which in-
cludes snow accumulation (Rango and Martinec, 1995). The
infiltrating water enters into a nonlinear bucket mimicking
soil moisture dynamics (Majone et al., 2010), with evap-
otranspiration, which is computed by the Hargreaves and
Samani (1982) model, and deep infiltration as output fluxes.
Finally, deep infiltration enters a linear bucket used to rep-
resent return flow. The surface and subsurface flow genera-
tion module has already been successfully applied in previ-
ous studies conducted in Alpine catchments (Piccolroaz et
al., 2015; Bellin et al., 2016; Galletti et al., 2021). The model
requires a total of 12 parameters, which are assumed to be
spatially uniform and to be determined through calibration.
Spatial heterogeneity of evapotranspiration, infiltration and
runoff generation was accounted for by computing all rele-
vant properties for each macrocell (e.g., maximum infiltra-
tion capacity, average elevation, soil type and crop coeffi-
cient) based on available DEM and land-use/land-cover spa-
tial maps. The list of the 12 parameters, including their units,
a short description and the range of variation, is presented in
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Table 1. A detailed description of the hydrological model can
be found in Laiti et al. (2018) and Avesani et al. (2021).

2.2 Hydrological model calibration

The HYPERstreamHS hydrological model was calibrated
against streamflow observations using both the ADIGE ob-
servational dataset (see Sect. 3.2) and the output of three
climate models under two respective emission scenarios as
meteorological forcing. A short description of these datasets
is provided in Sect. 3.3. Parameters were inferred by opti-
mizing three efficiency metrics using the particle swarm op-
timization (PSO) algorithm (Kennedy and Eberhart, 1995).
PSO is an iterative algorithm belonging to the swarm intel-
ligence category, which is based on the exploration of the
space of parameters by a set of particles, called “bees”. Par-
ticle’s positions were first randomly initialized and then iter-
atively updated in the search for the optimal solution, with
the location-updating procedure considering the memory of
all locations visited by the whole collection (swarm) of par-
ticles.

The first metric is the classic Nash–Sutcliffe model ef-
ficiency (NSE; Nash and Sutcliffe, 1970), which is widely
used in hydrological applications:

NSE= 1−

∑m
i=1
(
Qs,i(θ)−Qo,i

)2∑m
i=1
(
Qo,i − Q̄o

)2 , (1)

where m is the total number of daily time steps; Qs,i(θ ) and
Qo,i are the simulated (s) and observed (o) streamflow at
time step i, respectively; Q̄o is the mean of the observed val-
ues; and θ = (θ1, . . .,θq) represents the q = 12 model param-
eters. As this metric considers the chronological time series
of simulated and observed daily streamflow, it was applied
only when the ADIGE observational dataset was used as me-
teorological input.

The second efficiency metric (RFDC) is an adaptation of
the objective function proposed in Westerberg et al. (2011)
to obtain a good match between simulated, Q̂s,(i)(θ ), and ob-
served, Q̂o,(i), flow duration curves (FDCs; i.e., the ranked
streamflow values in descending order):

RFDC = 1−

∑nEP
i=1

∣∣∣Q̂EP
s,(i) (θ)− Q̂

EP
o,(i)

∣∣∣∑nEP
i=1

∣∣∣Q̂EP
o,(i)− Q̄o

∣∣∣ , (2)

where Q̂EP
s,(i)(θ ) and Q̂EP

o,(i) are the respective simulated and
observed streamflow values at the nEP evaluation points
(EPs) in which the flow duration curves are partitioned, and
Q̄o is the mean of the observed time series. According to
this metric, RFDC = 1 when the two flow duration curves
coincide (i.e., they are the same at all of the EPs). Given
that the flow duration curve is insensitive to the chrono-
logic sequence, RFDC has been used as an objective function
for streamflow maxima obtained with both climate models

and the ADIGE observational dataset. Furthermore, follow-
ing Westerberg et al. (2011), the so-called volume method
was employed in which EPs were identified as the upper
boundary of the elements with the same area V/nEP below
the FDC, where V is the total streamflow volume (i.e., the to-
tal area below the FDC). Given the same number of EPs, we
remark that the procedure is performed independently for ob-
served and simulated FDCs, and it is indeed possible that the
total volume V under the curves and the water volume V/nEP
of the nEP intervals differ between observations and simula-
tions. The water volume pertaining to each interval and the
total water volume of the flow duration curve are computed
using the right Riemann sum procedure (Protter and Mor-
rey, 1977). In the computations, we used nEP = 50, which
has been shown to obtain the convergence of the numerical
integration of Eq. (2) irrespective of the algorithm adopted
(Vogel and Fennessey,1994)

The third efficiency metric is the two-sample
Kolmogorov–Smirnov (KS) statistic (Dn):

KS=Dn =

∣∣∣Fs

(
QM

s,(i) (θ)
)
−Fo

(
QM

o,(i)

)∣∣∣ , (3)

where Fs and Fo are the empirical cumulative distribution
functions (ECDFs) of the simulated,QM

s,(i) (θ), and observed,
QM

o,(i), samples of daily average annual streamflow maxima
ranked in increasing order, respectively, and n is the num-
ber of years considered in the simulation (29 in the present
work, 1 for each year of the investigated period excluding the
first 2; see Sect. 3.4). Before ranking the abovementioned
streamflow maxima in increasing order, annual streamflow
maxima samples are extracted from the chronological daily
time series of observed and simulated streamflow, respec-
tively. Following this, ECDFs of the simulated and observed
samples of annual maxima are computed according to the
classic Weibull formulation (Weibull, 1939):

Fj

(
QM
j,(i)

)
=

i

n+ 1
j = o,s, i ∈ [1,n] . (4)

This metric, which is at the core of the proposed approach,
aims to maximize the probability that the modeled and ob-
served samples of high streamflow extremes belong to the
same population. In other words, among all possible sets of
model parameters, we consider the one leading to the small-
est maximum absolute distance (Dn) between simulated and
observed ECDFs of daily annual streamflow maxima. As KS
is not sensitive to the temporal sequence of observed and sim-
ulated streamflows, similar to RFDC, it has been applied to
climate projections in addition to the simulations with the
ADIGE observational dataset.

2.3 Evaluation of statistical coherence

After calibration, the statistical coherence between the ob-
served and simulated samples of high streamflow extremes
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Table 1. List of model parameters with their units and parameter range.

Model component Parameters Description Unit Parameter range

Snow model Tsnow Temperature threshold for snow precipitation ◦C −2− 6
Tmelt Temperature threshold for snow melting ◦C −2− 6
cmelt Snow melting factor mm ◦C−1 d−1 0− 10

Continuous soil moisture cs Parameter of the rainfall excess model – 0.1− 10
accounting, SCS-CN- ca Parameter of the rainfall excess model – 0.01− 1
based model qref Parameter of the nonlinear bucket mm s−1 10−7

− 10−3

µ Parameter of the nonlinear bucket mm 0.5− 300
cfc Coefficient for field capacity – 0− 1
cr Coefficient for residual soil moisture – 0− 0.25

Base flow model k Mean residence time for the base flow linear reservoir d 200− 1000
α Partition coefficient for the leakage flux – 0− 1

HYPERstream routing v Stream velocity m s−1 0.2− 4.0

was evaluated by employing the two-sample Kolmogorov–
Smirnov test (Smirnov, 1939), applied under the null hy-
pothesis that the two samples are drawn from the same un-
derlying distribution. In the two-tail application of interest
here, the test statistic Dn is given by Eq. (3). The closer that
Dn is to zero, the more likely it is that the two samples are
drawn from the same population. In addition, the two-sample
Kolmogorov–Smirnov test returns a p value corresponding
to the computed Dn statistic (Conover, 1999). The larger the
p value, the stronger the evidence in favor of the null hypoth-
esis (i.e., that the samples are drawn from the same distribu-
tion).

In this study, the p value has been used as a measure of
the statistical coherence between samples of simulated and
observed high streamflow extremes. Furthermore, this eval-
uation step has been performed a posteriori for each simula-
tion experiment described in Sect. 3.4.

2.4 Probability distribution computation and
confidence intervals

The theoretical probability distributions of simulated and
observed annual streamflow maxima were obtained by fit-
ting an extreme value type I Gumbel distribution (Gum-
bel, 1941), P (Q≤ q)= exp

[
−exp

[
−β (q − u)

]]
, to the re-

spective samples using the maximum likelihood estimation
(MLE) method (Hosking, 1985). The Pearson chi-square test
(Pearson, 1990) with a confidence level of αs = 0.05 was
then applied to validate the parameters β and u provided by
the MLE. Extrapolation of high quantiles (i.e., estimation of
quantiles for a return period larger than the available number
of observation and simulation years) of observed and simu-
lated annual streamflow maxima was then performed for all
of the simulation experiments described in Sect. 3.4.

Confidence intervals of observed streamflow ECDFs were
computed using parametric bootstrapping (Efron, 1982) un-
der the assumption that the quantity of interest was dis-

tributed according to the abovementioned parametric Gum-
bel probability distribution. In particular, a 90 % confidence
band was estimated using 10 000 uniform random samples
from the underlying inferred distribution.

3 Study area, hydroclimatic datasets and the setup of
simulations

3.1 Study area

To exemplify the application of the methodology, the upper
part of the Adige River basin (Italy), located in the south-
eastern Alpine region (see Fig. 1), at the Trento gauging
station (46◦04′13′′ N, 11◦06′54.8′′ E; drainage area of about
9850 km2) was selected as a case study. The Adige River
originates at the Reschen Pass (close to the Alpine divide)
and ends its course after 410 km in the northern Adriatic Sea.
It is a typical Alpine river basin, with terrain elevations rang-
ing from 185 at Trento to 3500 m a.s.l. at the Italian–Austrian
border. The region’s morphology is characterized by deep
valleys and high mountain crests.

The climate of the river basin is characterized by relatively
dry and cold winters followed by humid summers and au-
tumns. Streamflow is minimum in winter, when precipita-
tion falls as snow over most of the river basin, and shows
two maxima: one occurring early in summer, due to snow
melting, and the other in autumn, triggered by intense cy-
clonic storms. The average annual precipitation ranges from
500 mm in the northwest of the region to 1600 mm in the
southern part of the basin (Lutz et al., 2016; Diamantini et
al., 2018; Laiti et al., 2018). A projected decrease in snowfall
in winter and anticipated earlier snowmelt, essentially due
to rising temperatures associated with global warming (Go-
biet et al., 2014; Gampe et al., 2016), will likely affect the
Adige streamflow regime by the second half of the 21st cen-
tury (Bard et al., 2015; Majone et al., 2016). This may have
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Figure 1. Map of the Adige River basin, with the computational grid cells (“macrocells”) superimposed on the digital elevation model (DEM)
and the river network. The streamflow gauging stations used in the study are marked with red dots. The inset shows the location of the Adige
River basin within the Italian territory.

relevant consequences on water resources and hydropower
production, which is particularly relevant in this region of the
Alps (Zolezzi et al., 2009; Bellin et al., 2016; Majone et al.,
2016; Avesani et al., 2022); the reader is referred to Chiogna
et al. (2016) for a comprehensive review of the hydrologi-
cal stressors acting in the Adige Basin as well as the area’s
ecological status.

3.2 Observational datasets

The ADIGE regional dataset, developed by Mallucci et
al. (2019) using the meteorological stations within the catch-
ment and in the nearby Austrian territory bounding the catch-
ment from the north, was used as observational precipitation
and temperature dataset within the 1950–2010 time window.
ADIGE was selected because it is the most accurate grid-
ded meteorological dataset of the investigated river basin (as
shown in the recent paper by Laiti et al., 2018). Meteorologi-

cal data at the selected stations were provided by the Austrian
Zentralanstalt für Meteorologie und Geodynamik (https://
www.zamg.ac.at/cms/de/aktuell, last access: 15 July 2022)
and the meteorological offices of the Autonomous Provinces
of Trento (https://www.meteotrentino.it/#!/home, last access:
15 July 2022) and Bolzano (https://weather.provinz.bz.it/
Default.asp, last access: 15 July 2022). The time series were
interpolated over a 1 km grid at a daily time step using the
kriging with external drift algorithm (Goovaerts, 1997; Jour-
nel and Rossi, 1989), with an exponential semivariogram us-
ing the 16 closest neighboring stations in the linear combina-
tion providing the estimate. The optimal spatial distribution
model was selected by Mallucci et al. (2019) according to
the leave-one-out cross-validation procedure and was applied
to both the ordinary kriging and kriging with external drift
algorithms. Several semivariogram models (i.e., Gaussian,
spherical and exponential models) and different numbers of
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neighboring stations (namely 8, 16 and 32 stations) were
tested, and the model that provided the minimum average
absolute error of daily estimates was identified. As described
in Mallucci et al. (2019), the optimal semivariogram model
was the exponential one, which provided an average abso-
lute error of the daily estimates of about 1.32 mm for precip-
itation and 0.02 ◦C for temperature – both comparable with
the error estimates provided by widely used datasets avail-
able for the Alpine region, such as the Alpine precipitation
grid dataset (APGD; Isotta et al., 2014). Daily streamflow
at the Ponte San Lorenzo gauging station in Trento and the
Bronzolo gauging station (see Fig. 1) were provided by the
Hydrological Offices of the Autonomous Province of Trento
(https://www.floods.it/public/index.php, last access: 15 July
2022) and Bolzano (https://meteo.provincia.bz.it/default.asp,
last access: 15 July 2022), respectively.

3.3 Climate change projections

Climate projections used in the present work were derived
from the combination of general circulation models (GCMs)
and regional climate models (RCMs) available from the
EURO-CORDEX initiative under Representative Concentra-
tion Pathway (RCP) 4.5 and 8.5 (RCP4.5 and RCP8.5, re-
spectively) at a spatial resolution of about 12 km (EUR-11,
https://www.euro-cordex.net/, last access: 15 July 2022, Ja-
cob et al., 2014). To reduce the computational burden of the
hydrological modeling experiments, we adopted the model
sub-selection proposed by Vrzel et al. (2019), who applied a
hierarchical clustering approach (Wilcke and Bärring, 2016)
in selected European river basins (including the Adige) to
reduce the number of available climate model (CM) simula-
tions (i.e., GCM–RCM combinations) while preserving the
variability of the ensemble of climate change signals. In par-
ticular, model reduction involved five steps: (1) identification
of the meteorological variables; (2) transformation of vari-
ables into orthogonal and therewith uncorrelated variables
using singular vector decomposition; (3) identification of the
optimum number of clusters; (4) hierarchical clustering to
group the simulations; and, finally, (5) selection of the sim-
ulations closest to the group’s mean as representative. This
procedure led to the selection of the three GCM–RCM com-
binations (out of the 12 available), here referred to as CLM-
com, KNMI and SMHI (see Table 2).

These three GCM–RCM combinations provide projec-
tions of likely future climate changes for the mid-term hori-
zon (2040–2070), with the 1980–2010 time window selected
as the period of reference. The projected climate change
meteorological signals in the Adige Basin are discussed in
Gampe et al. (2016). Both the RCP4.5 and RCP8.5 emission
scenarios are available for all of the combinations, thereby
leading to a total of six CMs being investigated in the present
study (see Table 2). As GCM–RCM combinations are prone
to model biases, especially in complex terrain (Kotlarski
et al., 2014), bias correction is needed to accurately repro-

duce historical meteorological forcing during the reference
period. In the present work, we rely on products retrieved
from EURO-CORDEX; these products are available as bias-
corrected values and were corrected with the distribution-
based scaling approach (DBS; Yang et al., 2010) using the
MESoscale ANalysis system (MESAN) gridded reanalysis
datasets of daily precipitation and temperature as observa-
tions (Landelius et al., 2016). Basin-averaged monthly mean
precipitation and temperature of the six CMs are presented
in Fig. 2, with reference to the 1980–2010 period, along
with those of the ADIGE dataset. Notice that the CMs dif-
fer slightly between the two RCPs as a consequence of (i)
the bias correction method adopted, which matches observed
and simulated frequency distributions rather than the obser-
vations, and (ii) the fact that the correction performed with
reference to the 1989–2010 period is extended to the previous
9 years to obtain bias-corrected scenarios for the entire ref-
erence period (1980–2010). This is needed because MESAN
data are only available for the former period. Figure 2a and b
show that basin-averaged monthly mean time series of the six
CMs for both variables are in close agreement with ADIGE,
with the largest deviations observed in May for precipitation
(differences in the range of 15–21 mm) and in December for
temperature (differences in the range of 1.3–1.9 ◦C), respec-
tively. Accordingly, differences at the annual scale are rather
small, as highlighted in the insets of Fig. 2a and b. ECDFs of
the basin-averaged daily precipitation (Fig. 2c) and tempera-
ture (Fig. 2d) for both ADIGE and the six CMs are presented
in Fig. 2. For precipitation, no appreciable differences are ob-
served between the CMs and ADIGE throughout the entire
range of variability. For the temperature (Fig. 2d), small dif-
ferences are observed which decrease progressively as tem-
perature increases and become undetectable at high temper-
atures. Overall, these results indicate that the output of the
CMs is in good agreement with the observations during the
reference period, a statement which is also valid for the ex-
tremes of precipitation and temperature, which are indeed at
the base of our approach.

3.4 The setup of simulations

All of the simulations were performed with the HYPER-
streamHS hydrological model using a daily time step and the
5 km computational grid depicted in Fig. 1. Accordingly, pre-
cipitation and temperature provided by the ADIGE dataset
and by the six CM simulations presented in Sect. 3.3 were
projected onto this grid using the nearest-neighbor method.
Notice that the contributing area of the macrocells at the bor-
der of the domain was reduced by the amount belonging to
the neighboring basin, so as to preserve the overall contribut-
ing area of the investigated case study.

In a first set of simulations presented in Sect. 4.1, the HY-
PERstreamHS model was calibrated at the Trento gauging
station using the NSE, KS and RFDC metrics as objective
functions and the 1980–2010 period as a reference. In or-
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Table 2. List of the EURO-CORDEX CMs used in this study. The acronyms adopted are listed in the last column.

RCM GCM Institute RCP Acronym

CLMcom-CCLM4-8-17 EC-EARTH-r1 Climate Limited-area Modelling Community (CLM-Community)
4.5

CLMcom
8.5

KNMI-RACMO22E EC-EARTH-r12 Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
4.5

KNMI
8.5

SMHI-RCA4 HadGEM2-ES Swedish Meteorological and Hydrological Institute, Rossby Centre
4.5

SMHI
8.5

Figure 2. Annual cycle of basin-averaged monthly mean precipitation (a) and temperature (b) during the reference period (1980–2010)
for both ADIGE and the six CMs used (different colored bars). The associated annual averages are also shown in the insets. ECDFs of
basin-averaged daily precipitation and temperature for the same datasets are presented in subplots (c) and (d), respectively.

der to ease the presentation of results, these three param-
eterizations are hereafter called NSE-ADIGE, KS-ADIGE
and RFDC-ADIGE, respectively. Validation of the modeling
framework was then performed for these three parameteri-
zations by computing the efficiency metrics at the Bronzolo
gauging station (drainage area of about 6000 km2; see Fig. 1)
within the same time window as well as at the Trento gaug-
ing station in the 1950–1980 period (which was not used for
calibration).

In a second set of simulations (presented in Sect. 4.2),
we assessed whether the model calibrated with observational
data and fed with precipitation and temperature obtained

from climate models produced samples of annual stream-
flow maxima that were statistically coherent with the obser-
vations. Here, we considered simulations performed in the
1980–2010 period using precipitation and temperature from
the three GCM–RCM combinations, selected as described in
Sect. 3.3, for both respective RCP4.5 and RCP8.5 emission
scenarios and for a total of six CM combinations (see Ta-
ble 2). The parameters of the hydrological model were those
referring to the NSE-ADIGE, KS-ADIGE and RFDC-ADIGE
parameterizations.

In Sect. 4.3, we present the results of the calibration ex-
periments performed using the precipitation and temperature
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distributions provided by the six CMs for the 1980–2010 pe-
riod in HYPERstreamHS with KS and RFDC as objective
functions. Following the procedure described in Sect. 2.4, ex-
trapolations were then performed under the assumption that
simulated and observed ECDFs were distributed according to
the parametric Gumbel probability distribution. The Pearson
chi-square test was then applied to verify the inferred model.

For all time windows and all simulations, the first 2 years
were used as spin-up and were, therefore, excluded from the
computation of model performance. Furthermore, statistical
coherence between simulated and observed samples of an-
nual streamflow maxima was evaluated a posteriori using
the p values associated with the Kolmogorov–Smirnov two-
sample test described in Sect. 2.3.

The effects of calibrations conducted using different mete-
orological forcing (observational data and CMs simulations)
on model parameters are investigated in Sect. 4.4 with refer-
ence to the KS metric. For each calibration experiment per-
formed with the PSO algorithm, we considered 100 particles
that, with a maximum number of 400 iterations, lead to a
maximum of 40 000 hydrological simulations for each ex-
ternal forcing. The parameter ranges considered during the
search for the optimal solution are presented in Table 1, and
they have been set by means of preliminary simulations so as
to minimize the probability of excluding combinations of pa-
rameters which lead to behavioral solutions (Beven and Bin-
ley, 1992). In addition, as a metric of uncertainty for the cal-
ibrated parameter, we considered the range, d̄, between the
maximum and minimum value of each parameter in the 200
simulations presenting the highest efficiency metric (see Pic-
colroaz et al., 2015). We remark that the procedure adopted
here aims to only to quantify the differences in the range of
calibrated parameters and not to perform a full uncertainty
analysis of predictions.

Finally, in Sect. 4.5 the projected changes in high flow ex-
tremes in the future period from 2040 to 2070 are evaluated.
For each CM, we considered the following parameterizations
obtained during calibration in the reference period: (1) cali-
brations with KS and RFDC as objective functions and (2)
NSE-ADIGE as representative of a standard calibration pro-
cedure using the observational dataset ADIGE as input forc-
ing.

4 Results and discussion

4.1 Simulations using the ADIGE observational dataset

Figure 3a shows the simulated ECDFs obtained using the
three metrics, NSE, KS and RFDC, as objective functions and
the ADIGE observational dataset as input forcing. Table 3
shows the associated p values of the Kolmogorov–Smirnov
test. From a statistical viewpoint, all three metrics provide
simulated samples of annual streamflow maxima belong-
ing to the same population as the observed ones, given that

Figure 3. ECDFs of the daily annual streamflow maximum obtained
using the observational dataset ADIGE and the NSE-ADIGE, KS-
ADIGE and RFDC-ADIGE parametrizations at (a) the Trento gaug-
ing station during the 1982–2010 period, (b) the Trento gauging
station during the 1952–1980 period and (c) the Bronzolo gaug-
ing station during the 1982–2010 period as input. The experimen-
tal ECDFs obtained from streamflow observations during the same
time frames are shown using black bullets, and the gray shaded area
indicates the associated 90 % confidence interval of the fitted Gum-
bel distribution. The p values of the Kolmogorov–Smirnov two-
sample test are also reported in brackets for each simulation run.
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Table 3. Efficiency metrics for calibration and validation runs obtained using the ADIGE dataset as input forcing. The terms NSE-ADIGE,
KS-ADIGE and RFDC-ADIGE refer to the parameterizations described in Sect. 3.4. Bold italic numbers indicate the metric optimized in
the calibration. The p values of the Kolmogorov–Smirnov (KS) test are also reported (bottom line) for the calibration experiments and the
validation runs highlighted by bold numbers.

Calibration Validation

Trento 1982–2010 Trento 1952–1980 Bronzolo 1982–2010

NSE RFDC KS NSE RFDC KS NSE RFDC KS

NSE-ADIGE 0.822 0.875 0.133 0.803 0.760 0.260 0.787 0.705 0.166
RFDC-ADIGE 0.488 0.975 0.233 0.552 0.804 0.233 0.506 0.830 0.133
KS-ADIGE 0.400 0.564 0.067 0.250 0.529 0.233 0.289 0.476 0.137

p value 0.951 0.372 1.000 0.222 0.372 0.372 0.791 0.951 0.951

p>0.05 in all cases, with a maximum for KS (p = 1.000)
and a minimum for RFDC (p = 0.372). However, calibra-
tion conducted using KS as an objective function leads to
NSE and RFDC values (0.4 and 0.564, respectively; see Ta-
ble 3) that are lower than those obtained when calibration
is performed by (separately) optimizing these two metrics
(NSE= 0.822 and RFDC = 0.975, respectively; see Table 3).
This is in accordance with several studies showing that the
adoption of a given metric in calibration may lead to subop-
timal results for other metrics because each of them is sensi-
tive to specific aspects of the time series with its limitations
and trade-offs (see, e.g., Schaefli and Gupta, 2007; Gupta et
al., 2009; Mcmillan et al., 2017; Fenicia et al., 2018). This
latter limitation is, in our opinion, outweighed by the im-
provements in representing the ECDFs of observed high flow
extremes when the model is calibrated explicitly considering
such information, i.e., by minimizing the KS metric. Accord-
ingly, in our analyses, the use of different efficiency metrics
leads to different simulated ECDFs and, hence, to different
p values in the application of the statistical coherence test
(see Table 3).

Validation of the hydrological modeling framework was
performed by evaluating the model performance in the time
frame from 1952 to 1980, which was not used for calibra-
tion, at the Ponte San Lorenzo gauging station in Trento. The
validation was done using the ADIGE dataset as input and
the parameterizations obtained by calibrating the model in
the 1982–2010 time frame (i.e., NSE-ADIGE, RFDC-ADIGE
and KS-ADIGE, as described above). The NSE-ADIGE and
RFDC-ADIGE parameterizations led to NSE and RFDC val-
ues that were only slightly lower than those obtained in cal-
ibration (NSE= 0.803 and RFDC = 0.804; see Table 3). The
KS-ADIGE parameterization led to an increase in the KS
from 0.067 during calibration to 0.233 during validation,
which was still rather small. The limited modification of the
efficiency metrics during validation is an encouraging result
which shows that the HYPERstreamHS model provides a
good representation of the hydrological system independent
of the metric adopted during calibration. The simulated and

observed ECDFs of annual streamflow maxima and the asso-
ciated p value of the Kolmogorov–Smirnov test are presented
in Fig. 3b. Reproduction of the observed ECDF is satisfac-
torily for all three parameterizations, particularly for high
flow quantiles, with p values in the range between 0.222 and
0.372 (see also Table 3). The three parameterizations provide
simulated samples of annual streamflow maxima belonging
to the same population of observations (also in the time win-
dow from 1952 to 1980); the reduction in the p value from
calibration to validation is significant but rather common in
hydrological models.

Spatial validation of the modeling framework was also
performed by simulating streamflow at the Bronzolo gaug-
ing station (see Fig. 1) during the same time window as the
calibration conducted at the Trento gauging station (1982–
2010). Similarly to the previous case, efficiency metrics dur-
ing validation evidence a small reduction in performance
with respect to those obtained during calibration (see Ta-
ble 3). On the other hand, the results presented in Fig. 3c
highlight an excellent reproduction of the observed ECDF of
annual streamflow maxima for all three parameterizations,
with the associated p values in the range between 0.791
(NSE-ADIGE) and 0.951 (RFDC-ADIGE and KS-ADIGE).
The latter is a noteworthy result which indicates that the pa-
rameterization obtained using KS as an objective function
is reliable, although relying on a limited number of obser-
vations, and does not introduce distortion in the spatial rep-
resentation of the hydrological processes, particularly those
controlling high streamflow events (i.e., runoff generation
and streamflow concentration processes). This latter aspect
will be further investigated in Sect. 4.4.

4.2 Simulations using parameterizations derived from
calibrations with observed ground data

Here, we analyze the case in which HYPERstreamHS was
run in the time frame from 1982 to 2010 using the meteo-
rological variables produced by the climate models and the
three parameterizations, NSE-ADIGE, RFDC-ADIGE, KS-
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Table 4. The RFDC and KS efficiency metrics for the 1982–2010 period with forcing provided by the CLMcom, KNMI and SMHI climate
models under the respective RCP4.5 and RCP8.5 emission scenarios. Bold italic numbers indicate the metric optimized in the calibration.
The p values of the Kolmogorov–Smirnov (KS) test are also reported for all of the calibration experiments and for the validations conducted
using the NSE-ADIGE, KS-ADIGE and RFDC-ADIGE parametrizations.

Dataset Efficiency metric p value

Direct calibration Validations with ADIGE parameterizations

RFDC KS RFDC KS RFDC KS NSE-ADIGE RFDC-ADIGE KS-ADIGE

CLMcom RCP4.5 0.943 0.267 0.730 0.067 0.222 1.000 0.030 0.222 0.030
KNMI RCP4.5 0.940 0.167 0.804 0.067 0.791 1.000 0.013 0.030 0.123
SMHI RCP4.5 0.972 0.200 0.589 0.067 0.572 1.000 0.222 0.123 0.123
CLMcom RCP8.5 0.980 0.200 0.449 0.067 0.572 1.000 0.123 0.372 0.222
KNMI RCP8.5 0.961 0.167 0.456 0.067 0.791 1.000 0.123 0.222 0.372
SMHI RCP8.5 0.932 0.167 0.484 0.067 0.791 1.000 0.123 0.372 0.123

ADIGE (described in Sect. 3.4), as input. Visual inspection
of Fig. 4a, b and c shows that, for high quantiles, the simu-
lated ECDFs are often outside the 90 % confidence interval
of the Gumbel distribution fitted to observations for all of the
considered combinations of CMs and parameterizations. The
p values of these validation runs are shown in the last three
columns of Table 4. In particular, these three parameteriza-
tions lead to p values that are always lower than p = 0.372
for all of the considered CMs and emission scenarios (see
Table 4). NSE-ADIGE and RFDC-ADIGE show the lowest
p values on average, with KS-ADIGE performing slightly
better: p = 0.372 for KNMI and SMHI under the RCP8.5
scenario (see Fig. 4b and c and Table 4). Inspection of Ta-
ble 4 also reveals that values of p < 0.05, and thus simulated
ECDFs not belonging to the same population as the measured
one, are obtained with the CLMcom model for both the NSE-
ADIGE and KS-ADIGE parameterizations under both emis-
sion scenarios as well as with the KNMI model for the NSE-
ADIGE and RFDC-ADIGE parameterizations under RCP4.5.

The above results highlight how classic approaches based
on feeding hydrological models, calibrated using observed
meteorological data and employing customary efficiency
metrics (i.e., NSE and RFDC), with meteorological forcing
provided by climate models produce results characterized by
low statistical coherence with the observational data. Fur-
thermore, our results indicate that the same drawback arises
when employing parameterizations obtained with a calibra-
tion approach optimizing the desired statistic of extremes but
still using observational data as input (i.e., KS-ADIGE in
Fig. 4a, b and c). These results are in agreement with pre-
vious studies evidencing that the hydrological models, cali-
brated against observed data, that perform well within a base-
line period may not be accurate nor consistent for simulating
streamflow under future climate conditions (Brigode et al.,
2013; Lespinas et al., 2014). Indeed, it is recognized that
the use of different datasets can lead to different optimized
parameters that will partially account for their specific cli-
mate characteristics (Yapo et al. 1996; Vaze et al., 2010; Laiti

et al., 2018). Furthermore, it is acknowledged that climate
change impact simulations are affected by uncertainty in cli-
mate modeling, but the calibration strategy adopted during
the reference period also plays a role (Lespinas et al., 2014;
Mizukami et al., 2019). In this respect, we showed that the
statistical coherence between climate scenarios and observa-
tions (i.e., high streamflow extremes in our case) should be
preserved during hydrological calibration, at least in the ref-
erence period. This latter aspect will be further discussed in
the ensuing Sect. 4.3.

4.3 Performance of the hydrological model calibrated
using climate model outputs as input

Table 4 summarizes the efficiency metrics and the p values of
the calibration experiments performed using the precipitation
and temperature distributions provided by the six selected
CMs with KS and RFDC as the objective functions in HY-
PERstreamHS. Simulations refer to the 1982–2010 period.
When KS was used in calibration, all six simulations pro-
vided samples of annual streamflow maxima that had a high
probability (i.e., p = 1.000, column 8 of Table 4) of belong-
ing to the same population of observed values. A similar con-
clusion was reached for the objective function RFDC but with
lower p values (column 7 of Table 4), although these val-
ues were larger than p = 0.05 – the level of significance cus-
tomarily adopted in the statistical literature to reject the null
hypothesis. The lowest p value was obtained with the CLM-
com climate model under the RCP4.5 emission scenario with
RFDC as the objective function (p = 0.222; see column 7
of Table 4). Consistently, the absolute maximum distances
between the ECDFs of observed and simulated samples ob-
tained using RFDC as the calibration metric are always larger
than those obtained using KS (see the third and fifth columns
in Table 4). When calibration is performed with KS, the re-
sults are satisfactorily with respect to theRFDC metric, which
is in the range between 0.449 and 0.804 for all of the CMs
(see the fourth column in Table 4). As RFDC employs the en-
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Figure 4. ECDFs of the annual maximum streamflow at the Trento
gauging station during the 1982–2010 period obtained using the
NSE-ADIGE, KS-ADIGE and RFDC-ADIGE parameterizations
and the (a) CLMcom, (b) KNMI and (c) SMHI climate models
as input forcing for both the RCP4.5 and RCP8.5 emission sce-
narios. The experimental ECDF is shown with black dots, and the
gray shaded area indicates the associated 90 % confidence interval
of the fitted Gumbel distribution. The p values of the Kolmogorov–
Smirnov two-sample test are also reported in brackets for each sim-
ulation run.

tire time series of observational data, this result evidences the
fact that using the KS metric in calibration does not introduce
model overparameterization, despite the reduced number of
observational data used (i.e., 29 values of observed daily an-
nual streamflow maxima).

The appreciable difference between the observed and sim-
ulated ECDFs obtained in the calibration experiments con-
ducted using the KS and RFDC metrics is highlighted in
Fig. 5. Figure 5 shows that the ECDFs obtained by ex-
tracting the annual maxima from the simulations calibrated
with KS as the objective function are in a better agreement
with the observed ECDFs than those obtained by calibrat-
ing with RFDC. This comparison highlights that the KS met-
ric is preferable to RFDC when dealing with high flow ex-
tremes, thereby strengthening the approach envisaged here of
directly addressing the desired statistics of extremes in cali-
bration instead of calibrating the hydrological model on the
entire streamflow record.

The literature reports a few examples of hydrological mod-
els calibrated using tailored information instead of the entire
observed streamflow time series (e.g., Montanari and Toth,
2007; Blazkova and Beven, 2009; Westerberg et al., 2011;
Lindenschmidt, 2017). However, these approaches are typi-
cally adopted for reproducing the basin response to observed
meteorological forcing and have not been applied (to our best
knowledge) in combination with GCM–RCM simulations in
climate change impact studies. The only example somewhat
similar to our approach that we found in the literature is that
of Honti et al. (2014), who used a stochastic weather genera-
tor trained by observed weather time series coupled with ob-
served discharge data to sample the posterior distribution of
model parameters. The adoption of a time-independent cali-
bration, for which time shift does not influence the objective
function, has the intrinsic advantage of allowing the use of
GCM–RCM runs conducted without the assimilation of ob-
servational data, as in our case. In fact, these runs provide
time-slice experiments representing a stationary climate for
both reference and future periods (see, e.g., Majone et al.,
2012) and, by definition, cannot be used in the context of a
classic day-by-day hydrological comparison experiment with
observed historical data (see, e.g., Eden et al., 2014).

Quantiles of daily annual streamflow maxima as a function
of the return period at the Trento gauging station are shown
in Fig. 6, where the results obtained by calibrating the hy-
drological model with the meteorological input provided by
the climate models (with the KS and RFDC metrics as objec-
tive functions) are compared with those obtained using the
same meteorological input but employing the NSE-ADIGE,
RFDC-ADIGE and KS-ADIGE parameterizations. Visual in-
spection of Fig. 6 reveals that, for all return periods, param-
eterizations obtained by calibrating with the observed pre-
cipitation and temperature data, as provided by the ADIGE
dataset, significantly underestimate the quantiles of the ob-
servations and fall outside the confidence interval of the fit-
ted Gumbel distribution (i.e., outside the gray area). The only
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Figure 5. Simulated ECDFs of the daily annual maximum streamflow at the Trento gauging station during the 1982–2010 period with
precipitation and air temperature provided by the CLMcom (a, b), KNMI (c, d) and SMHI (e, f) climate models under the respective RCP4.5
(a, c, e) and RCP8.5 (b, d, f) emission scenarios. Calibration of HYPERstreamHS was performed using both the KS and RFDC metrics as
objective functions. The ECDF of observations is shown with black dots, and the gray shaded area indicates the associated 90 % confidence
interval of the fitted Gumbel distribution. The p values of the Kolmogorov–Smirnov two-sample test are also reported in brackets for each
simulation run.

exceptions are the quantiles derived from simulations con-
ducted with the KNMI (KS-ADIGE; dotted line in Fig. 6c)
and CLMcom (all three metrics; Fig. 6a) climate models un-
der the RCP4.5 emission scenario. We note, however, that
these curves are obtained with forward simulations, provid-
ing low KS p values with respect to the other cases (always
lower than p = 0.222). Instead, quantiles obtained from sim-
ulations optimized directly using climate models and with
KS as the metric are in a very good agreement with the
experimental data, whereas those obtained using RFDC are
outside or at the lower bound of the interval of confidence,
although they are generally in a better agreement with the
quantiles of the experimental data than those obtained with

the aforementioned NSE-ADIGE, RFDC-ADIGE and KS-
ADIGE parametrizations. Exceptions to this are the quantiles
obtained with CLMcom and KNMI under the RCP4.5 emis-
sion scenario with RFDC as the metric, which are character-
ized by the largest deviations from observations (see Fig. 6a
and c, respectively). We attribute this occurrence to the ad-
ditional source of uncertainty arising from the extrapolation
procedure (i.e., the selection of the probability distribution
and of the statistical inference method for the parameters,
MLE in our case). The confidence interval of the fitted Gum-
bel distribution to the observational data (gray area) widens
as the return period increases; this is in line with the recent
findings of Meresa and Romanowicz (2017), who showed
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that errors in fitting theoretical distribution models to annual
maxima streamflow series might contribute significantly to
the overall uncertainty associated with projections of future
hydrological extremes.

4.4 Model parameters

The results presented in the previous sections highlight that
better statistical coherence between observations and sim-
ulations (performed with CM simulations as input) was
achieved by optimizing the desired statistics of extremes, in
our case KS (see the curves labeled KS in Figs. 5 and 6), in
the calibration of the hydrological model. Starting from this
evidence, we investigated the effect (on the model parame-
ters) of performing the calibration using either observed data
or meteorological data derived from CMs with KS as the ob-
jective function. Figure 7 shows the range (d̄) between the
maximum and minimum values, which is represented here
by the length of the vertical bar of each parameter among the
200 accepted values corresponding to the behavioral mod-
els (see Sect. 3.4), and the corresponding optimal parameter
set, which is represented by a horizontal segment. The val-
ues of the parameters are normalized with respect to their
range (see Table 1) such that they are directly comparable. In
all simulations the normalized parameter range d̄ is well dis-
tributed between zero and one, indicating a proper choice of
the parameter range in the PSO algorithm, although the opti-
mal value was located close to the boundary of the search do-
main for a few parameters. As shown in Fig. 7 the majority of
the parameters obtained using the proposed approach span a
range (d̄) that is similar to (or slightly larger than), in terms of
amplitude, that obtained for KS-ADIGE, thereby supporting
the conclusion that calibration using CM simulations does
not lead (for either RCP) to bias parameterizations. Figure 7
also shows that, for most of the parameters, simulations per-
formed with CMs lead to generally overlapping ranges for d̄
with respect to the case in which the ADIGE observational
dataset was used. The largest deviations in terms of d̄ are ob-
served for KS-KNMI, particularly under the RCP8.5 emis-
sion scenario. Notably, the parameters shaping the continu-
ous soil moisture accounting module result in values of the
optimum which are very similar for all cases (see qref, µ and
cfc in Fig. 7a and b). Visual inspection of Fig. 7 also high-
lights that the parameters controlling runoff generation and
streamflow concentration (in particular, v, cs, qref and cfc)
present very good identifiability (i.e., a small range, d̄). This
is not the case for parameters controlling snow melting and
groundwater contribution, with the latter being relevant only
for low flow conditions (see k in Fig. 7a and b). These re-
sults, as well as the good performance obtained in the vali-
dation runs presented in Sect. 4.1, suggest that, although the
model is calibrated considering a limited number of obser-
vations, the maxima are well reproduced in the continuous
simulations, but this is achieved only if the interaction be-
tween the precipitation and streamflow relevant during high

flow extremes is correctly reproduced. We cannot exclude
that additional analyses could be envisioned for improving
the identifiability of some parameters (e.g., by reducing the
number of model parameters or introducing constraints in the
parameter’s range) in applications dealing with different hy-
drological models and different data availabilities (e.g., lower
number of streamflow extremes). However, the analysis pre-
sented here provides clear evidence that the parameteriza-
tions derived from the use of the KS metric are reliable.

The differences observed in the optimal values of model
parameters are due to the use of meteorological forcing
datasets with different capabilities to reproduce the present
climate. Along with the concepts brought forward here, this
source of uncertainty can be addressed effectively via cali-
bration of the hydrological model to the quantities of interest
(i.e., the observed streamflow statistics of extremes) using the
forcing provided by a specific CM as input. This approach
can be seen as a “hydrologically based bias correction” and
is rooted in the adoption of a goal-oriented calibration frame-
work (see, e.g., Laiti et al., 2018), as stated in the Sect. 1.

4.5 Projected changes in streamflow quantiles

Figure 8 shows the annual maximum streamflow at the
Trento gauging station as a function of the return period in
the future time window (2040–2070) and for the six selected
CMs. Visual inspection of Fig. 8 confirms that, in all cases,
using the standard calibration (i.e., NSE-ADIGE) of the hy-
drological model leads to a significant underestimation of all
quantiles with respect to using KS andRFDC. This is in agree-
ment with the results obtained for the reference period (see
Fig. 6), where simulations using the NSE-ADIGE parameter-
ization provided streamflow quantiles systematically lower
than those obtained with the CMs. In addition, KS-based cal-
ibrations always provide larger quantiles with respect to the
cases in which the RFDC metric is adopted (considering the
same RCP emission scenario). We note that the adoption of
the KS metric is preferable, as it provided an almost perfect
match with observed streamflow quantiles in the calibration
period (see Fig. 6).

Moreover, Fig. 8 shows that projected changes in high
flows extremes depend on the selected CM and emission
scenario. Projected streamflow quantiles under RCP8.5 are
larger than those under RCP4.5 for all of the CMs. In gen-
eral, the projected streamflow quantiles do not exceed those
obtained by fitting the Gumbel distribution to the obser-
vational data of the 1982–2010 period (continuous black
lines in Figs. 6 and 8), with the exceptions of the CLM-
com and SMHI models under the RCP8.5 emission scenario
and SMHI under the RCP4.5 emission scenario when the KS
metric is adopted. These results are in line with other recent
contributions which concluded that the sign and magnitude
of projected changes in high flow extremes will vary signif-
icantly with the location of the investigated river basin, the
climate models used, the emission scenario and the selec-
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Figure 6. Quantiles of the daily annual streamflow maxima as a function of return period at the Trento gauging station. Extrapolations are
based on simulations conducted during the 1982–2010 period using the CLMcom (a, b), KNMI (c, d) and SMHI (e, f) climate models
as input forcing under the respective RCP4.5 (a, c, e) and RCP8.5 (b, d, f) emission scenarios. Each curve represents a combination of
CM, emission scenario and parameterization obtained with the calibration. Simulations conducted with the parameterizations obtained using
the ADIGE observational dataset for calibration are labeled as follows: NSE-ADIGE, RFDC-ADIGE and KS-ADIGE. Extrapolation from
observed streamflow maxima is also shown (continuous black line), and the gray shaded area indicates the associated 90 % confidence
interval of the fitted Gumbel distribution.

tion of the time window (Ngongondo et al., 2013; Aich et
al., 2016; Pechlivanidis et al., 2017; Vetter at al., 2017). Our
results are in line with the analysis of Brunner et al. (2019),
who implemented a stochastic framework to simulate future
streamflow time series in 19 regions of Switzerland and con-
cluded that future maximum streamflow will increase and
decrease in rainfall-dominated and snowmelt-dominated re-
gions, respectively. Similarly, Di Sante et al. (2019) showed
that a moderate increase in high flow magnitude (return time
of 100 years) is projected for large river basins (drained area
>10 000 km2) in the central Europe region under the RCP8.5
scenario and considering a mid-century time slice.

5 Conclusions

In this work, we proposed the HyCoX methodological frame-
work in which the calibration of the hydrological model
is carried out by maximizing the probability that the mod-
eled and observed high streamflow extremes belong to the
same statistical population. The proposed framework is goal-
oriented and aims at improving the estimation of stream-
flow extremes by directly calibrating the selected hydrologi-
cal model to the quantities of interest (i.e., flow statistics in-
stead of time series) using the meteorological data provided
by climate models as input. In particular, the framework re-
lies on the use of the two-sample Kolmogorov–Smirnov (KS)
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Figure 7. The range (d̄) between the maximum and minimum value of each parameter associated with the 200 simulations presenting the
highest efficiency plotted as a normalized range with respect to the parameter range presented in Table 1. Calibrations are conducted for the
three different CMs under the respective (a) RCP4.5 and (b) RCP8.5 emission scenarios with reference to the KS metric. Bold horizontal
segments indicate the optimal parameter sets for all experiments.

statistic as the objective function during the calibration pro-
cedure. This approach ensures statistical coherence between
scenarios and observations in the reference period, and it
likely preserves statistical coherence in the future climate
change scenario runs performed to project changes in stream-
flow extremes. The goal-oriented approach envisaged in this
work can be applied to a variety of hydrological scenarios
and modeling approaches. Furthermore, we remark that the
HyCoX methodology is not a metric-dependent approach,
and any type of metric assessing the statistical coherence be-
tween observed and simulated streamflow extremes can be
employed without any loss of generality.

The proposed procedure is exemplified via the application
of six climate models and observational data to the analy-
sis of the annual maximum streamflow of the Adige River
basin (Italy) using the HYPERstreamHS distributed hydro-
logical model. While the approach is exemplified here for
high flows, it can be applied to low flows as well (e.g., for
drought assessment). The results highlight that adopting the
KS is preferable to other popular metrics (e.g., the NSE or
fit to flow duration curve, RFDC) when dealing with high

streamflow extremes. This validates our hypothesis that di-
rectly addressing the statistics of the extremes under consid-
eration during the calibration exercise leads to coherent and
reliable hydrological models for assessing the impact of cli-
mate change. We warn that such an approach may lead to
suboptimal performance if the target is different from the one
employed in this study, which is in line with the goal-oriented
framework pursued here. Alternatively, a multi-objective ap-
proach could be envisioned to investigate the trade-off in
model performance emerging from the use of multiple met-
rics, including the one proposed here. This latter aspect is
indeed beyond the objective of the present contribution, al-
though it is worthy of further analysis. Furthermore, the in-
vestigation of optimal values highlighted that direct calibra-
tion using CM outputs and KS as the objective function leads
to unbiased identification of model parameters.

Overall, we showed that the way in which the hydrological
model is calibrated against observations assumes paramount
importance in climate change impact assessments on stream-
flow extremes. In particular, we highlighted how the clas-
sic approach of calibrating using daily streamflow observa-

https://doi.org/10.5194/hess-26-3863-2022 Hydrol. Earth Syst. Sci., 26, 3863–3883, 2022



3878 B. Majone et al.: Analysis of high streamflow extremes in climate change studies

Figure 8. Quantiles of the annual maximum daily streamflow as a function of return period at the Trento gauging station. Projections are based
on simulations of the future time period from 2042 to 2070 using the CLMcom (a, b), KNMI (c, d) and SMHI (e, f) climate models under
the respective RCP4.5 (a, c, e) and RCP8.5 (b, d, f) emission scenarios as input. The continuous black line shows the quantile distribution
of high flow extremes evaluated with the observational data of the 1982–2010 period, and the gray shaded area indicates the associated 90 %
confidence interval of the fitted Gumbel distribution.

tions with observed meteorological data can lead to a biased
probability distribution of streamflow extremes when climate
models are used as input forcing during the reference period,
with high streamflow quantiles being dramatically underesti-
mated with respect to the fitted distribution of the observed
extremes. Extrapolations performed using the proposed cal-
ibration procedure, with input provided by CMs, are instead
more reliable, and they provide a good match with observed
quantiles.
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