Articles | Volume 26, issue 6
https://doi.org/10.5194/hess-26-1631-2022
https://doi.org/10.5194/hess-26-1631-2022
Research article
 | 
25 Mar 2022
Research article |  | 25 Mar 2022

Improving radar-based rainfall nowcasting by a nearest-neighbour approach – Part 1: Storm characteristics

Bora Shehu and Uwe Haberlandt

Related authors

Flood frequency analysis using mean daily flows vs. instantaneous peak flows
Anne Bartens, Bora Shehu, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 28, 1687–1709, https://doi.org/10.5194/hess-28-1687-2024,https://doi.org/10.5194/hess-28-1687-2024, 2024
Short summary
Uncertainty estimation of regionalised depth–duration–frequency curves in Germany
Bora Shehu and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 2075–2097, https://doi.org/10.5194/hess-27-2075-2023,https://doi.org/10.5194/hess-27-2075-2023, 2023
Short summary
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023,https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Comparison of rainfall generators with regionalisation for the estimation of rainfall erosivity at ungauged sites
Ross Pidoto, Nejc Bezak, Hannes Müller-Thomy, Bora Shehu, Ana Claudia Callau-Beyer, Katarina Zabret, and Uwe Haberlandt
Earth Surf. Dynam., 10, 851–863, https://doi.org/10.5194/esurf-10-851-2022,https://doi.org/10.5194/esurf-10-851-2022, 2022
Short summary

Related subject area

Subject: Urban Hydrology | Techniques and Approaches: Stochastic approaches
The role of storm scale, position and movement in controlling urban flood response
Marie-Claire ten Veldhuis, Zhengzheng Zhou, Long Yang, Shuguang Liu, and James Smith
Hydrol. Earth Syst. Sci., 22, 417–436, https://doi.org/10.5194/hess-22-417-2018,https://doi.org/10.5194/hess-22-417-2018, 2018
Short summary
Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series
Søren Thorndahl, Aske Korup Andersen, and Anders Badsberg Larsen
Hydrol. Earth Syst. Sci., 21, 4433–4448, https://doi.org/10.5194/hess-21-4433-2017,https://doi.org/10.5194/hess-21-4433-2017, 2017
Short summary
Statistical analysis of hydrological response in urbanising catchments based on adaptive sampling using inter-amount times
Marie-Claire ten Veldhuis and Marc Schleiss
Hydrol. Earth Syst. Sci., 21, 1991–2013, https://doi.org/10.5194/hess-21-1991-2017,https://doi.org/10.5194/hess-21-1991-2017, 2017
Short summary
Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017,https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?
Hossein Tabari, Rozemien De Troch, Olivier Giot, Rafiq Hamdi, Piet Termonia, Sajjad Saeed, Erwan Brisson, Nicole Van Lipzig, and Patrick Willems
Hydrol. Earth Syst. Sci., 20, 3843–3857, https://doi.org/10.5194/hess-20-3843-2016,https://doi.org/10.5194/hess-20-3843-2016, 2016

Cited articles

Ayzel, G., Scheffer, T., and Heistermann, M.: RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting, Geosci. Model Dev., 13, 2631–2644, https://doi.org/10.5194/gmd-13-2631-2020, 2020. 
Bartels, H., Weigl, E., Reich, T., Lang, P., Wagner, A., Kohler, O., Gerlach, N., and MeteoSolutions GmbH: Projekt RADOLAN – Routineverfahren zur Online-Aneichung der Radarniederschlagsdaten mit Hilfe von automatischen Bodenniederschlagsstationen (Ombrometer), Zusammenfassender Abschlussbericht für die Projektlaufzeit von 1997 bis 2004, http://dwd.de (last access: 25 February 2022)​​​​​​​, 2004. 
Berenguer, M., Surcel, M., Zawadzki, I., Xue, M., and Kong, F.: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part II: Intercomparison among numerical models and with Nowcasting, Mon. Weather Rev., 140, 2689–2705, https://doi.org/10.1175/MWR-D-11-00181.1, 2012. 
Berndt, C., Rabiei, E., and Haberlandt, U.: Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios, J. Hydrol., 508, 88–101, https://doi.org/10.1016/j.jhydrol.2013.10.028, 2014. 
Berne, A., Delrieu, G., Creutin, J. D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, https://doi.org/10.1016/S0022-1694(04)00363-4, 2004. 
Download
Short summary
In this paper we investigate whether similar storms behave similarly and whether the information obtained from past similar storms can improve storm nowcast based on radar data. Here a nearest-neighbour approach is employed to first identify similar storms and later to issue either a single or an ensemble nowcast based on k most similar past storms. The results indicate that the information obtained from similar storms can reduce the errors considerably, especially for convective storm nowcast.