Articles | Volume 26, issue 10
https://doi.org/10.5194/hess-26-2733-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-2733-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On constraining a lumped hydrological model with both piezometry and streamflow: results of a large sample evaluation
Antoine Pelletier
CORRESPONDING AUTHOR
Direction de la recherche, École des Ponts, Marne-la-Vallée, France
UR HYCAR, Université Paris-Saclay, INRAE, Antony, France
Vazken Andréassian
UR HYCAR, Université Paris-Saclay, INRAE, Antony, France
Related authors
No articles found.
Taha-Abderrahman El Ouahabi, François Bourgin, Charles Perrin, and Vazken Andréassian
EGUsphere, https://doi.org/10.5194/egusphere-2025-3586, https://doi.org/10.5194/egusphere-2025-3586, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
To improve hydrological uncertainty estimation, recent studies have explored machine learning (ML)-based post-processing approaches. Among these, quantile random forests (QRF) are increasingly used for their balance between interpretability and performance. We develop a hydrologically informed QRF trained in a multi-site setting. Our results show that the regional QRF approach is beneficial, particularly in catchments where local information is insufficient.
Olivier Delaigue, Guilherme Mendoza Guimarães, Pierre Brigode, Benoît Génot, Charles Perrin, Jean-Michel Soubeyroux, Bruno Janet, Nans Addor, and Vazken Andréassian
Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, https://doi.org/10.5194/essd-17-1461-2025, 2025
Short summary
Short summary
This dataset covers 654 rivers all flowing in France. The provided time series and catchment attributes will be of interest to those modelers wishing to analyze hydrological behavior and perform model assessments.
Vazken Andréassian, Guilherme Mendoza Guimarães, Alban de Lavenne, and Julien Lerat
EGUsphere, https://doi.org/10.5194/egusphere-2025-414, https://doi.org/10.5194/egusphere-2025-414, 2025
Short summary
Short summary
Using 4122 catchments from four continents, we investigate how annual streamflow depends on climate variables (rainfall and potential evaporation) and on the season when precipitation occurs, using and index representing the synchronicity between precipitation and potential evaporation. In all countries and under the main climates represented, synchronicity is, after precipitation, the second most important factor to explain annual streamflow variations.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Thibault Hallouin, François Bourgin, Charles Perrin, Maria-Helena Ramos, and Vazken Andréassian
Geosci. Model Dev., 17, 4561–4578, https://doi.org/10.5194/gmd-17-4561-2024, https://doi.org/10.5194/gmd-17-4561-2024, 2024
Short summary
Short summary
The evaluation of the quality of hydrological model outputs against streamflow observations is widespread in the hydrological literature. In order to improve on the reproducibility of published studies, a new evaluation tool dedicated to hydrological applications is presented. It is open source and usable in a variety of programming languages to make it as accessible as possible to the community. Thus, authors and readers alike can use the same tool to produce and reproduce the results.
Ralph Bathelemy, Pierre Brigode, Vazken Andréassian, Charles Perrin, Vincent Moron, Cédric Gaucherel, Emmanuel Tric, and Dominique Boisson
Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, https://doi.org/10.5194/essd-16-2073-2024, 2024
Short summary
Short summary
The aim of this work is to provide the first hydroclimatic database for Haiti, a Caribbean country particularly vulnerable to meteorological and hydrological hazards. The resulting database, named Simbi, provides hydroclimatic time series for around 150 stations and 24 catchment areas.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Alban de Lavenne, Vazken Andréassian, Louise Crochemore, Göran Lindström, and Berit Arheimer
Hydrol. Earth Syst. Sci., 26, 2715–2732, https://doi.org/10.5194/hess-26-2715-2022, https://doi.org/10.5194/hess-26-2715-2022, 2022
Short summary
Short summary
A watershed remembers the past to some extent, and this memory influences its behavior. This memory is defined by the ability to store past rainfall for several years. By releasing this water into the river or the atmosphere, it tends to forget. We describe how this memory fades over time in France and Sweden. A few watersheds show a multi-year memory. It increases with the influence of groundwater or dry conditions. After 3 or 4 years, they behave independently of the past.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Cited articles
Ardia, D., Arango, J. O., and Gomez, N. G.: Jump-Diffusion Calibration using
Differential Evolution, Wilmott Magazine, 55, 76–79, https://doi.org/10.1002/wilm.10034, 2011a. a
Ardia, D., Boudt, K., Carl, P., Mullen, K. M., and Peterson, B. G.: Differential Evolution with DEoptim: An Application to Non-Convex
Portfolio Optimization, R J., 3, 27–34, 2011b. a
Ardia, D., Mullen, K. M., Peterson, B. G., and Ulrich, J.: DEoptim:
Differential Evolution in R, version 2.2-5, CRAN [code],
https://CRAN.R-project.org/package=DEoptim (last access: 17 May 2022), 2020. a
Aubert, D., Loumagne, C., and Oudin, L.: Sequential assimilation of soil
moisture and streamflow data in a conceptual rainfall–runoff model, J. Hydrol., 280, 145–161, https://doi.org/10.1016/s0022-1694(03)00229-4, 2003a. a
Aubert, D., Loumagne, C., Oudin, L., and Hégarat-Mascle, S. L.: Assimilation of soil moisture into hydrological models: the sequential method, Can. J. Remote Sens., 29, 711–717, https://doi.org/10.5589/m03-042, 2003b. a
Barthel, R.: HESS Opinions “Integration of groundwater and surface water
research: an interdisciplinary problem?”, Hydrol. Earth Syst. Sci., 18, 2615–2628, https://doi.org/10.5194/hess-18-2615-2014, 2014. a
Barthel, R. and Banzhaf, S.: Groundwater and Surface Water Interaction at the
Regional-scale – A Review with Focus on Regional Integrated Models, Water Resour. Manage., 30, 1–32, https://doi.org/10.1007/s11269-015-1163-z, 2015. a, b
Bartlett, M. S. and Porporato, A.: A Class of Exact Solutions of the Boussinesq Equation for Horizontal and Sloping Aquifers, Water Resour. Res., 54, 767–778, https://doi.org/10.1002/2017WR022056, 2018. a
Bauer, D. F.: Constructing Confidence Sets Using Rank Statistics, J. Am. Stat. Assoc., 67, 687–690, https://doi.org/10.1080/01621459.1972.10481279, 1972. a
Bel, F., Lacroix, A., Mollard, A., David, C., Beaudoin, N., Mary, B., Vachaud, G., Vauclin, M., and Garino, B.: Une approche interdisciplinaire,
pluri-échelle, multipartenaire des pollutions diffuses de l'eau: l'expérience de La Côte Saint-André (Isère), La Houille Blanche, 6, 72–79, https://doi.org/10.1051/lhb/1999074, 1999. a
Bergström, S. and Forsman, A.: Development of a conceptual deterministic rainfall-runoff model, Hydrol. Res., 4, 147–170, https://doi.org/10.2166/nh.1973.0012, 1973. a
Bergström, S. and Sandberg, G.: Simulation of Groundwater Response by
Conceptual Models, Hydrol. Res., 14, 71–84, https://doi.org/10.2166/nh.1983.0007, 1983. a
Beven, K.: Hydrograph separation?, in: Proc. BHS Third National Hydrology
Symposium, Institute of hydrology, 3.2–3.8, 1991. a
Beven, K.: Prophecy, reality and uncertainty in distributed hydrological
modelling, Adv. Water Resour., 16, 41–51, https://doi.org/10.1016/0309-1708(93)90028-e, 1993. a
Beven, K.: Rainfall-Runoff Modelling, John Wiley & Sons, Ltd,
https://doi.org/10.1002/9781119951001, 2012. a, b
Borzì, I., Bonaccorso, B., and Fiori, A.: A Modified IHACRES
Rainfall-Runoff Model for Predicting the Hydrologic Response of a River Basin
Connected with a Deep Groundwater Aquifer, Water, 11, 2031,
https://doi.org/10.3390/w11102031, 2019. a
Brigode, P., Génot, B., Lobligeois, F., and Delaigue, O.: Summary sheets of watershed-scale hydroclimatic observed data for France, INRAE,
https://doi.org/10.15454/UV01P1, 2021. a
Brunner, P. and Simmons, C. T.: HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model, Groundwater, 50, 170–176,
https://doi.org/10.1111/j.1745-6584.2011.00882.x, 2011. a
Carlier, C., Wirth, S. B., Cochand, F., Hunkeler, D., and Brunner, P.: Geology controls streamflow dynamics, J. Hydrol., 566, 756–769,
https://doi.org/10.1016/j.jhydrol.2018.08.069, 2018. a
Castany, G.: Traité pratique des eaux souterraines, Dunod, OCLC number 31063775, 1963. a
Coron, L., Thirel, G., Delaigue, O., Perrin, C., and Andréassian, V.: The
Suite of Lumped GR Hydrological Models in an R package, Environ. Model. Softw., 94, 166–171, https://doi.org/10.1016/j.envsoft.2017.05.002, 2017. a
Coron, L., Delaigue, O., Thirel, G., Dorchies, D., Perrin, C., and Michel, C.: airGR: Suite of GR Hydrological Models for Precipitation-Runoff
Modelling, r package version 1.6.10.4, INRAE [code], https://doi.org/10.15454/EX11NA, 2021. a, b, c, d
Creutzfeldt, B., Ferré, T., Troch, P., Merz, B., Wziontek, H., and Güntner, A.: Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity measurement, J. Geophys. Res.-Atmos., 117, D08112, https://doi.org/10.1029/2011JD016472, 2012. a
Dassargues, A., Maréchal, J. C., Carabin, G., and Sels, O.: On the necessity to use three-dimensional groundwater models for describing impact of drought conditions on streamflow regimes, in: Hydrological Extremes: Understanding, Predicting, Mitigating, edited by: Gottschalk, L., Olivry, J.-C., Reed, D., and Rosbjerg, D., IAHS, 165–170, ISBN 978-1-901502-85-5, 1999. a
Delaigue, O., Génot, B., Lebecherel, L., Brigode, P., and Bourgin, P.-Y.: Base de données hydroclimatiques observées à l'échelle de la France, INRAE [data set], UR HYCAR, https://webgr.inrae.fr/base-de-donnees (last access: 17 May 2022), 2021. a
de Lavenne, A., Thirel, G., Andréassian, V., Perrin, C., and Ramos, M.-H.: Spatial variability of the parameters of a semi-distributed hydrological model, Proc. Int. Assoc. Hydrol. Sci., 373, 87–94, https://doi.org/10.5194/piahs-373-87-2016, 2016. a, b
Dembélé, M., Hrachowitz, M., Savenije, H. H. G., Mariéthoz, G., and Schaefli, B.: Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns With Multiple Satellite
Data Sets, Water Resour. Res., 56, e2019WR026085, https://doi.org/10.1029/2019wr026085, 2020. a
Demirel, M. C., Özen, A., Orta, S., Toker, E., Demir, H. K., Ekmekcioǧlu, Ö., Tayşi, H., Eruçar, S., Saǧ, A. B., Sarı, Ö., Tuncer, E., Hancı, H., Özcan, T. İ., Erdem, H., Koşucu, M. M., Başakın, E. E., Ahmed, K., Anwar, A., Avcuoǧlu, M. B., Vanlı, Ö., Stisen, S., and Booij, M. J.: Additional Value of Using Satellite-Based Soil Moisture and Two Sources of Groundwater Data for Hydrological Model Calibration, Water, 11, 2083, https://doi.org/10.3390/w11102083, 2019. a
Eddelbuettel, D.: RcppDE: Global Optimization by Differential Evolution in C , r package version 0.1.6, CRAN [code], https://CRAN.R-project.org/package=RcppDE (last access: 17 May 2022), 2018. a
Efstratiadis, A., Nalbantis, I., Koukouvinos, A., Rozos, E., and Koutsoyiannis, D.: HYDROGEIOS: a semi-distributed GIS-based hydrological model for modified river basins, Hydrol. Earth Syst. Sci., 12, 989–1006,
https://doi.org/10.5194/hess-12-989-2008, 2008. a
El-Nasr, A. A., Arnold, J. G., Feyen, J., and Berlamont, J.: Modelling the
hydrology of a catchment using a distributed and a semi-distributed model,
Hydrol. Process., 19, 573–587, https://doi.org/10.1002/hyp.5610, 2005. a
Feyen, L., Vázquez, R., Christiaens, K., Sels, O., and Feyen, J.:
Application of a distributed physically-based hydrological model to a medium
size catchment, Hydrol. Earth Syst. Sci., 4, 47–63,
https://doi.org/10.5194/hess-4-47-2000, 2000. a
Guérin, A., Devauchelle, O., Robert, V., Kitou, T., Dessert, C., Quiquerez, A., Allemand, P., and Lajeunesse, E.: Stream-Discharge Surges Generated by Groundwater Flow, Geophys. Res. Lett., 46, 7447–7455,
https://doi.org/10.1029/2019GL082291, 2019. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91,
https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009. a
Habets, F., Gascoin, S., Korkmaz, S., Thiéry, D., Zribi, M., Amraoui, N.,
Carli, M., Ducharne, A., Leblois, E., Ledoux, E., Martin, E., Noilhan, J.,
Ottlé, C., and Viennot, P.: Multi-model comparison of a major flood in the groundwater-fed basin of the Somme River (France), Hydrol. Earth Syst. Sci., 14, 99–117, https://doi.org/10.5194/hess-14-99-2010, 2010. a, b, c
Hayashi, M.: Alpine Hydrogeology: The Critical Role of Groundwater in Sourcing the Headwaters of the World, Groundwater, 58, 498–510,
https://doi.org/10.1111/gwat.12965, 2020. a
Herron, N. and Croke, B.: Including the influence of groundwater exchanges in a lumped rainfall-runoff model, Math. Comput. Simul., 79, 2689–2700, https://doi.org/10.1016/j.matcom.2008.08.007, 2009. a
Hughes, D. A.: Incorporating groundwater recharge and discharge functions into an existing monthly rainfall–runoff model/Incorporation de fonctions de recharge et de vidange superficielle de nappes au sein d'un modèle pluie-débit mensuel existant, Hydrolog. Sci. J., 49, 297–311, https://doi.org/10.1623/hysj.49.2.297.34834, 2004. a
IGN: BD CARTO, Institut national de l'information géographique et forestière, https://geoservices.ign.fr/documentation/donnees/vecteur/bdcarto (last access: 17 May 2022), 2021. a
Immerzeel, W. and Droogers, P.: Calibration of a distributed hydrological model based on satellite evapotranspiration, J. Hydrol., 349, 411–424,
https://doi.org/10.1016/j.jhydrol.2007.11.017, 2008. a
Jakeman, A. J. and Hornberger, G. M.: How much complexity is warranted in a
rainfall-runoff model?, Water Resour. Res., 29, 2637–2649, https://doi.org/10.1029/93wr00877, 1993. a
Jian, J., Ryu, D., Costelloe, J. F., and Su, C.-H.: Towards hydrological model calibration using river level measurements, J. Hydrol.: Reg. Stud., 10, 95–109, https://doi.org/10.1016/j.ejrh.2016.12.085, 2017. a
Käser, D. and Hunkeler, D.: Contribution of alluvial groundwater to the
outflow of mountainous catchments, Water Resour. Res., 52, 680–697,
https://doi.org/10.1002/2014WR016730, 2016. a
Khu, S.-T., Madsen, H., and di Pierro, F.: Incorporating multiple observations for distributed hydrologic model calibration: An approach using a multi-objective evolutionary algorithm and clustering, Adv. Water Resour., 31, 1387–1398, https://doi.org/10.1016/j.advwatres.2008.07.011, 2008. a
Klemeš, V.: Operational testing of hydrological simulation models,
Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986. a
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube
basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012. a
Lalot, E., Curie, F., Wawrzyniak, V., Baratelli, F., Schomburgk, S., Flipo, N., Piegay, H., and Moatar, F.: Quantification of the contribution of the Beauce groundwater aquifer to the discharge of the Loire River using thermal
infrared satellite imaging, Hydrol. Earth Syst. Sci., 19, 4479–4492, https://doi.org/10.5194/hess-19-4479-2015, 2015. a
Leleu, I., Tonnelier, I., Puechberty, R., Gouin, P., Viquendi, I., Cobos, L.,
Foray, A., Baillon, M., and Ndima, P.-O.: La refonte du système d'information national pour la gestion et la mise à disposition des données hydrométriques, La Houille Blanche, 100, 25–32, https://doi.org/10.1051/lhb/2014004, 2014. a
Le Moine, N.: Le bassin versant de surface vu par le souterrain: une voie
d'amélioration des performances et du réalisme des modèles pluie-débit?, PhD thesis, Université Pierre et Marie Curie, Paris, France, cemagref Antony, http://www.theses.fr/2008PA066468 (last access: 17 May 2022), 2008. a, b, c, d
Le Moine, N., Andréassian, V., and Mathevet, T.: Confronting surface-
and groundwater balances on the La Rochefoucauld-Touvre karstic system
(Charente, France), Water Resour. Res., 44, W03403, https://doi.org/10.1029/2007wr005984, 2008. a, b
Lenhardt, F., Doucet, N., Boisson, M., and Billault, P.: The Cenomanian Sands
aquifer model: an effective groundwater management tool, Tech. rep., SOGREAH,
http://feflow.info/fileadmin/FEFLOW/content_tagung/TagungsCD/papers/5.pdf
(last access: 4 May 2022), 2009. a
Li, S., Gitau, M., Engel, B. A., Zhang, L., Du, Y., Wallace, C., and Flanagan, D. C.: Development of a distributed hydrological model to facilitate watershed management, Hydrolog. Sci. J., 62, 1755–1771,
https://doi.org/10.1080/02626667.2017.1351029, 2017. a
Lo, M.-H. and Famiglietti, J. S.: Effect of water table dynamics on land
surface hydrologic memory, J. Geophys. Res., 115, D22118, https://doi.org/10.1029/2010JD014191, 2010. a
Mackay, J., Jackson, C., and Wang, L.: A lumped conceptual model to simulate
groundwater level time-series, Environ. Model. Softw., 61, 229–245, https://doi.org/10.1016/j.envsoft.2014.06.003, 2014. a
Madsen, H.: Parameter estimation in distributed hydrological catchment
modelling using automatic calibration with multiple objectives, Adv. Water Resour., 26, 205–216, https://doi.org/10.1016/s0309-1708(02)00092-1, 2003. a
Maillet, E.: Essais d'hydraulique souterraine & fluviale, A. Hermann,
http://archive.org/details/essaisdhydrauli00mailgoog (last access: 17 May 2022), 1905. a
Mann, H. B. and Whitney, D. R.: On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other, Ann. Math. Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947. a
McDonnell, J. J. and Beven, K.: Debates – The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph, Water Resour. Res., 50, 5342–5350, https://doi.org/10.1002/2013WR015141, 2014. a
Michel, C.: Que peut-on faire en hydrologie avec modèle conceptuel
à un seul paramètre ?, La Houille Blanche, 69, 39–44, https://doi.org/10.1051/lhb/1983004, 1983. a
Michel, C.: Hydrologie appliquée aux petits bassins versants ruraux, Cemagref, https://side.developpement-durable.gouv.fr/Default/doc/SYRACUSE/162685/hydrologie-appliquee-aux-petits-bassins-ruraux (last access: 17 May 2022), 1991. a
Michel, C., Perrin, C., and Andréassian, V.: The exponential store: a correct formulation for rainfall–runoff modelling, Hydrolog. Sci. J., 48, 109–124, https://doi.org/10.1623/hysj.48.1.109.43484, 2003. a
Milzow, C., Krogh, P. E., and Bauer-Gottwein, P.: Combining satellite radar
altimetry, SAR surface soil moisture and GRACE total storage changes for
hydrological model calibration in a large poorly gauged catchment, Hydrol.
Earth Syst. Sci., 15, 1729–1743, https://doi.org/10.5194/hess-15-1729-2011, 2011. a
Moore, R. J.: Real-Time Flood Forecasting Systems: Perspectives and Prospects, Springer, Berlin, Heidelberg, 147–189, https://doi.org/10.1007/978-3-642-58609-5_11, 1999. a
Moore, R. J. and Bell, V. A.: Incorporation of groundwater losses and well
level data in rainfall-runoff models illustrated using the PDM, Hydrol. Earth Syst. Sci., 6, 25–38, https://doi.org/10.5194/hess-6-25-2002, 2002. a, b, c
Moreda, F., Koren, V., Zhang, Z., Reed, S., and Smith, M.: Parameterization of distributed hydrological models: learning from the experiences of lumped
modeling, J. Hydrol., 320, 218–237, https://doi.org/10.1016/j.jhydrol.2005.07.014, 2006. a
Mostafaie, A., Forootan, E., Safari, A., and Schumacher, M.: Comparing
multi-objective optimization techniques to calibrate a conceptual hydrological model using in situ runoff and daily GRACE data, Comput. Geosci., 22, 789–814, https://doi.org/10.1007/s10596-018-9726-8, 2018. a
Mullen, K., Ardia, D., Gil, D., Windover, D., and Cline, J.: DEoptim: An R Package for Global Optimization by Differential Evolution, J. Stat. Softw., 40, 1–26, https://doi.org/10.18637/jss.v040.i06, 2011. a
Nash, J. and Sutcliffe, J.: River flow forecasting through conceptual models
part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. a, b, c
Nicolle, P., Pushpalatha, R., Perrin, C., François, D., Thiéry, D.,
Mathevet, T., Lay, M. L., Besson, F., Soubeyroux, J.-M., Viel, C., Regimbeau,
F., Andréassian, V., Maugis, P., Augeard, B., and Morice, E.: Benchmarking hydrological models for low-flow simulation and forecasting on
French catchments, Hydrol. Earth Syst. Sci., 18, 2829–2857,
https://doi.org/10.5194/hess-18-2829-2014, 2014. a
Nicolle, P., Besson, F., Delaigue, O., Etchevers, P., François, D., Lay,
M. L., Perrin, C., Rousset, F., Thiéry, D., Tilmant, F., Magand, C.,
Leurent, T., and Jacob, É.: PREMHYCE: An operational tool for low-flow forecasting, Proc. Int. Assoc. Hydrol. Sci., 383, 381–389, https://doi.org/10.5194/piahs-383-381-2020, 2020. a
Oudin, L., Weisse, A., Loumagne, C., and Hégarat-Mascle, S. L.: Assimilation of soil moisture into hydrological models for flood forecasting: a variational approach, Can. J. Remote Sens., 29, 679–686,
https://doi.org/10.5589/m03-038, 2003. a
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil,
F., and Loumagne, C.: Which potential evapotranspiration input for a lumped
rainfall–runoff model?, J. Hydrol., 303, 290–306, https://doi.org/10.1016/j.jhydrol.2004.08.026, 2005. a
Pelletier, A. and Andréassian, V.: Hydrograph separation: an impartial
parametrisation for an imperfect method, Hydrol. Earth Syst. Sci., 24, 1171–1187, https://doi.org/10.5194/hess-24-1171-2020, 2020. a
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/s0022-1694(03)00225-7, 2003. a, b, c
Pinault, J.-L., Amraoui, N., and Golaz, C.: Groundwater-induced flooding in
macropore-dominated hydrological system in the context of climate changes,
Water Resour. Res., 41, W05001, https://doi.org/10.1029/2004WR003169, 2005. a
Poncelet, C.: Du bassin au paramètre: jusqu'où peut-on régionaliser un modèle hydrologique conceptuel?, PhD thesis, Université Pierre et Marie Curie, Paris, http://www.theses.fr/2016PA066550 (last access: 17 May 2022), 2016. a
Price, K. V., Storn, R. M., and Lampinen, J. A.: Differential Evolution – A
Practical Approach to Global Optimization, Natural Computing, Springer-Verlag, ISBN 540209506, https://doi.org/10.1007/3-540-31306-0, 2006. a
Pushpalatha, R., Perrin, C., Le Moine, N., Mathevet, T., and Andrëassian, V.: A downward structural sensitivity analysis of hydrological models to improve low-flow simulation, J. Hydrol., 411, 66–76, https://doi.org/10.1016/j.jhydrol.2011.09.034, 2011. a, b, c
Pushpalatha, R., Perrin, C., Moine, N. L., and Andréassian, V.: A review
of efficiency criteria suitable for evaluating low-flow simulations, J. Hydrol., 420–421, 171–182, https://doi.org/10.1016/j.jhydrol.2011.11.055, 2012. a
Riboust, P., Thirel, G., Moine, N. L., and Ribstein, P.: Revisiting a Simple
Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca
Hystereses, J. Hydrol. Hydromech., 67, 70–81, https://doi.org/10.2478/johh-2018-0004, 2018. a
Roche, P.-A., Miquel, J., and Gaume, E.: Hydrologie quantitative, Springer,
Paris, https://doi.org/10.1007/978-2-8178-0106-3, 2012. a, b, c, d
Slater, L. J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A., Khouakhi,
A., Prosdocimi, I., Vitolo, C., and Smith, K.: Using R in hydrology: a review
of recent developments and future directions, Hydrol. Earth Syst. Sci., 23, 2939–2963, https://doi.org/10.5194/hess-23-2939-2019, 2019. a, b
Soulsby, C., Tetzlaff, D., Rodgers, P., Dunn, S., and Waldron, S.: Runoff
processes, stream water residence times and controlling landscape
characteristics in a mesoscale catchment: An initial evaluation, J. Hydrol., 325, 197–221, https://doi.org/10.1016/j.jhydrol.2005.10.024, 2006. a
Spearman, C.: Demonstration of Formulae for True Measurement of Correlation,
Am. J. Psychol., 18, 161–169, https://doi.org/10.2307/1412408, 1907. a
Stadnyk, T. A. and Holmes, T. L.: On the value of isotope-enabled hydrological model calibration, Hydrolog. Sci. J., 65, 1525–1538,
https://doi.org/10.1080/02626667.2020.1751847, 2020. a
Stadnyk, T. A., Delavau, C., Kouwen, N., and Edwards, T. W. D.: Towards
hydrological model calibration and validation: simulation of stable water
isotopes using the isoWATFLOOD model, Hydrol. Process., 27, 3791–3810, https://doi.org/10.1002/hyp.9695, 2013. a
Swenson, S., Yeh, P. J.-F., Wahr, J., and Famiglietti, J.: A comparison of
terrestrial water storage variations from GRACE with in situ measurements
from Illinois, Geophys. Res. Lett., 33, L16401, https://doi.org/10.1029/2006GL026962, 2006. a
Syed, T. H., Famiglietti, J. S., Rodell, M., Chen, J., and Wilson, C. R.:
Analysis of terrestrial water storage changes from GRACE and GLDAS, Water
Resour. Res., 44, W02433, https://doi.org/10.1029/2006WR005779, 2008. a
Széles, B., Parajka, J., Hogan, P., Silasari, R., Pavlin, L., Strauss,
P., and Blöschl, G.: The Added Value of Different Data Types for
Calibrating and Testing a Hydrologic Model in a Small Catchment, Water
Resour. Res., 56, e2019WR026153, https://doi.org/10.1029/2019wr026153, 2020. a, b, c
Tague, C. and Grant, G. E.: Groundwater dynamics mediate low-flow response to
global warming in snow-dominated alpine regions, Water Resour. Res., 45, W07421, https://doi.org/10.1029/2008WR007179, 2009. a
Thiéry, D.: Forecast of changes in piezometric levels by a lumped hydrological model, J. Hydrol., 97, 129–148, https://doi.org/10.1016/0022-1694(88)90070-4, 1988. a, b, c
Thiéry, D.: Logiciel GARDÉNIA, version v8.2, Guide d'utilisation, bRGM report RP-62797-FR, BRGM, Orléans, France,
https://www.brgm.fr/sites/default/files/documents/2020-11/logiciel-gardenia-v8-2-rp-62797-fr-notice.pdf
(last access: 17 May 2022), 2014. a
Thirel, G., Salamon, P., Burek, P., and Kalas, M.: Assimilation of MODIS Snow
Cover Area Data in a Distributed Hydrological Model Using the Particle Filter, Remote Sens., 5, 5825–5850, https://doi.org/10.3390/rs5115825, 2013. a
Tiel, M., Stahl, K., Freudiger, D., and Seibert, J.: Glacio-hydrological model calibration and evaluation, WIREs Water, 7, W07421, https://doi.org/10.1002/wat2.1483, 2020. a
Tilmant, F., Nicolle, P., Bourgin, F., Besson, F., Delaigue, O., Etchevers, P., François, D., Lay, M. L., Perrin, C., Rousset, F., Thiéry, D.,
Magand, C., Leurent, T., and Jacob, É.: PREMHYCE: un outil opérationnel pour la prévision des étiages, La Houille Blanche, 106, 37–44, https://doi.org/10.1051/lhb/2020043, 2020.
a
Tobin, B. W. and Schwartz, B. F.: Quantifying the role of karstic groundwater
in a snowmelt-dominated hydrologic system, Hydrol. Process., 34, 3439–3447, https://doi.org/10.1002/hyp.13833, 2020. a, b
Tomasella, J., Hodnett, M. G., Cuartas, L. A., Nobre, A. D., Waterloo, M. J.,
and Oliveira, S. M.: The water balance of an Amazonian micro-catchment: the
effect of interannual variability of rainfall on hydrological behaviour,
Hydrol. Process., 22, 2133–2147, https://doi.org/10.1002/hyp.6813, 2008. a
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux,
J.-M.: A 50-year high-resolution atmospheric reanalysis over France with the
Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2009. a
Wilcoxon, F.: Individual Comparisons by Ranking Methods, Biometr. Bull., 1, 80–83, https://doi.org/10.2307/3001968, 1945. a
Wirth, S. B., Carlier, C., Cochand, F., Hunkeler, D., and Brunner, P.:
Lithological and Tectonic Control on Groundwater Contribution to Stream
Discharge During Low-Flow Conditions, Water, 12, 821, https://doi.org/10.3390/w12030821, 2020. a
Short summary
A large part of the water cycle takes place underground. In many places, the soil stores water during the wet periods and can release it all year long, which is particularly visible when the river level is low. Modelling tools that are used to simulate and forecast the behaviour of the river struggle to represent this. We improved an existing model to take underground water into account using measurements of the soil water content. Results allow us make recommendations for model users.
A large part of the water cycle takes place underground. In many places, the soil stores water...