Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-2245-2022
https://doi.org/10.5194/hess-26-2245-2022
Research article
 | 
02 May 2022
Research article |  | 02 May 2022

The effects of spatial and temporal resolution of gridded meteorological forcing on watershed hydrological responses

Pin Shuai, Xingyuan Chen, Utkarsh Mital, Ethan T. Coon, and Dipankar Dwivedi

Related authors

Downscaled hyper-resolution (400 m) gridded datasets of daily precipitation and temperature (2008–2019) for the East–Taylor subbasin (western United States)
Utkarsh Mital, Dipankar Dwivedi, James B. Brown, and Carl I. Steefel
Earth Syst. Sci. Data, 14, 4949–4966, https://doi.org/10.5194/essd-14-4949-2022,https://doi.org/10.5194/essd-14-4949-2022, 2022
Short summary
A graph neural network (GNN) approach to basin-scale river network learning: the role of physics-based connectivity and data fusion
Alexander Y. Sun, Peishi Jiang, Zong-Liang Yang, Yangxinyu Xie, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 5163–5184, https://doi.org/10.5194/hess-26-5163-2022,https://doi.org/10.5194/hess-26-5163-2022, 2022
Short summary
Evaluating simplifications of subsurface process representations for field-scale permafrost hydrology models
Bo Gao and Ethan T. Coon
The Cryosphere, 16, 4141–4162, https://doi.org/10.5194/tc-16-4141-2022,https://doi.org/10.5194/tc-16-4141-2022, 2022
Short summary
Knowledge-Informed Deep Learning for Hydrological Model Calibration: An Application to Coal Creek Watershed in Colorado
Peishi Jiang, Pin Shuai, Alexandar Sun, Maruti K. Mudunuru, and Xingyuan Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-282,https://doi.org/10.5194/hess-2022-282, 2022
Revised manuscript under review for HESS
Short summary
Technical note: Using long short-term memory models to fill data gaps in hydrological monitoring networks
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022,https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023,https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023,https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Technical note: How physically based is hydrograph separation by recursive digital filtering?
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023,https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023,https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary

Cited articles

Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. a
Alemohammad, S. H., McColl, K. A., Konings, A. G., Entekhabi, D., and Stoffelen, A.: Characterization of precipitation product errors across the United States using multiplicative triple collocation, Hydrol. Earth Syst. Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015, 2015. a
Aquanty, I.: HydroGeoSphere User Manual, Waterloo, Ontario, https://www.aquanty.com/hgs-download (last access: 28 April 2022), 2015. a
Behnke, R., Vavrus, S., Allstadt, A., Albright, T., Thogmartin, W. E., and Radeloff, V. C.: Evaluation of downscaled, gridded climate data for the conterminous United States, Ecol. Appl., 26, 1338–1351, https://doi.org/10.1002/15-1061, 2016. a, b, c, d
Bolton, D.: The Computation of Equivalent Potential Temperature, Mon. Weather Rev., 108, 1046–1053, https://doi.org/10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2, 1980. a
Download
Short summary
Using an integrated watershed model, we compared simulated watershed hydrologic variables driven by three publicly available gridded meteorological forcings (GMFs) at various spatial and temporal resolutions. Our results demonstrated that spatially distributed variables are sensitive to the spatial resolution of the GMF. The temporal resolution of the GMF impacts the dynamics of watershed responses. The choice of GMF depends on the quantity of interest and its spatial and temporal scales.