
Hydrol. Earth Syst. Sci., 26, 2245–2276, 2022
https://doi.org/10.5194/hess-26-2245-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

The effects of spatial and temporal resolution of gridded
meteorological forcing on watershed hydrological responses
Pin Shuai1, Xingyuan Chen1, Utkarsh Mital2, Ethan T. Coon3, and Dipankar Dwivedi2
1Pacific Northwest National Laboratory, Richland, WA 99352, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3Climate Change Science Institute & Environmental Sciences Division,
Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

Correspondence: Pin Shuai (pin.shuai@pnnl.gov)

Received: 1 October 2021 – Discussion started: 12 October 2021
Revised: 14 March 2022 – Accepted: 30 March 2022 – Published: 2 May 2022

Abstract. Meteorological forcing plays a critical role in ac-
curately simulating the watershed hydrological cycle. With
the advancement of high-performance computing and the de-
velopment of integrated watershed models, simulating the
watershed hydrological cycle at high temporal (hourly to
daily) and spatial resolution (tens of meters) has become
efficient and computationally affordable. These hyperreso-
lution watershed models require high resolution of meteo-
rological forcing as model input to ensure the fidelity and
accuracy of simulated responses. In this study, we utilized
the Advanced Terrestrial Simulator (ATS), an integrated wa-
tershed model, to simulate surface and subsurface flow and
land surface processes using unstructured meshes at the Coal
Creek Watershed near Crested Butte (Colorado). We com-
pared simulated watershed hydrologic responses including
streamflow and distributed variables such as evapotranspira-
tion, snow water equivalent (SWE), and groundwater table
driven by three publicly available, gridded meteorological
forcings (GMFs) – Daily Surface Weather and Climatolog-
ical Summaries (Daymet), the Parameter-elevation Regres-
sions on Independent Slopes Model (PRISM), and the North
American Land Data Assimilation System (NLDAS). By
comparing various spatial resolutions (ranging from 400 m
to 4 km) of PRISM, the simulated streamflow only becomes
marginally worse when spatial resolution of meteorologi-
cal forcing is coarsened to 4 km (or 30 % of the watershed
area). However, the 4 km-resolution has much worse perfor-
mance than finer resolution in spatially distributed variables
such as SWE. Using the temporally disaggregated PRISM,
we compared models forced by different temporal resolu-

tions (hourly to daily), and sub-daily resolution preserves
the dynamic watershed responses (e.g., diurnal fluctuation of
streamflow) that are absent in results forced by daily resolu-
tion. Conversely, the simulated streamflow shows better per-
formance using daily resolution compared to that using sub-
daily resolution. Our findings suggest that the choice of GMF
and its spatiotemporal resolution depends on the quantity of
interest and its spatial and temporal scale, which may have
important implications for model calibration and watershed
management decisions.

1 Introduction

The accuracy of meteorological forcings such as precipita-
tion plays a crucial role in simulating the watershed hydro-
logical cycle. With the advancement of high-performance
computing and the development of integrated hydrologic
models (e.g., Amanzi-Advanced Terrestrial Simulator – ATS
Coon et al., 2019, ParFlow, Kollet and Maxwell, 2006, and
HydroGeoSphere, Aquanty, 2015), simulating the watershed
hydrological cycle at high temporal and spatial resolution has
become possible (Wood et al., 2011). These models often re-
quire gridded meteorological forcing (GMF), which is typ-
ically fused from various sources, including ground-based
gages, radar, satellite remote sensing, as well as regional and
global climate models. Due to different interpolation meth-
ods and data sources, GMF is available at different spatial
and temporal resolutions and contains considerable uncer-
tainties (Schreiner-McGraw and Ajami, 2020).
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Recently, GMF products, notably Daily Surface Weather
and Climatological Summaries (Daymet) (Thornton et al.,
1997, 2021), the Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM) (Daly et al., 2008), and
the North American Land Data Assimilation System (NL-
DAS) (Mitchell, 2004; Xia et al., 2012)), have become popu-
lar for hydrologic modeling within the conterminous United
States (CONUS) owing to their temporally and spatially
complete coverage and relatively high spatiotemporal reso-
lution. Past studies have compared and evaluated the per-
formance of GMF against weather stations (Behnke et al.,
2016; Daly et al., 2008; Muche et al., 2020). Daly et al.
(2008) presented a detailed comparison between PRISM and
Daymet and found that, for the products available in 2008,
PRISM outperforms Daymet, especially in mountainous and
coastal areas of the western US. Behnke et al. (2016) com-
pared eight widely used meteorological forcing datasets, in-
cluding Daymet, PRISM, and NLDAS against Global Histor-
ical Climatology Network-Daily (GHCN-D) stations across
the CONUS. They found that different interpolation methods
affected the accuracy of downscaled meteorological data, and
care should be taken when selecting meteorological forcing
for a given region. In a similar study, Muche et al. (2020)
compared four GMFs (i.e., Daymet, PRISM, NLDAS, and
the Global Land Data Assimilation System – GLDAS) as
precipitation data sources and evaluated the precipitation es-
timates at GHCN-D stations within the Delaware Watershed
at Perry Lake in eastern Kansas. They showed that precipi-
tation from Daymet and PRISM were more closely matched
with precipitation collected at GHCN-D than that from NL-
DAS and GLDAS.

Understanding the bias and fidelity of each meteorological
forcing and the effects of meteorological forcing spatiotem-
poral resolution on simulated watershed responses is impor-
tant for accurate simulations of watershed processes. Previ-
ous studies have evaluated the impact of different GMFs on
model-simulated surface runoff (Muche et al., 2020; Behnke
et al., 2016; Gao et al., 2017; Elsner et al., 2014). Using
the Soil and Water Assessment Tool (SWAT), Muche et al.
(2020) evaluated model performance on simulated stream-
flow against observation under different GMFs. They found
that the simulated streamflow yielded a higher correlation
when driven by PRISM and Daymet than those by NLDAS
and GLDAS. Eum et al. (2014) evaluated hydrologic re-
sponses using the Variable Infiltration Capacity (VIC) model
forced by three GMFs available in Canada. They found
notable differences in simulated surface runoff during the
snowmelt period but not so much during the snowfall pe-
riod. However, these studies mostly focused on meteorolog-
ical forcing effects on surface runoff and ignored other rele-
vant hydrological processes (e.g., snowmelt, evapotranspira-
tion – ET –, and subsurface flow). In addition, these studies
used either semi-distributed models (e.g., SWAT) or coarse
regional-scale land surface models (e.g., VIC), which do not
fully utilize the GMFs at their finest resolutions.

Compared to semi-distributed models, fully distributed,
integrated hydrologic models are favorable in simulating wa-
tershed hydrologic responses to changes in climate forc-
ing as they can preserve the spatial heterogeneity of in-
puts from GMF and provide a spatially distributed represen-
tation of both surface and subsurface flow processes. Re-
cently, Maina et al. (2020) used the ParFlow-Community
Land Model (CLM), a fully distributed, process-based wa-
tershed model, to study the effect of spatial resolution of
meteorological forcing (0.5 to 40.5 km) generated from the
Weather Research and Forecasting (WRF) model on spa-
tially resolved hydrologic responses, including snow water
equivalent (SWE), ET, infiltration, surface ponded depth, and
groundwater table. Using the Cosumnes Watershed as a test
bed, they found that most hydrologic variables were season-
ally and spatially dependent on the different spatial resolu-
tions of the meteorological forcing. Although climate mod-
els such as WRF provide alternative GMF at any given spa-
tiotemporal resolution, they require extensive expert knowl-
edge in setting up and running the models and thus are less
popular compared to publicly available GMFs (e.g., Daymet,
PRISM, and NLDAS). To our knowledge, few, if any, studies
have utilized the common GMFs to investigate the impact of
spatial resolution of meteorological forcing on both water-
shed cumulative variables (e.g., streamflow) and distributed
variables (e.g., SWE, ET, and groundwater level).

The temporal resolution of meteorological forcing, es-
pecially precipitation, plays an important role in the tim-
ing of runoff generation. It is particularly important for
flood volume modeling (Ficchì et al., 2016), flood forecast-
ing (Wetterhall et al., 2011), and hydrodynamic modeling
in urban catchments (Ochoa-Rodriguez et al., 2015; Bruni
et al., 2015). The temporal resolution of rainfall inputs has
been shown to affect the simulation of surface runoff more
strongly than variations in spatial resolution during storm
events (Ochoa-Rodriguez et al., 2015). High temporal reso-
lution is also important for studying watershed biogeochem-
ical cycling since sub-daily meteorological forcing could in-
duce diurnal snowmelt that produces regular infiltration of
cold, chemically distinct snow water into the soil which al-
ters the soil temperature and chemical composition of soil
water and groundwater (Petrone et al., 2007; Woelber et al.,
2018). Despite the importance of the temporal resolution of
input forcing, the impact of GMF temporal resolution on wa-
tershed hydrodynamics has largely been overlooked. For ex-
ample, a daily timestep is used routinely in watershed hydro-
logic modeling, and the simulated daily streamflow is gen-
erally used to compare to observed daily streamflow even
though sub-daily streamflow measurement is collected at
most United States Geological Survey (USGS) stream gages.

The objectives of this study are to intercompare three
widely available GMFs (i.e., PRISM, Daymet, and NLDAS)
and to evaluate the impact of meteorological forcing spa-
tial and temporal resolution on simulated watershed hydro-
logic responses including streamflow, ET, SWE, soil mois-
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ture, ponded surface water depth, and groundwater table. We
choose ATS as the integrated watershed model to couple sur-
face and subsurface flows with land surface processes (Coon
et al., 2019). The model can fully resolve the meteorological
forcing at a much finer resolution (≤ 100 m) using unstruc-
tured triangular grids. We seek to understand the impact of
meteorological forcing by comparing model simulations to
field observations including GHCN-D stations, USGS stream
gages, and remote-sensing products. We aim to answer the
following questions.

1. How would different GMFs at their native resolutions
impact the simulated streamflow, distributed variables
such as SWE?

2. What are the effects of spatial and temporal resolu-
tion of GMF on simulated streamflow and spatially dis-
tributed variables?

3. Is spatial resolution more important than temporal res-
olution of the GMF for watershed hydrologic simula-
tions?

To address these questions, we perform different numeri-
cal experiments using ATS by forcing the model with var-
ious spatial and temporal resolutions of GMFs. We choose
a mountainous watershed due to its complex terrain and
heterogeneous weather conditions, which provides an ideal
test bed for studying the impact of meteorological forcing
spatiotemporal resolution on watershed dynamic responses.
The findings from this study are relevant for the use of the
GMF dataset in watershed hydrologic simulations using fully
distributed watershed models in mountainous watersheds. It
also provides important implications for watershed calibra-
tion using inverse modeling.

2 Methods

2.1 Study site

Our study site is located in the Coal Creek Watershed (Hy-
drologic Unit Code (HUC) 140200010204) with an area of
53.2 km2 located within the larger East Taylor Watershed
(HUC 14020001) near Crested Butte, in southwestern Col-
orado (Fig. 1). The Coal Creek Watershed is a high alpine,
snow-dominated catchment, characterized as warm summer,
humid continental climate in the Köppen classification sys-
tem (Koppen and Geiger, 1930). It receives ∼ 850 mm of
precipitation annually, with ∼ 530 mm as snowfall which
was estimated from the long-term Daymet forcing dataset
(Thornton et al., 2021). The primary land cover types are ev-
ergreen forest (62.6 %) and shrub (20.5 %). This watershed
has strong variations in topography and land cover, which is
representative of many headwater, mountainous watersheds
in the western US.

2.2 ATS model setup

ATS is an integrated, distributed hydrologic code that solves
the diffusion wave approximation of the St-Venant equations
for surface flow coupled to the Richards equation for flow
in variably saturated porous media in the subsurface (Coon
et al., 2019, 2020). The Richards equation is described as

∂

∂t
(φs)+O · q = 0, (1)

with

q =−
1
µ
krκ(Op+ ρg), (2)

where φ is the effective porosity (–), s is the saturation (–
), q is the Darcy flux (m s−1), µ is the dynamic viscos-
ity (Pa s−1), kr is the relative permeability (–), κ is the sat-
urated hydraulic permeability (m2), p is the water pres-
sure (Pa), and g is the gravitational constant (m s−2).

The diffusive wave approximation to overland flow is de-
scribed as

∂h

∂t
+O · (hv)=Qw+Qss, (3)

with

v =−
h2/3

n ·max
(
ε,
√
Oz
)O(z+h), (4)

where h is the depth of ponded water (m), v is the sur-
face flow velocity (m s−1), Qw are all external source/sink
terms (m s−1), Qss is the exchange flux between surface
and subsurface systems (m s−1), n is Manning’s coeffi-
cient (s m−1/3), z is surface elevation (m), and ε is a small
positive regularization to keep the equations non-singular in
places with zero bed slope (m).

The ATS meshes including surface land covers and subsur-
face structures and properties were developed using the Wa-
tershed Workflow package (Coon and Shuai, 2021), which
brings together a variety of data streams, delineates the catch-
ment, and generates a variable-resolution mesh with refined
resolution at the stream network. Resolutions ranged from
typical triangle areas of 5000 m2 near the stream network
to 50 000 m2 away from the stream network. This trian-
gular surficial mesh was then elevated using a digital el-
evation model (DEM) from the USGS National Elevation
Dataset (NED) 30 m resolution dataset.

On the surface, 14 land cover types were delineated from
the National Land Cover Database (NLCD 2016) product for
the CONUS. The leaf area index (LAI) seasonal variations
for each land cover type were retrieved from MODIS (https://
modis.gsfc.nasa.gov/data, last access: 31 March 2021). Some
of the plant functional types and their properties such as
rooting profile and photosynthetic parameters were adopted
from parameters used in the CLM 4.5 technical notes (Ole-
son et al., 2013).
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Figure 1. Map of the Coal Creek Watershed in relation to the larger East Taylor Watershed as well as its relative location in the western
US. Also shown are the locations of GHCN-D stations, the USGS stream gage, the National Hydrography Dataset Plus (NHDPlus) stream
network, and the digital elevation model (DEM). The marked points (A–D) and (1)–(4) are point locations used to observe groundwater table
and surface ponded depth from the model, respectively.

In the subsurface, the model was discretized into
19 terrain-following layers with a total thickness of ∼ 28 m.
A total of six soil layers encompassed the top 2 m of the
domain. The depth to bedrock (DTB) was determined from
SoilGrids (Shangguan et al., 2017) that varies from 3 m at its
shallowest to 26 m at its deepest. The geologic layers were
sandwiched between the soil and bedrock layers. The verti-
cal resolution of the mesh gradually increased from 5 cm at
the surface to 2 m at the 2 m depth, and it remained constant
at 2 m until the bottom of the model domain at a depth of
28 m. The total number of cells is 171 760.

Based on the National Resources Conservation Ser-
vice (NRCS) Soil Survey Geographic (SSURGO) soils
database, 22 soil types were identified and mapped within the
soil layer. Due to the edge-matching issues in the SSURGO
soil database (Gatzke et al., 2011), the 22 soil types were re-
grouped into 9 types to remove the discontinuity of a soil type
across soil survey area boundaries. Using a global surface
geology dataset from GLobal HYdrogeology MaPS (GL-
HYMPS) 2.0 (Huscroft et al., 2018), 11 geologic material
types were identified and mapped within the geologic layer.
The spatial distribution of the soil and geological layers was
shown in Fig. 2. The permeability and porosity for each soil
type were retrieved from the SSURGO database, and the van
Genuchten parameters were determined using Rosseta v3, a
pedotransfer function that relates sand, silt, and clay percent-
age to van Genuchten parameters (Zhang and Schaap, 2017).
The permeability and porosity for each geology type were
retrieved from the GLHYMPS database. Bedrock functions

as a confining layer and is assumed to have a very small per-
meability of 1× 10−17 m2.

The model was first run for 1000 years with constant pre-
cipitation (∼ 850 mm yr−1) as the cold spinup that resulted
in steady-state model outputs at the final timestep, which
was then used as the initial condition for a 10-year (1 Oc-
tober 2004–1 October 2014) transient simulation (i.e., warm
spinup) driven by the Daymet forcing. Model state at the
end of the 10-year run was used as the initial condition for
a 4-year transient run (1 October 2015–1 October 2019)
driven by various GMFs. The water year 2015 was treated
as a second warm spinup and was discarded from the anal-
ysis to avoid any influence from previous spinup runs. The
study period features a high snow year (∼ 709 mm in wa-
ter year 2017) and a low snow year (∼ 296 mm in water
year 2018), allowing us to demonstrate how different me-
teorological forcings impact watershed responses under vari-
ous weather conditions. ATS runs were taken at a sub-hourly
timestep determined by the model while outputting stream-
flow and watershed-averaged variables at an hourly timestep.
Due to large file size, spatially distributed variables such as
SWE and ET were output at daily timesteps. Each run took
∼ 17 h wall-clock time using 64 processors on the Cori clus-
ters at the National Energy Research Scientific Computing
Center (NERSC). The models were not calibrated because
the focus of this study was to evaluate the effect of meteo-
rological forcings on model simulation instead of estimating
the optimal parameters used in ATS.
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Figure 2. (a) Land cover, (b) soil map, and (c) geology map of Coal Creek Watershed that are generated from Watershed Workflow. (d) ATS-
simulated surface ponded depth and soil saturation on 1 October 2018. The zoomed-in plot shows the 3D unstructured triangular mesh.

2.3 Gridded meteorological forcing

For this comparison, three widely used GMFs were con-
sidered: PRISM (Daly et al., 2008), NLDAS-2, (Xia et al.,
2012)), and Daymet v4 (Thornton et al., 1997, 2021).
NLDAS-2 and Daymet v4 are hereafter referred to as NL-
DAS and Daymet, respectively. The detailed comparison be-
tween each meteorological dataset can be found in Table 1.

The Daymet climate forcing is a gridded, daily product
with a spatial resolution of 1 km, covering continental North
America, Puerto Rico, and Hawaii. It assimilates data from
weather stations (primarily GHCN-D stations) and accounts
for elevation, prevailing winds, storm tracks, and proximity
to large water bodies (Thornton et al., 1997). Here, the lat-
est Daymet version 4 product is used because this product
has gone through significant bias corrections in station ob-
servations and the gridded product shows a better match with
weather stations compared to the earlier versions (Thornton
et al., 2021).

The PRISM forcing is developed by the PRISM climate
group at Oregon State University and is recognized as the

official climate dataset for the US Department of Agricul-
ture. It utilizes a wide range of monitoring networks includ-
ing GHCN-D stations and local/state weather stations to gen-
erate daily, spatially continuous climate data for the CONUS.
PRISM provides a native grid resolution of 30 arcsec (∼
800 m) for a fee but also provides a coarsened 4 km reso-
lution free of charge. We used the native 30 arcsec resolu-
tion and downscaled (upscaled) the dataset to obtain finer
(coarser) spatial resolutions.

The NLDAS dataset is a gridded, hourly product with a
spatial resolution of 1/8th◦ (∼ 12 km at the study site) for the
entire North American region. The non-precipitation forc-
ing variables are primarily derived from the North Ameri-
can Regional Reanalysis (NARR) by spatially interpolating
data from the 32 km-resolution NARR grid to the 1/8th◦

NLDAS grid while temporally disaggregated from 3-hourly
to hourly frequency (Cosgrove et al., 2003). The precipita-
tion is a product of a temporal disaggregation of a gage-only
Climate Prediction Center (CPC) analysis of daily precipi-
tation into hourly frequency, performed directly on the NL-
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DAS grid and including an orographic adjustment based on
the widely applied PRISM climatology.

All three datasets provide temperature and precipitation as
the primary forcing with a few secondary forcing variables.
In addition to temperature and precipitation, ATS requires
solar radiation (both incoming shortwave radiation (Srad)
and longwave radiation – Lrad), relative humidity, and wind
speed as forcing inputs. Relative humidity can be estimated
based on vapor pressure and mean temperature (Bolton,
1980). Lrad can be estimated from Srad and relative humid-
ity. Because PRISM does not provide Srad and Lrad, we used
solar radiation from Daymet instead. Wind speed was as-
sumed to be constant (i.e., 4 m s−1) for both Daymet and
PRISM. Compared to PRISM and Daymet, NLDAS provides
the most complete set of variables to drive ATS simulations.

Different meteorological forcings have different defini-
tions for a calendar day, and they are often different from
the local time used in the observation data (see Table A1
in the Appendix). Time zone adjustment and lag corrections
have been applied to account for the time lag difference be-
tween meteorological forcing and local gages. For example,
PRISM lags Daymet by 1 d, so PRISM has been shifted for-
ward 1 d to be consistent with Daymet. Both model simula-
tion and gage observation have been converted to the Coor-
dinated Universal Time (UTC) time zone for hourly stream-
flow comparison. For consistency, all simulated streamflows
are in hourly resolution and are compared to hourly USGS
streamflows in Sect. 3.

To study the effect of spatial resolution of meteorological
forcing, precipitation and temperature from 800 m PRISM
and 1 km Daymet have been downscaled (upscaled) into
finer (coarser) spatial resolutions. The downscaling of 800 m
PRISM or 1 km Daymet into 400 m used a data-driven down-
scaling approach (Mital et al., 2022). Specifically, random
forests (Breiman, 2001) were used to extract the relation-
ships between precipitation (or average temperature) and to-
pography. These relationships were developed at 800 m (for
PRISM) and 1 km (for Daymet) resolutions and were used
as-is to generate the 400 m downscaled estimates. The down-
scaled precipitation grids were additionally filtered to en-
sure a smooth field in low-gradient areas without affect-
ing high-gradient areas (Daly et al., 2008). The topographic
variables considered were elevation, slope, aspect, latitude,
and longitude. These variables were extracted from the NED
10 m-resolution product and upscaled to 400 and 800 m (for
PRISM) via bilinear interpolation. Upscaling of topographic
variables was done in maximum increments of 2× (e.g.,
10 m→ 20 m→ 40 m and so on).

For consistency, spatial upscaling of 800 m PRISM into
1600 and 4000 m was performed using a coarsened function
from python package xarray (http://xarray.pydata.org, last
access: 1 April 2021) by applying a moving average based
on a 2× 2 window size. The same approach was used for
spatial upscaling of 1 km Daymet to 2 and 4 km. To study
the effect of temporal resolution of meteorological forcing,

the daily PRISM dataset was disaggregated into hourly res-
olution using the temporal pattern of NLDAS. The hourly
PRISM dataset was then aggregated into 12-hourly temporal
resolution by taking the mean (for temperature) or sum (for
precipitation) for the aggregated period.

In ATS, meteorological forcing is distributed linearly
across its temporal resolution, and each model surface cell
gets its meteorological forcing through spatially bilinear in-
terpolation. For example, both Daymet and PRISM apply
their meteorological forcing at the daily timescale, whereas
NLDAS applies its meteorological forcing at an hourly
timescale.

2.4 Observation data

Instantaneous streamflow data (every 15 min) have been
available from 1 April through 15 November every year
since 2014 at a USGS gage (station number 09111250) lo-
cated at the watershed outlet. The 15 min streamflow was
aggregated to hourly streamflow which was used to com-
pare against model simulations in the Results section. Past
Airborne Snow Observatory (ASO) survey has four flights
covering this watershed in 2018 and 2019 to survey the
snow depth and SWE. Remote sensing products such as the
Moderate Resolution Imaging Spectroradiometer (MODIS)
8 d composite ET have been available at a 500 m resolution
since 2000. Groundwater measurements and field-observed
soil moisture data are not available within the study site.

To compare the accuracy of each meteorological forcing
against field observations, all three meteorological forcings
at their native resolutions were compared against GHCN-D
weather stations within the East Taylor Watershed. In to-
tal, there were seven stations with long-term precipitation
records and four stations with long-term temperature records
(see GHCN-D station locations in Fig. 1). Both precipitation
and temperature time series were extracted at each GHCN-D
gage location from the GMF.

2.5 Model evaluation metrics

Model-simulated outputs were compared against observation
data including hourly streamflow from a USGS gage and spa-
tially distributed SWE from the ASO survey. The modified
Kling–Gupta efficiency (KGE) and its three components (r ,
γ , β) were used to evaluate the model performance (Kling
et al., 2012) in addition to the standard Nash–Sutcliffe effi-
ciency (NSE). The theoretical version of the modified KGE
metric is

KGE= 1−
√
(r − 1)2+ (γ − 1)2+ (β − 1)2, (5)

with

r =
cov(S,O)
σsσo

, (6)
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γ =
σs/µs

σo/µo
, (7)

β =
µs

µo
, (8)

where S and O represent simulated and observed values, re-
spectively, r is the correlation coefficient, γ is the variability
ratio, β is the bias ratio, cov(S,O) is the covariance between
simulated and observed values, σ is the standard deviation,
and µ is the mean.

Using the modified KGE avoids the effect of input bias
on the variability indicator, which has an advantage over the
original KGE (Gupta et al., 2009; Kling et al., 2012), and
it also allows diagnostic interpretation of the performance
score. KGE decomposes model performance into correla-
tion (r), variability (γ ), and bias (β) terms. For example,
the correlation measures the temporal dynamics of stream-
flow (i.e., timing), while the variability and bias measure the
flow duration curve (i.e., magnitude). The KGE ranges from
−∞ (poorest model skill) to 1 (perfect) when all three terms
reach unity. Similarly, the NSE ranges from −∞ (poorest
model skill) to 1 (perfect).

A Taylor diagram is used to show how closely a set of
patterns (e.g., meteorological forcing) matches observations
(Taylor, 2001). In each Taylor diagram, performance metrics
such as standard deviation and Pearson’s correlation coeffi-
cient (r) are shown together. The azimuthal angle represents
correlation, and the radial distance represents the standard
deviation. Also shown is the centered root mean square er-
ror (RMSE) between simulation and observation. The rela-
tionship between these statistics is shown below:

E2
= σ 2

s + σ
2
o − 2σsσor, (9)

where E is the centered RMSE, which is also measured by
the geometric distance between simulation and observation
data points on the Taylor diagram (unit is the same as the
standard deviation). In cases where more than one obser-
vation point are plotted on the same diagram, the centered
RMSE is omitted. Note that the centered RMSE is a mean-
removed RMSE, and thus any bias in the data is not shown.

The closer the distance between simulation and observa-
tion data point on a Taylor diagram, the smaller the centered
RMSE (observation data point has centered RMSE= 0), the
more similarity they show in terms of standard deviation, and
the higher the correlation coefficient (observation data point
has r = 1).

3 Results

3.1 Comparison between meteorological forcing and
weather stations

A Taylor diagram was used to compare the similarity in pre-
cipitation and temperature patterns between meteorological

forcing and GHCN-D stations (Fig. 3). Compared to tem-
perature, precipitation showed stronger spatial heterogeneity
among stations indicated by the larger difference in standard
deviation and correlation. The close clustering of tempera-
ture data points indicated that the difference between differ-
ent stations in temperature patterns was small. For precip-
itation, PRISM showed a strong correlation (r > 0.9) with
GHCN-D at three stations, whereas Daymet only showed
a strong correlation at one location and all NLDAS sites
showed a relatively weak correlation (0.5< r < 0.85). For
temperature, all three meteorological forcings showed a very
strong correlation (r > 0.95) with GHCN-D, though Daymet
was slightly better than PRISM and NLDAS. Previous stud-
ies also reported similar findings at different watersheds that
Daymet and PRISM showed better agreement with ground-
based observational data than NLDAS (Muche et al., 2020),
and the temperature was more accurately represented than
precipitation (Behnke et al., 2016).

Triple collocation analysis (TCA) was performed for pre-
cipitation and temperature using three GMFs over the East
Taylor Watershed (see details in Appendix A2). Both precip-
itation and temperature showed strong spatial heterogeneity
of the noise standard error in all three GMFs. On average,
Daymet and PRISM showed less error compared to NLDAS
for both precipitation and temperature, though the temper-
ature errors in some locations of Daymet were higher than
those of PRISM and NLDAS.

3.2 ATS simulations driven by different meteorological
forcing products

To compare the effects of different GMF products on the ATS
simulations, precipitation and temperature from each GMF
were used as the primary forcing variables with the same
other variables (e.g., solar radiation, humidity) from Daymet.
To further isolate the impact of different meteorological forc-
ing variables, precipitation and temperature from each GMF
were systematically varied. For example, different precipita-
tion from each GMF were used while keeping temperature
the same in each simulation, and vice versa.

Using different precipitation and temperatures, simulated
hourly streamflow forced by Daymet (1 km, daily) showed
better performance against USGS hourly streamflow, fol-
lowed by PRISM (800 m, daily) and NLDAS (12 km, hourly)
during a 3-year simulation period (Fig. 4). At their native
resolutions, Daymet outperformed PRISM and NLDAS with
the largest KGE (0.62) and NSE (0.54) against observed
streamflow (also see the statistical summary in Table 2).
The high agreement between observed and simulated stream-
flow forced by Daymet is remarkable given that the ATS
model has not been calibrated. In general, all three mod-
els underestimated discharge (β < 1) while showing slightly
more variability (γ > 1), especially in 2018 and 2019. As ex-
pected, models using hourly NLDAS showed larger variabil-
ity (γ = 1.54) due to the highly dynamic flow variations in
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Figure 3. Taylor diagram showing the correlation coefficients and standard deviations between meteorological forcing and GHCN-D gages
(black) for (a) precipitation and (b) temperature. The azimuthal angle represents correlation, and the radial distance represents the standard
deviation. Each marker symbol represents a different GHCN-D station location.

Figure 4. Simulated hourly discharge at the watershed outlet compared to USGS hourly streamflow forced by different precipitation and
temperatures from each GMF. Also shown is the flow duration curve comparison.

simulated streamflow compared to those using daily Daymet
or PRISM. Daymet underestimated peak flows, but it showed
larger flow variability during low flows and early spring.

Not surprisingly, precipitation played a more important
role than temperature in driving the simulated watershed
responses. Using different precipitation sources alone had
similar performance compared to using both precipitation

and temperature from each GMF. In both cases, Daymet
outperformed PRISM and NLDAS in simulated streamflow
(Fig. 5). The KGE and NSE metrics from Daymet and
PRISM were much higher than those from NLDAS (Table 2).
However, using different temperature sources alone had little
effect on the simulated streamflow (Fig. 6). Both KGE and
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Figure 5. Simulated hourly discharge at the watershed outlet compared to USGS hourly streamflow forced by different precipitation from
each GMF. Also shown is the flow duration curve comparison.

Table 2. Summary of statistical metrics for evaluation of streamflow
at the watershed outlet using precipitation and/or temperature from
different meteorological forcings.

Forcing variable Source r γ β KGE NSE

Prcp and temp PRISM 0.69 1.02 0.54 0.45 0.38
Daymet 0.75 1.05 0.72 0.62 0.54
NLDAS 0.60 1.54 0.35 0.06 0.20

Prcp PRISM 0.72 1.06 0.57 0.48 0.43
Daymet 0.75 1.05 0.72 0.62 0.54
NLDAS 0.51 1.34 0.32 0.10 0.08

Temp PRISM 0.73 1.00 0.69 0.59 0.49
Daymet 0.75 1.05 0.72 0.62 0.54
NLDAS 0.72 1.18 0.75 0.58 0.46

NSE metrics were very similar among different GMFs (Ta-
ble 2).

Average SWE across the watershed showed large differ-
ences between different meteorological forcings (Fig. 7).
Daymet had the largest simulated SWE on average, while
NLDAS had the smallest simulated SWE. PRISM produced
a similar SWE pattern with Daymet, and their magnitude was
very close except for the year 2017. The accumulation of
snow started around the same time for all three meteorolog-
ical forcings, though snow disappeared early for NLDAS in
the last 2 years.

Spatially, all meteorological forcings significantly under-
estimated SWE (β ≈ 0) when compared to SWE from ASO

(Table 4), and the difference becomes larger at higher ele-
vation with more accumulated snow (Fig. 9). The large dif-
ference may be attributed to the higher spatial resolution
(50 m) used in the ASO snow survey than the spatial res-
olution of the GMF. Simulated SWE by the three models
showed a larger variability (γ > 1) than the observed SWE,
except on 7 April 2019, when variability was smaller than
the observed SWE. Interestingly, the largest variability oc-
curred on 24 May 2018 when little snow was accumulated
on the surface. Most of the time, PRISM showed a higher
correlation between simulated and observed SWE than that
from Daymet and NLDAS. In contrast, NLDAS showed the
poorest correlation (r < 0.2) with observation.

All three GMFs showed similar ET dynamics because they
used the same solar radiation from Daymet (Figs. 7 and 8).
Compared to the remote-sensed 8 d composite ET from
MODIS, all three meteorological forcings showed a consis-
tent seasonal trend with MODIS, with underestimated ET in
the spring. Additionally, the simulated 8 d composite ET by
Daymet and PRISM was higher than that from NLDAS in
the peak growing season in 2017 and 2019.

3.3 Effects of meteorological forcing spatial resolution

To evaluate the effects of spatial resolution of meteoro-
logical forcing, precipitation and temperature from differ-
ent spatial resolutions of PRISM and Daymet were used to
drive the model. Because the findings from both PRISM
and Daymet were similar, only results from PRISM were
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Figure 6. Simulated hourly discharge at the watershed outlet compared to USGS hourly streamflow forced by different temperatures from
each GMF. Also shown is the flow duration curve comparison.

summarized below (see Appendix A3 for Daymet compar-
ison in Figs. A3 and A4). As the spatial resolution became
finer, the spatial pattern of precipitation and temperature be-
came more heterogeneous and was more strongly associ-
ated with local topography, land use, and land cover. By
contrast, coarser-resolution meteorological forcing produced
more homogeneous and smoother spatial patterns with less
accuracy (Figs. A8 and A9). In addition to precipitation and
temperature, the effect of spatial resolution of solar radiation
(i.e., Srad) was tested and was found to have little impact on
watershed hydrologic variables (see Appendix A4).

The simulated discharge showed similar performance in
terms of KGE and NSE compared to the observation when
meteorological forcing spatial resolution was ≤ 1600 m (Ta-
ble 2). In fact, the KGE and NSE of 400, 800, and 1600 m
resolution were almost identical. All four resolutions showed
higher variability (γ > 1) with relatively high correlation
(r > 0.6) in simulated streamflow than the observation. The
variability became larger (γ = 1.20) and the correlation be-
came weaker (r = 0.64) as meteorological forcing spatial
resolution reached 4 km (Fig. 10). The simulated SWE and
total water storage changes were almost identical for all spa-
tial resolutions except during the snowmelt period, when the
4 km spatial resolution showed faster snowmelt in early sum-
mer across all 3 years (Fig. A10). The spatial distribution of
SWE when compared to ASO SWE showed a significantly
large bias (β ≈ 0) and thus negative KGE and NSE for all
spatial resolution at all times (Fig. 11 and Table 4). Gen-
erally, the 4 km resolution had the worst performance and

became most obvious on 24 May 2018. PRISM at 400 and
800 m resolution showed a similar spatial pattern and thus a
similar correlation with ASO SWE.

Soil moisture at the top 5 cm layer showed a similar pat-
tern when spatial resolution was ≤ 1600 m (Fig. A11). The
differences between 4 km resolution and finer resolution be-
came obvious during the snowmelt period (24 May 2018
and 10 June 2019), when soil becomes saturated. For exam-
ple, soil in the northwestern region from the 4 km resolution
was wetter on 24 May 2018, whereas soil close to the outlet
from the 4 km resolution was wetter on 10 June 2019. Simi-
larly, spatially distributed ET did not show a significant dif-
ference until meteorological forcing resolution reached 4 km
(Fig. A12).

Surface ponded depth showed very little difference be-
tween different spatial resolutions. Four locations (labeled as
1–4 in Fig. 1) were selected across the watershed to show
the ponded depth variations (Fig. 12). One was located at the
upstream branch, and the other three were located along the
Coal Creek main stem. Similarly to the watershed discharge,
ponded depth only differed when the spatial resolution was
coarsened to 4 km. The 4 km resolution had a faster reces-
sion during peak flows compared to results from other finer
resolutions, and the 4 km resolution was also less responsive
to rainfall. On average, surface ponded depth varied less than
0.2 m during peak flows.

A transect was selected running from mountain top to river
valley bottom with four selected observation locations (la-
beled as A–D in Fig. 1), and groundwater table time series
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Figure 7. Simulated hourly watershed average SWE and ET under different meteorological forcings. Also shown is the comparison between
MODIS and simulated 8 d composite ET.

was plotted in Fig. 13. In general, groundwater rose dur-
ing snowmelt (April to June) and rainfall events and fell in
the dry period (July to September). Location A was at the
mountain top, and the groundwater table was ∼ 4 m below
the land surface except during the snowmelt period, when the
groundwater table rose to the surface. Since location A was
dominated by snow and receives less rainfall, the rise in the
groundwater table was mainly due to snowmelt. Locations B
and C showed similar trends in groundwater table fluctu-
ations; however, they showed more peaks since they were
influenced by both snowmelt and rainfall. The groundwater
table at location D was mostly close to the surface except
during the dry season, when groundwater started to decline.
The 4 km resolution behaved very differently from the other
finer resolutions at location A, where the groundwater table
peaked earlier due to earlier infiltration from snow. In a dry
year in 2018, the groundwater table did not even rise during
the snowmelt period at location A. In general, the coarser the
meteorological forcing resolution, the larger the bias in pre-
cipitation and the more the groundwater table buffered from
snowmelt and rainfall.

3.4 Effects of meteorological forcing temporal
resolution

The effect of meteorological forcing (i.e., precipitation and
temperature) temporal resolution on watershed hydrologic
simulations was evaluated by using hourly, 12-hourly, and
daily PRISM datasets. All resolutions outputted hydrological
variables in an hourly timestep and were compared to hourly
observed streamflow. In addition to precipitation and tem-
perature, the effect of temporal resolution of solar radiation
(i.e., Srad) was tested. The temporal resolution of solar radia-
tion slightly changed the dynamics of streamflow, but overall
the impact on watershed hydrologic variables was negligible
(see Appendix A4).

The match between simulated and observed hourly dis-
charge in terms of KGE was better with daily resolution than
hourly and 12-hourly temporal resolution (see Fig. 14 and
Table 3). The low performance (KGE= 0.20) under hourly
resolution was mainly due to the relatively lower correlation
(r = 0.43) and higher variability (γ = 1.12) between simu-
lated and observed streamflow. This is not surprising since
hourly meteorological forcing has a more dynamic forcing
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Figure 8. Zoomed-in plot showing simulated hourly watershed average SWE, ET, and discharge under different meteorological forcings
from 1 to 29 June 2017.

pattern including hourly temperature and precipitation, and
thus it yielded a more dynamic overland flow pattern that
can be quite different from field observations. To investigate
the hydrograph in more detail, discharge time series were
zoomed into the high-flow season in 2017 (Fig. 15). It was
clear that models driven by hourly and 12-hourly PRISM
contained sub-daily flow fluctuations that would be absent
in models driven by the daily PRISM. Models driven by 12-
hourly PRISM had a weaker diurnal flow pattern in terms of
magnitude. This is because hourly PRISM retains the diurnal
signal of air temperature and thus the diurnal snowmelt pat-
tern, whereas 12-hourly PRISM had a weaker diurnal signal
due to only changing air temperature every 12 h (Fig. 15).
On the other hand, daily PRISM assumes uniform air tem-
perature throughout a day and thus produced streamflow that
was much smoother without diurnal fluctuations. In general,
discharge from the hourly PRISM peaked earlier and had a

less steep recession limb compared to that from 12-hourly
and daily PRISM.

Hourly PRISM had the largest snowmelt and ET varia-
tions, followed by 12-hourly and daily PRISM (Fig. 15).
Compared to the remote-sensed 8 d composite ET from
MODIS, the simulated 8 d composite ET forced by the dif-
ferent temporal resolution of PRISM showed a consistent
seasonal trend with MODIS (Fig. 16). However, significant
model underestimation was observed in the spring. All three
PRISM resolutions showed similar trends of seasonal snow-
pack accumulation. However, there was a large difference in
peak SWE. Hourly PRISM reached a smaller SWE peak,
and the snow melted earlier compared to 12-hourly and
daily PRISM, which might be the combined effects of faster
snowmelt and slightly larger ET.
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Figure 9. Spatial distribution of SWE under different meteorological forcings and their comparison with ASO SWE data at four different
survey times.

Figure 10. Simulated discharge at the watershed outlet compared to the USGS gage under different spatial resolutions of PRISM. Also
shown is the flow duration curve comparison.
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Figure 11. Spatial distribution of SWE under different spatial resolutions of PRISM and their comparison with ASO SWE data at four
different survey times.

Table 3. Summary of statistical metrics for evaluation of streamflow at the watershed outlet under different meteorological forcing spatial
and temporal resolutions.

Meteorological Spatial Temporal r γ β KGE NSE
forcing resolution resolution

PRISM 400 m Daily 0.70 1.01 0.53 0.44 0.38
800 m Hourly 0.43 1.12 0.45 0.20 0.07
800 m 12-hourly 0.61 1.07 0.49 0.35 0.26
800 m Daily 0.69 1.02 0.54 0.45 0.38
1600 m Daily 0.68 1.08 0.55 0.44 0.37
4000 m Daily 0.64 1.20 0.56 0.40 0.33

Daymet 400 m Daily 0.76 1.04 0.71 0.63 0.55
1 km Daily 0.75 1.05 0.72 0.62 0.54
2 km Daily 0.73 1.10 0.72 0.60 0.50
4 km Daily 0.73 1.14 0.73 0.59 0.49

NLDAS 12 km Hourly 0.60 1.54 0.35 0.06 0.20

4 Discussions

4.1 The choice of gridded meteorological forcing for
integrated watershed simulation

We compared three GMFs at their native resolution, Daymet
(daily, 1 km), PRISM (daily, 800 m), and NLDAS (hourly,
∼ 12 km), in driving watershed responses including water-
shed outlet discharge and spatially distributed variables such

as SWE and ET. Can we choose the “best” meteorologi-
cal forcing for integrated watershed modeling based on dis-
charge comparison alone? What are the strengths and weak-
nesses of each GMF?

In surface hydrologic modeling, hydrologists often judge
the performance of a numerical model by the ability to
match the streamflow at the watershed outlet (Staudinger
et al., 2019). However, streamflow alone is not good enough
to evaluate the performance in meteorological forcing be-
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Figure 12. Simulated surface ponded depth at four selected locations under different spatial resolutions of PRISM.

cause discharge at the watershed outlet has limited infor-
mation on the spatial distribution of model outputs (e.g.,
SWE). Even though simulated streamflow from Daymet has
the best match (i.e., highest KGE) against observation, the
spatially distributed SWE from Daymet has a weaker cor-
relation with the observed SWE from the ASO survey than
that from PRISM. Both Daymet and PRISM perform bet-
ter than NLDAS in simulating discharge and spatial SWE
due to their relatively fine spatial resolution. As shown in
Fig. 9, NLDAS hardly captures the spatial heterogeneity of
SWE when compared to ASO SWE. The entire watershed
area (∼ 53.2 km2) is smaller than the size of 1 pixel of the
NLDAS grid (∼ 12× 12 km or ∼ 144 km2), making the me-
teorological forcing almost homogeneous at the watershed
scale.

For a watershed simulation that usually has a mesh res-
olution< 1 km, Daymet or PRISM provides the best spa-
tial resolution available across the CONUS. However, they
do not have the complete forcing dataset that could be di-
rectly applied to watershed models without filling in the
missing dataset. Daymet has most of the forcing variables
except wind speed and longwave radiation. PRISM is miss-

ing both wind speed and solar radiation (both shortwave and
longwave radiation), which is important for calculating sur-
face energy balance and estimating ET. A common approach
is to fill in the missing variables using a different source.
For example, Mourtzinis et al. (2017) used solar radiation
from the National Aeronautics and Space Administration’s
POWER (NASA-POWER) database (12 000 km2 resolution)
combined with PRISM’s temperature and precipitation to
simulate a crop model. In our study, we used Daymet as a
source of solar radiation for PRISM, and the model was able
to simulate streamflow reasonably well (KGE= 0.45) (Ta-
ble 2) while capturing the spatial heterogeneity of distributed
variables.

On the other hand, NLDAS provides the most complete
forcing dataset with hourly resolution but comes with a spa-
tial resolution of ∼ 12 km, which is too coarse for water-
shed simulation, especially watersheds with complex terrain.
The spatial resolution may become less important as model
resolution becomes coarser, and the focus is on the system-
scale water budget. For example, NLDAS at its native res-
olution has been applied at the continental scale to study
transpiration partitioning using ParFlow-CLM at 1 km res-
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Figure 13. Simulated groundwater table at four selected locations (A–D) under different spatial resolutions of PRISM. Dashed line indicates
the surface elevation. Also, see Fig. 1 for location detail.

olution (Maxwell and Condon, 2016). Past studies have also
attempted downscaling of NLDAS to much finer spatial res-
olution (Ko et al., 2019; Pan et al., 2016). For example, Ko
et al. (2019) downscaled the meteorological forcing variables
from the 12 km resolution of NLDAS to 1 km resolution
using high-resolution terrain information at the Río Sonora
basin. There have been other attempts to merge the high spa-
tial resolution of the PRISM dataset with the NLDAS dataset,
which produced a complete forcing dataset of daily, 4 km res-
olution covering the CONUS (Abatzoglou, 2013).

Ideally, the GMF with a finer spatiotemporal resolution
while providing the most complete forcing is desirable. How-
ever, none of the three GMFs is perfect. An alternative ap-
proach is to use meteorological forcing outputted from cli-
mate models such as WRF. It has the flexibility of generat-
ing much finer spatial and temporal resolution output while
providing all available meteorological forcings. Maina et al.
(2020) used the nested-domain configuration of WRF to dy-
namically generate meteorological forcing variables at var-
ious spatial resolutions (from 0.5 to 13.5 km) for use with
ParFlow-CLM. Although forcing generated by WRF pro-

vides a viable option for meteorological input in the hydro-
logic model, it requires additional expertise and effort to set
up and run the WRF model, which is more challenging than
directly using the publicly available gridded forcing (e.g.,
Daymet).

4.2 Spatial vs. temporal resolution: which one is more
important?

Is there an optimal spatiotemporal resolution of meteorologi-
cal forcing for driving watershed simulation while producing
realistic results? Should we choose finer spatial resolution
over finer temporal resolution? Depending on the quantity of
interest and the spatial and temporal scale of the study, the
choice may differ. In this study, watershed outlet discharge
is shown to be less sensitive to both the spatial and temporal
resolution of meteorological forcing because it is an accumu-
lative quantity. The simulated discharge is almost identical
between PRISM 400, 800, and 1600 m resolution. The sim-
ulated discharge only becomes noticeably worse when the
spatial resolution of meteorological forcing is coarsened to
4000 m (or 30 % of the watershed area). Similarly, the water-
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Figure 14. Simulated hourly discharge at the watershed outlet compared to hourly USGS streamflow under different temporal resolutions of
PRISM. Also shown is the flow duration curve comparison.

shed average SWE, ET, and total water storage do not show
significant differences between different spatial resolutions
of PRISM.

The spatial resolution becomes more important if the
quantity of interests is the spatially distributed hydrologic
variables. For example, the SWE distribution under 400 and
800 m PRISM resembles more closely the ASO SWE than
results under much coarser spatial resolution. Maina et al.
(2020) also found the SWE distribution to be sensitive to the
spatial resolution of meteorological forcing, with the finer
resolution being able to accurately reproduce SWE spatial
distribution as well as total SWE volume. In addition, a
higher spatial resolution of forcing would preserve the spatial
heterogeneity of distributed variables better and may provide
better estimates of variables at point locations (e.g., SWE
at the NRCS’s Snowpack Telemetry (SNOTEL) stations and
groundwater table at wells). For example, the groundwater
table at high elevations can be quite different under different
spatial resolutions of meteorological forcing (Fig. 13).

Temporal resolution becomes more important than spa-
tial resolution when simulating storm events or flash floods
that happen within several hours, resulting in a sharp in-
crease in stream discharge (Ochoa-Rodriguez et al., 2015).
The regular, periodic streamflow fluctuations induced by sub-
daily snowmelt or ET could also impact the hyporheic ex-
change between surface water and groundwater (Loheide
and Lundquist, 2009), which in turn impacts nutrient cycling
in the stream and hyporheic zone biogeochemical processes
(Shuai et al., 2017; Song et al., 2018). By contrast, it is chal-

lenging to match the simulated variable from high tempo-
ral resolution with field observation. For example, the per-
formance in simulated discharge deteriorates when tempo-
ral resolution increases from daily to hourly using PRISM
(Fig. 14). Additionally, hourly meteorological forcing is dif-
ficult to obtain and may be subject to large bias and errors.
There are also sparse weather stations that collect hourly or
higher-frequency data. Thus it is impossible to obtain sub-
daily resolution by direct interpolation across weather sta-
tions. The current available hourly meteorological forcing is
usually disaggregated from coarse temporal resolution. For
example, the hourly NLDAS is disaggregated from NARR
3-hourly frequency. Previous studies have shown that NL-
DAS had large discrepancies towards SWE at higher eleva-
tion where lower SWE was simulated (Sheffield et al., 2003;
Maxwell and Condon, 2016). Air temperature has also been
shown to be systematically colder in winter and warmer in
the spring months compared to the observations (Pan et al.,
2003). These biases could be attributed to the ∼ 12 km spa-
tial resolution that greatly smoothed the local topographic
variability.

4.3 Limitations, implications, and transferability of the
current study

There is a lack of high-resolution observation data to com-
pare to the simulated variables. For example, the snow sur-
vey from ASO has only been conducted a total of four times
at this watershed and misses the temporal dynamics of snow
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Figure 15. Zoomed-in plots showing hourly simulated snowmelt, ET, and discharge under different temporal resolutions of PRISM in
May 2017.

depth. There is also no single SNOTEL station within the wa-
tershed that we can use to compare simulated SWE at a point
location with the observed SWE. In addition to snow, we also
do not have high-resolution ET data. Although MODIS pro-
vides an 8 d composite ET, it is relatively coarse compared to
the temporal resolution examined in the study. In the sub-
surface, there are no observed groundwater table depth or
soil moisture data that can be used for the comparison. The
remote-sensed soil moisture product (9 to 36 km resolution)
from Soil Moisture Active Passive (SMAP) is likely to be too
coarse to have any meaningful comparison.

Uncertainty in the meteorological forcing has not been
quantified. There is undoubtedly uncertainty in each GMF
that may impact the simulated watershed responses; how-
ever, this is not the focus of this study. Precipitation col-
lected from ground-based gages often has measurement un-
certainty that could lead to large uncertainty in interpolated
gridded datasets, especially in the mountainous region where

the gage network is sparse (Schreiner-McGraw and Ajami,
2020). In general, PRISM is assumed to perform better in
matching gage observation in the mountainous regions com-
pared to Daymet because of the relatively complex interpo-
lation method (Daly et al., 2008). However, PRISM does not
outperform Daymet in all gages (see Fig. 3). Further, in ar-
eas where the terrain is flat and the gage network is dense,
Daymet might perform better than, if not equally well as,
PRISM. Therefore, it is important to put the results into con-
text when comparing different meteorological forcings in a
watershed setting.

Uncertainty in model parameterization has not been inves-
tigated; however, it does not change the conclusions of this
study, as all simulations use the same set of model parame-
ters except for meteorological forcing. It is well known that
model parameters such as subsurface structure and properties
impact surface and subsurface flows and consequently ET
and water storage. As shown in this study, models using dif-
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Figure 16. Simulated watershed average SWE and ET under different temporal resolutions of PRISM. Also shown is the comparison between
MODIS and simulated 8 d composite ET.

ferent meteorological forcings may produce dramatically dif-
ferent watershed responses including streamflow. This has
important implications for model calibration, where the ob-
jective is to minimize the differences between simulated and
observed streamflow, which is true for most watershed hy-
drologic model calibration studies (Cromwell et al., 2021).
The choice of GMF affects the simulated streamflow and
in turn the optimal parameters that are calibrated using the
simulated streamflow. Elsner et al. (2014) showed that there
were substantial differences in calibrated model parameters
and simulated water balance using four different meteorolog-
ical forcings for the same watershed. As a result, the choice
of meteorological forcing plays a critical role in model cali-
bration and thus long-term planning and watershed manage-
ment using such a calibrated model. Studying the impact of
different meteorological forcings on model calibration is the
focus of our future work.

In this study, we choose Coal Creek as an illustrative ex-
ample to show the effects of meteorological forcing spa-
tiotemporal resolution on watershed simulations. The study
site has strong variations in topography and land cover,
which is an ideal site for testing heterogeneous spatial–

temporal pattern of meteorological forcing. Our conclusions
would hold for other mountainous headwater watersheds that
are dominated by snow because we did not make any site-
specific assumptions. However, additional studies are needed
to evaluate the GMF in other areas that are not dominated by
snow.

5 Conclusions

This study aimed to compare three widely available GMFs
(i.e., Daymet, PRISM and NLDAS) and evaluate the im-
pacts of spatiotemporal resolution of meteorological forcing
on simulated streamflow, ET, SWE, soil moisture, surface
ponded depth and groundwater table in a snow-dominated
mountainous watershed. The different spatial and temporal
resolutions were generated by either downscaling or upscal-
ing the native meteorological forcing resolution. The result-
ing meteorological forcing was then applied as input to drive
a fully distributed, integrated watershed model (i.e., ATS).

To evaluate the performance of meteorological forcing,
one should compare all aspects of watershed hydrologic re-
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Table 4. Summary of statistical metrics used for evaluation of spatially distributed SWE under different meteorological forcings at different
times compared to observed SWE from ASO.

Date Meteorological Spatial Temporal r γ β KGE NSE
forcing resolution resolution

31 March 2018 PRISM 400 m Daily 0.51 1.04 0.00 −0.12 −8.20
PRISM 800 m Daily 0.50 1.04 0.00 −0.12 −8.20
PRISM 1600 m Daily 0.46 0.94 0.00 −0.13 −8.20
PRISM 4000 m Daily 0.37 0.86 0.00 −0.18 −8.20
Daymet 1 km Daily 0.47 1.11 0.00 −0.14 −8.20
NLDAS 12 km Hourly 0.15 1.00 0.00 −0.31 −8.20

24 May 2018 PRISM 400 m Daily 0.55 1.53 0.00 −0.22 −0.12
PRISM 800 m Daily 0.51 1.54 0.00 −0.24 −0.12
PRISM 1600 m Daily 0.47 1.77 0.00 −0.37 −0.12
PRISM 4000 m Daily 0.28 2.92 0.00 −1.28 −0.12
Daymet 1 km Daily 0.35 3.41 0.00 −1.69 −0.12
NLDAS 12 km Hourly −0.01 1.14 0.00 −0.43 −0.12

7 April 2019 PRISM 400 m Daily 0.55 0.62 0.00 −0.16 −11.30
PRISM 800 m Daily 0.53 0.61 0.00 −0.17 −11.31
PRISM 1600 m Daily 0.50 0.57 0.00 −0.20 −11.31
PRISM 4000 m Daily 0.37 0.48 0.00 −0.29 −11.31
Daymet 1 km Daily 0.47 0.58 0.00 −0.21 −11.31
NLDAS 12 km Hourly −0.04 0.49 0.00 −0.53 −11.31

10 June 2019 PRISM 400 m Daily 0.76 1.62 0.00 −0.20 −1.16
PRISM 800 m Daily 0.71 1.61 0.00 −0.21 −1.16
PRISM 1600 m Daily 0.66 1.48 0.00 −0.16 −1.16
PRISM 4000 m Daily 0.50 0.82 0.00 −0.13 −1.16
Daymet 1 km Daily 0.73 1.23 0.00 −0.06 −1.16
NLDAS 12 km Hourly −0.13 1.75 0.00 −0.69 −1.16

sponses. Daymet has the best match in simulated stream-
flow; however, the simulated spatially distributed SWE has
a weaker correlation with the observed ASO SWE compared
to that from PRISM. NLDAS performs worst in both sim-
ulated streamflow and spatially distributed SWE due to its
coarsest grid resolution. By systematically varying precipita-
tion and temperature from each GMF, streamflow is found to
be more sensitive to precipitation than temperature. Overall,
NLDAS provides the most comprehensive dataset with the
highest temporal resolution (hourly) but comes with a spatial
resolution of ∼ 12 km that is too coarse for watershed sim-
ulation, especially areas with complex terrain. By contrast,
both PRISM (800 m) and Daymet (1 km) provide finer spa-
tial resolution, capable of simulating watershed hydrological
variables at high resolution, though PRISM is missing the
important solar radiation. Using precipitation and tempera-
ture from PRISM along with solar radiation from Daymet
provides an alternative to driving watershed simulation with
relatively high accuracy.

Using different spatial resolutions of PRISM ranging from
400 m to 4 km, the simulated discharge shows a minor dif-
ference when spatial resolution is < 4 km (or the grid area
is <∼ 30 % of the watershed area). Similarly, the water-

shed average SWE, ET, and total water storage do not show
significant differences between different spatial resolutions.
Spatial resolution becomes more important when simulating
spatially distributed hydrologic variables such as SWE and
groundwater table.

Using a different temporal resolution of PRISM (hourly to
daily), the simulated discharge showed better performance
with daily resolution compared to that forced by 12-hourly
and hourly resolution. However, models forced by the sub-
daily resolution preserve the dynamic watershed responses
(e.g., diurnal fluctuation of streamflow) that are absent in re-
sults forced by daily resolution. This may have important im-
plications for watershed biogeochemical reactions that often
happen at sub-daily timescales.

It is difficult to choose the “best” meteorological forc-
ing dataset because each dataset has its strengths and weak-
nesses, and what is best depends on the quantity of inter-
est and its spatial and temporal scale. Ideally, the GMF with
a finer spatiotemporal resolution while providing the most
complete forcing is desirable. An alternative approach is to
use meteorological forcing outputted from climate models
such as WRF, which has the flexibility of generating much
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finer spatial and temporal resolution output while providing
all available meteorological forcing datasets.

The choice of GMF affects the simulated streamflow and
thus has an important implication for model calibration when
the objective is to minimize the differences between simu-
lated and observed streamflow. The findings of the effects of
meteorological forcing spatiotemporal resolution on water-
shed simulations could be transferable to other mountainous
watersheds that are snow-dominated.

Appendix A

A1 Calendar day definition used in the meteorological
datasets

Table A1. Calendar day as defined in meteorological datasets and USGS gage.

Meteorological Calendar day in local Calendar day in UTC
forcing time zone (UTC−05)

PRISM 07:00D−1 to 06:59D 12:00D−1 to 11:59D
Daymet v4 07:00D to 06:59D+1 12:00D to 11:59D+1

NLDAS-2 19:00D−1 to 18:59D 00:00D to 23:59D+1

USGS gage 00:00 to 23:59D 05:00D to 04:59D+1

Abbreviations: D−1: previous day; D: current day; D+1: next day.

Figure A1. TCA results for precipitation data in the three GMFs. The color map shows the standard error (the lower the better) for each pixel
region.

Figure A2. TCA results for temperature data in the three GMFs. The color map shows the standard error (the lower the better) for each pixel
region.
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A2 Triple collocation analysis (TCA) of meteorological
forcing

TCA was used to characterize the uncertainties (e.g., error
variance and signal-to-noise ratio) in each of the GMFs with-
out knowing the ground truth. Here, we applied TCA to
the precipitation and temperature product, respectively, us-
ing the three GMFs over the larger East Taylor watershed.
The PRISM and Daymet products have been upscaled to a
12 km grid to be consistent with the spatial resolution of the
NLDAS product. The aggregated daily NLDAS was used to
be consistent with the temporal resolution of PRISM and
Daymet. The major assumption for the TCA is that the error
models are linear and independent between different sources,
which is not appropriate for precipitation data (Kratzert et al.,
2021). Instead, we chose a multiplicative error model for the
precipitation source following the methodology of Alemo-
hammad et al. (2015). Because log-transformed precipita-
tion values were used in the multiplicative model, the daily
precipitation was temporally aggregated to weekly values to
avoid zero precipitation values. As a result, the total number
of sample sizes across the temporal domain was significantly
reduced, which could pose a challenge for the TCA when
the sample size was small. The missing values in Figs. A1
and A2 (white pixels) were the result of having too few sam-
ples.

A3 Comparison of model outputs from different
spatial resolutions of Daymet

Figure A3. Simulated discharge at the watershed outlet compared to the USGS gage under different spatial resolutions of Daymet. Also
shown is the flow duration curve comparison.
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Figure A4. Simulated watershed average SWE and ET under different spatial resolutions of Daymet.

Figure A5. Simulated watershed outlet discharge under different spatial resolutions of Srad. Also shown is the flow duration curve compari-
son.
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A4 Impact of spatial and temporal resolution of solar
radiation

The effect of solar radiation (i.e., Srad) spatial resolution
was tested using Daymet shortwave radiation at 1, 2, and
4 km resolution while keeping the other forcing variables
the same. The effect of solar radiation temporal resolution
was tested using NLDAS shortwave radiation at hourly, 12-
hourly and daily resolution while keeping other forcings the
same. By comparing ET and streamflow, the spatial reso-
lution of shortwave radiation has little impact on ET and
streamflow, whereas the temporal resolution of shortwave ra-
diation slightly changed the dynamics of ET and streamflow.
Overall watershed responses are less sensitive to solar radia-
tion than precipitation and temperature.

Figure A6. Simulated watershed outlet discharge under different temporal resolutions of Srad. Also shown is the flow duration curve com-
parison.
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Figure A7. Zoomed-in plots showing simulated SWE, ET, and watershed outlet discharge under different temporal resolutions of Srad.
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A5 Additional results from PRISM comparison under
different spatial resolution

Figure A8. Spatial distribution of precipitation under different spatial resolutions of PRISM on 27 April 2019.

Figure A9. Spatial distribution of air temperature under different spatial resolutions of PRISM on 27 April 2019.
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Figure A10. Simulated watershed average SWE and changes in total water storage under different spatial resolutions of PRISM.

Figure A11. Spatial distribution of soil moisture at land surface under different spatial resolutions of PRISM at four different times.
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Figure A12. Spatial distribution of ET under different spatial resolutions of PRISM at four different times.

Code and data availability. The datasets and scripts used in this
study can be found on ESS-Dive: https://doi.org/10.15485/1861432
(Shuai et al., 2022). The downscaled PRISM/Daymet at 400 m reso-
lution is available at https://doi.org/10.15485/1822259 (Mital et al.,
2021).
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