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Abstract. The nowcast of rainfall storms at fine temporal
and spatial resolutions is quite challenging due to the un-
predictable nature of rainfall at such scales. Typically, rain-
fall storms are recognized by weather radar and extrapolated
in the future by the Lagrangian persistence. However, storm
evolution is much more dynamic and complex than the La-
grangian persistence, leading to short forecast horizons, es-
pecially for convective events. Thus, the aim of this paper is
to investigate the improvement that past similar storms can
introduce to the object-oriented radar-based nowcast. Here
we propose a nearest-neighbour approach that measures first
the similarity between the “to-be-nowcasted” storm and past
observed storms and later uses the behaviour of the past most
similar storms to issue either a single nowcast (by averaging
the 4 most similar storm responses) or an ensemble now-
cast (by considering the 30 most similar storm responses).
Three questions are tackled here. (i) What features should
be used to describe storms in order to check for similar-
ity? (ii) How should similarity between past storms be mea-
sured? (iii) Is this similarity useful for object-oriented now-
cast? For this purpose, individual storms from 110 events in
the period 2000–2018 recognized within the Hanover Radar
Range (R ∼ 115 km2), Germany, are used as a basis for in-
vestigation. A “leave-one-event-out” cross-validation is em-
ployed to test the nearest-neighbour approach for the predic-
tion of the area, mean intensity, the x and y velocity com-
ponents, and the total lifetime of the to-be-nowcasted storm
for lead times from + 5 min up to + 3 h. Prior to the applica-
tion, two importance analysis methods (Pearson correlation
and partial information correlation) are employed to iden-
tify the most important predictors. The results indicate that
most of the storms behave similarly, and the knowledge ob-
tained from such similar past storms helps to capture better

the storm dissipation and improves the nowcast compared to
the Lagrangian persistence, especially for convective events
(storms shorter than 3 h) and longer lead times (from 1 to
3 h). The main advantage of the nearest-neighbour approach
is seen when applied in a probabilistic way (with the 30 clos-
est neighbours as ensembles) rather than in a deterministic
way (averaging the response from the four closest neigh-
bours). The probabilistic approach seems promising, espe-
cially for convective storms, and it can be further improved
by either increasing the sample size, employing more suit-
able methods for the predictor identification, or selecting
physical predictors.

1 Introduction

Urban pluvial floods are caused by short, local, and in-
tense rainfall convective storms that overcome rapidly the
drainage capacity of the sewer network and lead to surface
inundations. These types of floods are becoming more rele-
vant with time due to the expansion of urban areas world-
wide (Jacobson, 2011; United Nations, 2018) and the po-
tential of such storms becoming more extreme under the
changing global climate (Van Dijk et al., 2014). Because
of the high economical and even human losses associated
with these floods, modelling and forecasting becomes cru-
cial for impact-based early warnings (i.e. July 2008 in Dort-
mund, Grünewald, 2009, and August 2008 in Tokyo, Kato
and Maki, 2009). However, one of the main challenges in
urban pluvial flood forecasting remains the accurate estima-
tion of rainfall intensities at very fine scales. Since the ur-
ban area responds quickly and locally to the rainfall (due
to the sealed surfaces and the artificial deviation of water-
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courses), the quantitative precipitation forecasts (QPFs) fed
into the urban models should be provided at very fine tem-
poral (1–5 min) and spatial (100 m2–1 km2) scales (Berne et
al., 2004). The numerical weather prediction (NWP) models
are typically used in hydrology for weather forecast to sev-
eral days ahead; nevertheless, they are not suitable for urban
modelling as they still cannot produce reliable and accurate
intensities for spatial scales smaller than 10 km2 and tempo-
ral time steps shorter than an hour (Kato et al., 2017; Surcel
et al., 2015). Ground rainfall measurements (rain gauges) are
considered the true observation of rainfall, but they are also
not adequate for QPFs because, due to the sparsity of the
existing rain-gauge networks, they cannot capture the spa-
tial structure of rainfall. Therefore, the only product useful in
providing QPFs for urban pluvial floods remains the weather
radar. The weather radar can measure indirectly the rainfall
intensities at high spatial (∼ 1 km2) and temporal (∼ 5 min)
resolutions by capturing the reflected energy from the water
droplets in the atmosphere. The rainfall structures and their
evolution in time and space can be easily identified by the
radar and hence serve as a basis for issuing QPFs at different
forecast horizons. One of the main drawbacks of radar-based
forecast is that a rainfall structure has to be first identified in
order to be extrapolated in the future. In other words, rain-
fall cannot be predicted before it has started anywhere in the
region: only the movement can be predicted. As already dis-
cussed in Bowler et al. (2006) and Jensen et al. (2015), these
initialization errors cause the radar forecast to be used only
for short forecast horizons (up to 3 h), and that is why they
are typically referred to as nowcasts. For longer lead times
a blending between NWP and radar-based nowcasts should
be used instead (Codo and Rico-Ramirez, 2018; Foresti et
al., 2016; Jasper-Tönnies et al., 2018). Nonetheless, for short
forecast horizons up to 2–3 h, the radar nowcast remains the
best product for pluvial flood simulations as it outperforms
the NWP one (Berenguer et al., 2012; Jensen et al., 2015;
Lin et al., 2005; Zahraei et al., 2012).

Two approaches can be distinguished in the radar-based
QPFs depending on how the rainfall structures are identi-
fied, tracked, and extrapolated into the future: object-oriented
nowcasting (herein referred to as “object-based” to avoid
confusion with the programming term) and field-based now-
casting. The object-based nowcast treats rainfall structures as
objects: each object is regarded as a storm and is defined as
a set of radar grid cells that moves together as a unit (Dixon
and Wiener, 1993). The field-based approach considers the
rainfall to be a continuous field inside a given domain and,
through methods like optical flow, tracks and extrapolates
how the intensity moves from one pixel to another inside this
domain (Ruzanski et al., 2011; Zahraei et al., 2012). Con-
vective storms have been proven to have a unique move-
ment from nearby storms (Moseley et al., 2013) and thus
are thought to be better nowcasted with an object-based ap-
proach (Kyznarová and Novák, 2009). On the other hand,
the field-based approach with an optical flow solution tracks

and extrapolates rainfall structures inside a region together
as a unit with a constant velocity (Lucas and Kanade, 1981)
and is considered more suitable for major-scale events, i.e.
stratiform storms, as they are widespread in the radar im-
age and exhibit more uniform movements (Han et al., 2009).
Even though the field-based approach has gained popularity
recently (Ayzel et al., 2020; Imhoff et al., 2020), it still has
trouble nowcasting convective storms. Thus, the focus in this
study is on object-based nowcasts as they are more conve-
nient for convective storms that typically cause urban pluvial
floods.

Figure 1 illustrates the three main steps performed in an
object-based nowcast: (a) first the storm is identified – a
group of grid cells with intensity higher than a threshold is
recognized in the radar image at time t0, (b) the storm identi-
fied is then tracked for the time t0+1t (where1t is the tem-
poral resolution of the radar data) and velocities are assigned
from consecutive storm objects, and finally (c) the storm as
lastly observed at time t (when the nowcast is issued) is ex-
trapolated at a specific lead time (the time in the future when
the forecast is needed) t+LT, with the last observed velocity
vector. This is a linear extrapolation of the storm structure in
the future considering the spatial structure and the movement
of the storm to be constant in time – also referred to as La-
grangian persistence (Germann et al., 2006). Applications of
such storm-based nowcasting are common in the literature,
like TITAN, HyRaTrac, or Konrad (Han et al., 2009; Hand,
1996; Krämer, 2008; Lang, 2001; Pierce et al., 2004).

Apart from the initialization errors mentioned before,
other error sources in the object-based nowcast can be at-
tributed to storm identification, storm tracking, and La-
grangian extrapolation (Foresti and Seed, 2015; Pierce et al.,
2012; Rossi et al., 2015). Many works have already been con-
ducted to investigate the role of different intensity thresholds
in the storm identification or of different storm-tracking al-
gorithms in the nowcasting results (Goudenhoofdt and De-
lobbe, 2013; Han et al., 2009; Hou and Wang, 2017; Jung and
Lee, 2015; Kober and Tafferner, 2009). Very-high-intensity
thresholds may be suitable for convective storms but can
cause false splitting of the storms and can affect negatively
the tracking algorithm. Thus, one has to be careful when
adjusting the intensity threshold dynamically over the radar
field and type of storm. A storm-tracking algorithm can be
improved if certain relationships are learned from past ob-
served datasets (like a fuzzy approach in Jung and Lee, 2015,
or a tree-based structure in Hou and Wang, 2017), but there is
still a limit that the tracking improvement cannot surpass due
to the implementation of the Lagrangian persistence (Hou
and Wang, 2017). These errors due to the Lagrangian per-
sistence are particularly high for convective events at longer
lead times (past 1 h) as the majority of convective storms
dissipate within 60 min (Goudenhoofdt and Delobbe, 2013;
Wilson et al., 1998). At these lead times, the persistence
fails to predict the dissipation of these storm cells, while for
shorter lead times it fails to represent the growing/decaying
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Figure 1. The main steps of an object-based radar nowcast. Blue indicates the current state of the storm at any time t , grey indicates the past
states of the storm (at t0+1t), and green indicates the future states of the storm (t0+LT) (Shehu, 2020).

rate and the changing movement of a storm cell (Germann
et al., 2006). For stratiform events, since they are more per-
sistent in nature, Lagrangian persistence can give reliable re-
sults up to 2 or 3 h lead time (Krämer, 2008). Nevertheless,
studies have found that, for fine spatial (1 km2) and temporal
(5 min) scales, the Lagrangian persistence can yield reliable
results up to 20–30 min lead time, which is also known in the
literature as the predictability limit of rainfall at such scales
(Grecu and Krajewski, 2000; Kato et al., 2017; Ruzanski et
al., 2011). In object-based radar nowcasting, this predictabil-
ity limit can be extended up to 1 h for stratiform events and up
to 30–45 min for convective events if a better radar product
(merged with rain-gauge data) is fed into the nowcast model
(Shehu and Haberlandt, 2021). Past these lead times, the er-
rors due to the growth/decay and dissipation of the storms
dominate.

The predictability of convective storms can be extended
if, instead of the Lagrangian persistence, one estimates these
non-linear processes (growth/decay/dissipation) by utilizing
storm life characteristics analysed from past observations
(Goudenhoofdt and Delobbe, 2013; Zawadzki, 1973). For
instance, Kyznarová and Novák (2009) used the CellTrack
algorithm to derive life cycle characteristics of convective
storms and observed that there is a dependency between
storm area, maximum intensity, life phase, and height of the
0 ◦C isotherm level. Similar results were also found by Mose-
ley et al. (2013), who concluded that convective storms show
a clear life cycle with the peak occurring at one-third of total
storm life, a strong dependency on the temperature, and in-
creasing average intensity with longer durations. In the case
of extreme convective storms, earlier peaks are more ob-
vious, causing a steeper increase to maximum intensity. A
later study by Moseley et al. (2019) found that the longest
and most intense storms were expected in the late afternoon
hours in Germany. Thus, it is to be expected that an exten-
sive observation of past storm behaviours can be very use-
ful in creating and establishing new nowcasting rules (Wil-
son et al., 2010) that can outperform the Lagrangian per-
sistence. An implementation of such learning from previous
observed storms (with focus only on the object-based now-
cast and not the field-based one) is for instance shown by

Hou and Wang (2017), where a fuzzy classification scheme
was implemented to improve the tracking and matching of
storms, which resulted in an improved nowcast, and Zahraei
et al. (2013), where a self-organizing-map (SOM) algo-
rithm was used to predict the initialization and dissipation of
storms at coarse scales, extending the predictability of storms
by 20 %. These studies suggest that past observed relation-
ships may be useful in extending the predictability limit of
the convective storms. In this context, a k nearest-neighbour
method (k-NN) may be developed at the storm scale and
used to first recognize similar storms in the past and then
assign their behaviours to the “to-be-nowcasted” storm. The
nearest-neighbour method has been used in the field of hy-
drology, mainly for classification, regression, or resampling
purposes (e.g. Lall and Sharma, 1996), but there are some ex-
amples of prediction as well (Galeati, 1990). The assumption
of this method is that similar events are described by similar
predictors, and if one identifies the predictors successfully,
similar events that behave similarly can be identified. For a
new event, the respective response is then obtained by aver-
aging the responses of past k – the most similar storms. The
k value can be optimized by minimizing a given cost func-
tion. Because of the averaging, the response obtained will be
a new one, thus satisfying the condition that nature does not
repeat itself, but nevertheless it is confined within the lim-
its of the observed events (and therefore is unable to predict
extreme behaviours outside of the observed range).

Similar approaches are implemented in field-based now-
cast (referred to as analogue events), where past simi-
lar radar fields are selected based on weather conditions
and radar characteristics, i.e. in the NORA nowcast by
Panziera et al. (2011) mainly for orographic rainfall or in the
multi-scaled analogue nowcast model by Zou et al. (2020).
Panziera et al. (2011) showed that there is a strong depen-
dency between air-mass stability, wind speed and direction,
and the rainfall patterns observed from the radar data and that
the NORA nowcast can improve the hourly nowcasts of oro-
graphic rain up to 1 h when compared to Eulerian persistence
and up to 4 h when compared to the COSMO2 NWP. Im-
provement of predictability through a multi-scaled analogue
nowcast was also reported by Zou et al. (2020), which identi-
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fied neighbours first by accounting for similar meteorological
conditions and then the spatial information from radar data.
However, both of these studies show the applicability of the
method to rainfall types that tend to repeat the rainfall pat-
terns, i.e. the orographic forcing in the case of Panziera et
al. (2011) and winter stratiform events in the case of Zou et
al. (2020). So far, to the authors’ knowledge, such application
of the k-NN has not been applied for convective events. This
application seems reasonable as an extension of the object-
based radar nowcast in order to treat each convective storm
independently. It can be used instead of the Lagrangian per-
sistence in step 3 in Fig. 1c for the extrapolation of rainfall
storms into the future. Moreover, the benefit of the k-NN ap-
plication is that one can either give a single or an ensemble
nowcast; since k neighbours can be selected as similar to a
storm at hand, a probability based on the similarity rank can
be issued at each of the past storms, thus providing an ensem-
ble of responses which are more preferred compared to the
deterministic nowcast due to the high uncertainty associated
with rainfall predictions at such fine scales (Germann and
Zawadzki, 2004). Thus, it is the aim of this study to inves-
tigate the suitability of the k-NN application for substituting
the Lagrangian persistence in the nowcasting of mainly con-
vective events that have the potential to cause urban pluvial
floods.

We would like to achieve this by first investigating whether
a k-NN is able to nowcast successfully storm characteristics
like area, intensity, movement, and total lifetime for differ-
ent life cycles and lead times. Based on the observed de-
pendency of the storm characteristics on the life cycle, it
would be interesting to see whether the morphological fea-
tures are enough to describe the evolution of the convective
storms. Therefore, the focus is here only on the features rec-
ognized by the radar data, and further works will also in-
clude the use of meteorological factors. To reach our aim,
the suitability of the k-NN approach is studied as an exten-
sion of the existing object-based nowcast algorithm HyRa-
Trac developed by Krämer (2008). Before such an applica-
tion, questions that arise are (I) which features are more im-
portant when describing a storm, (II) how to evaluate simi-
larity between storms, and (III) how to use their information
for nowcasting the storm at hand. The paper is organized as
follows: first, in Sect. 2 the study area is described, followed
by the structure of the k-NN method in Sect. 3.1, where the
generation of the storm database is discussed in Sect. 3.1.1,
the predictors selected and target variables in Sect. 3.1.2, the
methods used for predictor identification in Sect. 3.1.3, and
different applications of the k-NN in Sect. 3.1.4. The opti-
mization and the performance criteria are shown in Sect. 3.2,
followed by the results in Sect. 4 separated into predictor
influence (Sect. 4.1), deterministic k-NN (Sect. 4.2), prob-
abilistic k-NN performance (Sect. 4.3), and the nowcasting
of unmatched storms (Sect. 4.4). Finally, the study is ended
with conclusions and an outlook in Sect. 5.

2 Study area and data

The study area is located in northern Germany and lies within
the Hanover Radar Range as illustrated in Fig. 2. The radar
station is situated at Hanover Airport, and it covers an area
with a radius of 115 km. The Hanover radar data are C-band
data (single-polarization) provided by the German Weather
Service (DWD) and measure the reflectivity at an azimuth
angle of 1◦ and at 5 min scans (Winterrath et al., 2012).
The reflectivity is converted to intensity according to the
Marshall–Palmer relationship with the coefficients a = 256
and b = 1.42 (Bartels et al., 2004). The radar data are cor-
rected from the static clutters and erroneous beams and then
converted to a Cartesian coordinate system (1 km2 and 5 min)
as described in Berndt et al. (2014), while the rain gauges
measure the rainfall intensities at 1 min temporal resolution
but are aggregated to 5 min time steps. Additionally, follow-
ing the results from Shehu and Haberlandt (2021), a condi-
tional merging between the radar data and 100 rain-gauge
recordings (see Fig. 2b) with the radar range at 5 min time
steps is performed. The conditional merging aims to improve
the kriging interpolation of the gauge recordings by adding
the spatial variability and maintaining the storm structures as
recognized by the radar data. In case a radar image is miss-
ing, the kriging interpolation of the gauge recordings is taken
instead.

The period from 2000 to 2018 is used as a basis for this
investigation, from which 110 events with different charac-
teristics were extracted (see Shehu and Haberlandt, 2021, or
Shehu, 2020). These events were selected for urban flood
purposes and contain mainly convective events and few strat-
iform ones. Here, rainfall events refer to a time period when
rainfall has been observed inside the radar range and at least
one rain gauge has registered an extreme rainfall volume (re-
turn period higher than 5 years) for durations varying from
5 min to 1 d. The start and the end of the rainfall event are
determined when areal mean radar intensity is higher/lower
than 0.05 mm for more than 4 h. Within a rainfall event many
rainfall storms, at different times and locations, can be rec-
ognized. Figure 3a shows a simple illustration to distinguish
between the rainfall event and rainfall storm concepts em-
ployed in this study.

3 Methods

3.1 Developing the k-NN model

3.1.1 Generating the storm database

Each of the selected events contains many storms, whose
identification and tracking were performed on the basis of the
HyRaTrac algorithm in the hindcast mode (Krämer, 2008;
Schellart et al., 2014). A storm is initialized if a group of
spatially connected radar grid cells (>64) has a reflectivity
higher than Z = 20 dBz, while storms are recognized as con-
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Figure 2. The location of the study area (a) within Germany and (b) with the corresponding elevation and boundaries and with the available
recording rain gauges (purple) and radar station (red). “DEM” is short for “digital elevation model” (adapted from Shehu and Haberlandt,
2021).

vective if a group of bigger than 16 radar grid cells has an
intensity higher than 25 dBz and as stratiform if a group of
bigger than 128 radar grid cells has an intensity higher than
20 dBz. Typically, higher values (40 dBz) are used to identify
the core of convective storms (as in E-Titan), but to avoid
false splitting of convective storms and to test the method-
ology on all types of storms, these identification thresholds
were kept low (also following the study of Moseley et al.,
2013). Once storms at different time steps are recognized,
they are matched as the evolution of a single storm if the
centre of intensity of a storm at t = 0 falls within the bound-
ary box of the storm at t − 5 min. The tracking of indi-
vidual storms in consecutive images is done by the cross-
correlation optimization between the last two images (t = 0
and t−5 min), and local displacement vectors for each storm
are calculated. In case a storm is just recognized (the storm
does not yet have a previous history), then global displace-
ment vectors based on cross-correlation of the entire radar
image are assigned to them. It is usually the case that two
storms merge together at a certain time or that a single storm
splits between several daughter storms. The splitting and
merging of the storms is considered here if two criteria are
met: (a) the minimum distance between the storms that have
split or merged is smaller than the perimeter of the merged
or currently splitting storm and (b) the position of the centre
of intensity of former/latter storms is within the boundaries
of the latter/former storm.

Thus, a dataset with several types of storms is built and
saved. The storms are saved with an ID based on the starting
time and location, and for each time step of the storm evo-

lution the spatial information is saved and various features
are calculated. Here the features computed from the spatial
information of the rainfall inside the storm boundaries at a
given time step (in 5 min) of a storm’s life are referred to as
the “state” of the storm. A storm that has been observed for
15 min consists of three “states”, each occurring at a 5 min
time step. For each of the storm states an ellipsoid is fitted
to the intensities in order to calculate the major and minor
axes and the orientation angle of the major axis. This storm
database is the basis for developing the k-NN method and for
investigating the similarity between storms. Some character-
istics of the identified storms, like duration (or also total life-
time of the storm), mean area, maximum intensity, number of
splits/merges, local velocity components, and ellipsoidal fea-
tures, are shown in Fig. 4. These storm characteristics were
obtained by a hindcast analysis run of all 110 events with the
HyRaTrac algorithm, which resulted in around 5200 storms.
The local velocities in the x and y directions are obtained
by a cross-correlation optimization within the storm bound-
ary. The life of the storm is then the lifetime of the radar pixel
group as dictated by the threshold used to recognize them and
the tracking algorithm that decides whether the same storm
is observed at continuous time steps. For more information
about the tracking and identification algorithm, the reader is
directed to Krämer (2008).

As seen from the number of storms for each duration in
Fig. 4, the unmatched storm cells make up the majority of
the storms recognized. These are storms that last just 5 min
(one time step), as the algorithm fails to track them at consec-
utive time steps. These “storms” can either be dynamic clut-
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Figure 3. Illustration of concepts and workflows in this study. (a) An event contains many rainfall storms inside the radar range which are
tracked and nowcasted: the dashed grey lines indicate the movements of storms in space and time within the radar event and the event time
span. (b) The “leave-one-out-event cross-validation” – the storms of the event of interest are removed from the past database, and the nowcast
of these storms is issued based on the past database. This process is repeated 110 times (once for each event). (c) The workflow implemented
here for the optimization and application of the k-NN approach.

Figure 4. Different properties of the storms recognized from 110 events separated into six groups according to their duration (shown in
different shades of blue).
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ter from the radar measurement, as they are characterized by
small areas, circular shapes (small ratios of minor and ma-
jor axes), and very high velocities, or artefacts created by
low-intensity thresholds used for the storm identification, or
finally produced by the non-representativeness of the volume
captured by the radar station. Another thing to keep in mind
is that merged radars are fed to the algorithm for storm recog-
nition, and this affects the storm structures, particularly when
the radar data are missing. In such a case, the ordinary krig-
ing interpolation of rain gauges is given as the input, which
is well known to smoothen the spatial distribution of rainfall
and hence result in a short storm characterized by a very large
area. Since the unmatched storms can either be dynamic clut-
ter or artefacts, they are left outside of the k-NN application.
Nonetheless, they are treated briefly in Sect. 4.5.

Apart from the unmatched storms, the majority of the re-
maining storms are of a convective nature: storms with short
duration (shorter than 6 h), high intensity, and low areal cov-
erage. Here two types of convective storms are distinguished:
local convective, with very low coverage (on average lower
than 1000 km2) and low intensity (on average ∼ 5 mm h−1),
and mesoscale convective, which are responsible for floods
(with intensity up to 100 mm h−1 or more) and have a larger
coverage (on average lower than 5000 km2). The stratiform
storms characterized by large areas, long durations, and low
intensities as well as meso-γ -scale convective events with
durations of up to 6 h are not very well represented by the
dataset, as only a few of them are present in the selected
events (circa 20 and 50 storms respectively). Therefore, it
is to be expected that the k-NN approach will not yield
very good results for such storms due to the low represen-
tativeness. From the characteristics of the storms illustrated
in Fig. 4, it can be seen that for stratiform storms that last
longer than 12 h the variance of the characteristics is quite
low (when compared to the rest of the storms), which can
be attributed either to the persistence of such storms or to
the low representativeness in the database. Even though the
data size for stratiform storms is quite small, the k-NN may
still deliver good results as characteristics of such storms are
more similar. Nevertheless, the stratiform storms are typi-
cally nowcasted well by the Lagrangian persistence (espe-
cially by a field-oriented approach), as they are widespread
and persistent. Hence the value of the k-NN is primarily seen
for convective storms and not for stratiform ones.

3.1.2 Selecting features for similarity and target
variables

At first storms are treated like objects that manifest certain
features (predictors) like area, intensity, or lifetime at each
state of a storm’s duration until the storm dissipates (and the
predictors are all set to zero). The features of the objects are
categorized into present and past features, as illustrated in
Fig. 5 (shown respectively in blue and grey). The present
features describe the current state of the storm at the time of

nowcast (denoted with t0 in Fig. 5) and are calculated from
one state of the storm. To compute certain features, an el-
lipsoid is fitted to each state of the storm. The past features,
on the other hand, describe the predictors of the past storm
states (denoted with t−1, t−2 in Fig. 5) and their change over
the past life of the storm. For example, the average area from
times t−2 to t−1 is a past feature. A pre-analysis of impor-
tant predictors showed that the average features over the last
30 min are more suitable as past predictors than the averages
over the past 15 or 60 min or than the calculation of past
changing rates. Therefore, averages over the past 30 min are
computed here:

P30 =
∑t−30 min

i=t0
Pi/7, (1)

where Pi is the predictor value at time i and P30 is the av-
erage value of the predictor over the last 30 min. In case of
missing values, the remaining time steps are used for aver-
aging. The selected features (both present and past) that are
used here to describe storms as objects, and hence tested as
predictors, are shown in Table 1. The present features help
to recognize storms that are similar at the given state when
the nowcast is issued (blue storm in Fig. 5), and the past ones
give additional information about the past evolution of the
storm (average of grey storms in Fig. 5). The aim of these fea-
tures is to recognize the states of previously observed storms
that are most similar to the current one (shown in blue in
Fig. 5) of the to-be-nowcasted storm. Once the most simi-
lar past storm states are recognized, their respective future
states at different lead times can be assigned as the future be-
haviour (shown in green in Fig. 5) of the current state of the
to-be-nowcasted storms. Since the storms are regarded as ob-
jects with specific features, future behaviours at different lead
times are determined by four target variables: area (A+LT),
mean intensity (I+LT), and velocities in the x (Vx+LT) and
y (Vy+LT) directions. Additionally, the total lifetime of the
storm is considered a fifth target (Ltot). Theoretically, the to-
tal lifetime is predicted indirectly when any of the first four
targets is set to zero; however, here it is considered an in-
dependent variable in order to investigate whether similar
storms have similar lifetime durations.

For each state of each observed storm in the database, the
past and present features of that state with its respective fu-
ture states of the five target variables from + 5 to + 180 min
(every 5 min) lead times are saved together and form the
predictor–target database that is used for the development
of the k-NN nowcast model. A summary of the predictors
and target variables calculated per state is given in Table
1. Before optimizing and validating the k-NN method (see
Fig. 3c), an importance analysis is performed for each of
the target variables in order to recognize the most important
predictors. As the predictors have different ranges, prior to
the importance analysis and the k-NN application, they are
normalized according to their median and range between the
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Figure 5. The features describing the past (grey) and present (blue)
states of the storm used as predictors to nowcast the future states of
the storm (green) at a specific lead time (T+LT) that are described
by four target variables (in red). The nowcast is issued at time t0. A
full description of these predictors and target variables is given in
Table 1.

0.05 and 0.95 quantiles:

normPi =
Pi −Q

0.5
Pi

Q0.95
Pi
−Q0.05

Pi

, (2)

where P is the actual value, normP the normalized value,
and Q0.5

Pi
, Q0.95

Pi
, and Q0.05

Pi
the quantiles 0.5, 0.05, and 0.95

of the ith predictor vector. The reason why these quantiles
were used for the normalization instead of the typical mean
and maximum to minimum range is that some outliers are
present in the data. For instance, very high and unrealistic
velocities are present in some convective storms where the
tracking algorithm fails to capture adequate velocities (Han
et al., 2009). Thus, to avoid the influence of these outliers,
the given range is employed.

3.1.3 Selection of the most relevant predictors

The application of the k-NN method can be relevant if there
is a clear connection between the target variable and the fea-
tures describing this target variable. For instance, in the case
of Galeati (1990), a physical background backed up the con-
nection between the target variable (discharge) and the fea-
tures (daily rainfall volume and mean temperature). In the
case of the storms at such fine temporal and spatial scales,
due to the erratic nature of the rainfall itself, there is no phys-
ically related information that can be extracted from radar
data. Different features of the storm itself can be investi-
gated for their importance to the target variable. Neverthe-
less, the identification of such features (referred to here as
predictors) is difficult because it is bounded to the set of
the available data and the relationships considered. Com-
monly a strong Pearson correlation between the predictors
selected and the target variable is used as an indicator of

a strong linear relationship between them. Here, the Pear-
son correlation absolute values are used directly as predictor
weights in the k-NN application. However, the relationship
between predictors and target variables may still be of a non-
linear nature, and thus another predictor importance analy-
sis should be recommended when selecting the predictors.
Sharma and Mehrotra (2014) proposed a new methodology,
designed specifically for the k-NN approach, where no prior
assumption about the system type is required. The method is
based on a metric called the partial information correlation
and is computed from the partial information as

PIC=
√
(1− exp(−2PI) with PI=

∫
fx, P |Z (x, p|z)

log
[

fx|Z,P |Z (x,p|z)

fx|Z (x|z) fP |Z (p|z)

]
dxdpdz, (3)

where PIC is the partial information correlation and PI is the
partial information which represents the partial dependence
of x on P conditioned to the presence of a predictor Z. The
partial information itself is a modification of the mutual in-
formation in order to measure partial statistical dependency
between the predictors (P ) and the target variable (x) by
adding predictors one at a time (Z) (step-wise procedure).
The evaluation of the PIC needs a pre-existing identified
predictor from which the computation can start. If the pre-
defined predictor is correctly selected, then, through Eq. (3),
the method is able to recognize and leave out the new predic-
tors which are not related to the response and which do not
bring additional value to the existing relationship between
the current predictors and target variable. Relative weights
for the k-NN regression application can be derived for each
predictor as a relationship between the PIC metric and the
associated partial correlation:

αj = PICx,Zj |Z(−j)
Sx|Z(−j)

SZj |Z(−j)
, (4)

where x is the target response, Zj is the added predictor
from the step-wise procedure, Z(−j) is the previous pre-
dictor vector excluding the predictor Zj , Sx|Z(−j) are the
scaled conditional standard deviations between the target (x)
and predictor vector Z(−j), SZj |Z(−j) are the scaled condi-
tional standard deviations between the additional predictor
(Zj ) and the first predictor vector Z(−j), and αj is the pre-
dictor weight. R package NPRED was used for the investi-
gation of the PIC-derived importance weights (Sharma et al.,
2016).

Here, in this study, these two importance analyses are used
to determine the most important predictors and their respec-
tive weights in the k-NN similarity calculation. For each
target variable the most important predictor identified from
Pearson correlation is given to the PIC metric as the first pre-
dictor. The analysis is complex due to the presence of several
predictors, 38 states of future behaviour for each target vari-
able (for every 5 min between+ 5 and+ 180 min lead times),
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and different nowcast times; the weights were calculated first
for three lead times + 15, + 60, and + 180 min and for three
storm groups separated according to their durations<60 min,
60–180 min, and >3 h. Here the average weights over these
groups and lead times are calculated and used as a reference
for each importance analysis. The k-NN errors with these av-
erage weights are compared in Sect. 4.1.

3.1.4 Developing the k-NN structure

The structure of the proposed k-NN approach at the storm
scale is illustrated in Fig. 6 – the current to-be-nowcasted
storm is shown on the left and the past observed storms on
the right. First, in step 1, the Euclidean distance between the
most important predictors (either present or past predictors)
of past storm states and the current one is calculated to iden-
tify the most similar states of the past storms (distance be-
tween the blue shapes on the left- and right-hand sides of
Fig. 6):

Ed =

√∑N

i=1
wi · (xi − yi)

2, (5)

where w is the weight of the respective ith predictor as dic-
tated by the importance analysis (results are shown in Ta-
ble 3), x is the predictor of the to-be-nowcasted storm, y is
the predictor of a past observed storm, N is the total number
of predictors used, and Ed is the Euclidian distance between
the to-be-nowcasted and past observed storms. The assump-
tion made here is that the smaller the distance, the higher the
similarity of future behaviour between the selected storms
and the to-be-nowcasted storm. Therefore, in step 2 these
distances are ranked in ascending order and 30 past storm
states with the smallest distance are selected (step 3). Once
the similar past storm states have been recognized (the blue
shape in Fig. 6 – right), the future states of these storms (the
green shapes in Fig. 6 – right, each for a specific lead time
from the occurrence of the selected similar blue state) are
treated as future states (the green shape in Fig. 6 – left) of
the to-be-nowcasted storm. In step 4, either a single (deter-
ministic) or an ensemble (probabilistic) nowcast is issued. If
a single nowcast is selected, then the green instances of the k
neighbours are averaged with weights for each lead time:

Rnew =
∑k

i=1
Pri ·Ri, (6)

where k is the number of neighbours obtained from opti-
mization, Ri and Pri (from Eq. 7) are respectively the re-
sponse and weight of the ith neighbour, and Rnew is the
response of the to-be-nowcasted storm as averaged from k

neighbours. The response R refers to each of the five target
variables: area, intensity, velocities in the x and y directions,
and total lifetime. By contrast, if a probabilistic nowcast is
selected, 30-member ensembles are selected from the clos-
est 30 storms, where each member is assigned a probability

according to the rank of the respective neighbour storm:

Pri =
(1/Ranki)∑k
i=1(1/Ranki)

, (7)

where k is the selected number of neighbours and Rank and
Pr are respectively the rank and the probability weights of
the i neighbour / ensemble member. An ensemble member
is then selected randomly based on the given probability
weights. These probability weights calculated here are also
used for computation of the single nowcast in Eq. (6).

Since the performance of the single k-NN nowcast is
highly dependent on the number of k neighbours used for the
averaging, a prior optimization should be done in order to
select the right k neighbours that yield the best performance
(as illustrated in Fig. 3c). The application of the k-NN can
either be done for each target variable independently or for
all target variables grouped together. In the first approach,
the dependency of the target variables between one another
is not assured: they are predicted independently of one an-
other. This is referred to here as the target-based k-NN and
is denoted in the results as VS1. The main advantage of this
application is that, since the relationships between the target
variables are not kept, new storms can be generated. Theoret-
ically, the predicted variables should have a lower error since
the application is done separately for each variable; neverthe-
less, this approach does not say much about whether similar
storms behave similarly. Therefore, it is used here as a bench-
mark for the best possible optimization that can be reached
by the k-NN with the current selected predictor set. In the
second approach, the relationships between target variables
as exhibited by previous storms are kept. The storm struc-
ture and the relationship between features are maintained as
observed, and thus the question of whether similar storms
behave similarly can be answered. This is referred to here as
the storm-based k-NN and is denoted in the results as VS2.
In this study the two approaches are used (respectively called
VS1 and VS2) to understand the potential and the actual im-
provement that the k-NN can bring to the storm nowcast.

3.2 Application of the k-NN and performance
assessment

3.2.1 Optimizing the deterministic k-NN nowcast

The optimization of the k-NN is done based on the
5189 storms extracted from 110 events in a “leave-one-out”
cross-validation. Since the unmatched storms can be either
dynamic clutter or artefacts of the tracking algorithm, they
are left outside of the k-NN optimization and validation. The
assumption is here that an improvement of the radar data or
tracking algorithm would eliminate the unmatched storms,
and hence the focus is only on the improvement that the k-
NN can introduce to the matched storms. “Leave-one-event-
out” cross-validation means here that the storms of each
event have to be nowcasted by considering as a past database
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Table 1. List of all the past and present features of the storms that are investigated for their importance as predictors, and the respective target
variables calculated for different lead times.

Features Symbol

Present Number of storm cells within the storm region Cells (–)
features Current storm lifetime at time of nowcast Lnow (min)

Area of the storm A (km2)
Mean spatial intensity Iave (mm h−1)
Maximum spatial intensity Imax (mm h−1)
Standard deviation of the spatial intensities Isd1 (–)
Standard deviation of intensity groups inside the storm Isd2 (–)
Global velocity of the entire radar image Vg (m s−1)
x and y components of the local velocity of the storm region Vx , Vy (m s−1)
Major and minor axes of the ellipsoid and their ratio Jmax, Jmin (km), Jr (–)
Orientation angle of the major axis of the ellipsoid 8 (◦)

Past Average area over the last 30 min of storm existence A30 (km2)
features Average mean intensity over the last 30 min of storm existence Iave30 (mm h−1)

Average maximum intensity over the last 30 min of storm existence Imax30 (mm h−1)
Average standard deviation of intensity over the last 30 min of storm existence Isd130 (–)
Average standard deviation of intensity groups over the last 30 min of storm existence Isd230 (–)
Average global velocity over the last 30 min of storm existence Vg30 (m s−1)
Average x and y components of the local velocity over the last 30 min of storm existence Vx30 , Vy30 (m s−1)
Average value of the major and minor axes of the ellipsoid and their ratio over the last Jmax30 , Jmin30 (km), Jr30 (–)
30 min of storm existence
Average major axis orientation of the ellipsoid over the last 30 min of storm existence 830 (◦)

Target Total lifetime of the storm Ltot (min)
variables Estimated area and intensity at LT from + 5 to + 180 min A+LT (km2), Iave+LT (mm h−1)

Estimated velocities x and y at LT from + 5 to + 180 min Vx+LT, Vy+LT (m s−1)

Figure 6. The main steps involved in the k-NN-based nowcast with the estimation of similar storms (Steps 1 to 3) and assigning the future
responses of past storms as the new response of the “to-be-nowcasted” storm either in a deterministic nowcast (Step 4 – left) or in a
probabilistic nowcast (Step 4 – right).
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the storms from the remaining 109 events (a detailed visual-
ization is given in Fig. 3b). The objective function is the mini-
mization of the mean absolute error (MAE) (Eq. 8) and of the
absolute mean error (ME) (Eq. 9) between predicted and ob-
served target variables at lead times from + 5 to + 180 min:

MAEtarget =
∑N

i=1
(|Predi,+LT−Obsi,+LT|)/N, (8)

MEtarget =

∣∣∣∑N

i=1
(Predi,+LT−Obsi,+LT)/N

∣∣∣ , (9)

where Pred is the predicted response, Obs the observed re-
sponse for the ith storm, +LT the lead time, and N the num-
ber of storms considered inside an event. The results of the
storms’ nowcast are also dependent on the nowcast time with
respect to the storms’ life (time step of the storm existence
when the nowcast is issued – refer to Fig. 3a). If the nowcast
time is 5 min, only the present predictors are used for the cal-
culation of storm similarity and as higher nowcast time as
more predictors are available for the similarity calculation. It
is expected that the nowcast will perform worse in the first
5 min of the storm’s existence, as the velocities are not as-
signed properly to the storm region and the past predictors
are not yet calculated. Therefore, the optimization is done
separately for three different groups of nowcast times in or-
der to achieve a proper application of the k-NN model: Group
1 – nowcast issued at the first time step of storm recognition,
Group 2 – nowcast issued between 30 min and 1 h of storm
evolution, and Group 3 – nowcast issued between 2 and 3 h
of storm evolution. The k number with the lowest absolute
error averaged over all the events for most of the lead times
(as the median of MAE from Eq. 9 and ME from Eq. 9 over
all events) is selected as a representative for the deterministic
nowcast.

3.2.2 Validating the k-NN deterministic and
probabilistic nowcasts

Once the important predictors are identified and the k-NN
has been optimized, the performance of both deterministic
and probabilistic k-NN is also assessed in a leave-one-event-
out cross-validation mode. Two performance criteria are used
to assess the performance.

i Absolute error per lead time and target variable com-
puted for each event and a specific selected nowcast
time:

MAEtarget =
∑N

i=1
(|Predi,+LT−Obsi,+LT|)/N, (10)

where Pred is the predicted response, Obs is the ob-
served response for the ith storm, +LT is the lead time,
and N is the number of storms considered inside an
event.

ii The improvement (%) for each lead time and target vari-
able that the k-NN approach introduces to the nowcast
(for a specific selected nowcast time) when compared to
the Lagrangian persistence in an object-based approach:

Errorimpr [%]= 100 ·
(|Errorref| − |Errornew|)

|Errorref|
, (11)

where Errornew is the event error manifested by the k-NN,
Errorref is the event error manifested by the Lagrangian per-
sistence, and Errorimpr is the improvement in reducing the er-
ror for each lead time. For improvements higher than 100 %
or lower than −100 %, the values are reassigned to the limits
100 % and−100 % respectively. Here the Lagrangian persis-
tence refers to a persistence of the storm characteristics (area,
intensity, and velocities in the x and y directions) as last ob-
served and constant for all lead times.

For the probabilistic approach, the continuous rank proba-
bility score (CRPS) as shown in Eq. (12) is computed.

CRPS(F,y)=

∞∫
−∞

(F (x)− 1 {y ≤ x})2dx

= EF |y− y| −
1
2
EF

∣∣y− y′∣∣ , (12)

where F is a probabilistic forecast, y is the observed value,
and y and y′ are independent random variables with a cumu-
lative distribution function (CDF) of F and finite first mo-
ment E (Gneiting and Katzfuss, 2014). The CRPS is a gen-
eralization of the mean absolute error, and thus if a single
nowcast is given, it is reduced to the mean absolute error
(Eq. 10). This enables a direct comparison between the prob-
abilistic and deterministic nowcasts and an investigation of
the advantages of the probabilistic one. As in Eq. (8), the
values obtained in Eqs. (10), (11), and (12) are averaged for
each of the 110 events.

As stated earlier, the results depend on the nowcast time
and also storm duration (with regard to available storms).
Therefore, the performance criteria for both k-NN nowcasts
were computed separately for different storm durations and
nowcast times as illustrated in Table 2. It is important to men-
tion as well that since one event may contain many storms of
a similar nature, when leaving one event out for the cross-
validation, the number of available storms is actually lower
than the numbers given in Table 2. This particularly affects
the performance of the storms longer than 6 h, as the leave-
one-event-out cross-validation leaves fewer available storms
for the similarity computation. Lastly, it is important to no-
tice that the performance criteria can be calculated even for
nowcast times longer than the storm lifetime if the nowcast
fails to capture the dissipation of the storms. In this case,
area, intensity, and velocity in the x and y directions are com-
pared against zero and the total lifetime against the total ob-
served lifetime of the storms.
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Table 2. The selected storm durations and nowcast times for the
performance calculation of the deterministic and probabilistic now-
casts and the respective number of storms for each case.

Storm lasting Storms lasting Storms lasting
less than 30 min within 0.5–3 h longer than 3 h

Nowcast No. of Nowcast No. of Nowcast No. of
time storms time storms time storms

5 min 4106 5 min 994 5 min 89
15 min 2265 1 h 370 2 h 89
30 min 271 3 h 6 6 h 33

4 Results

4.1 Predictor importance analysis

Table 3 illustrates the results of the two importance analysis
methods (Pearson correlation and PIC) for each of the tar-
get variables and their average over the five variables. The
stronger the shade of the green colour, the more important
is the predictor for the target variable. The weights given
here are averaged from the weights calculated at three dif-
ferent lead times and storm durations (see Appendices 11.1
and 11.2 for more detailed information about the calculated
weights). First the Pearson correlation weights are recom-
mended for the identification of the most important predic-
tors. From the results it is clear that the autocorrelation has a
higher influence, as the target variables are mostly correlated
with their respective past and present values. This influence
logically is higher for the shorter lead times and smaller for
the longer lead times. For longer lead times the importance
increases of other predictors that are not related directly to
the target variable. Similar patterns can be observed among
the area, intensity, and total lifetime target variables, indicat-
ing that these three variables may be dependent on each other
and on similar predictors like current lifetime, area, standard
deviation of intensity, the major and minor ellipsoidal axes,
and the global velocity. This conclusion agrees well with the
life cycle characteristics of convective storms reported in the
literature review. On the other hand are the velocity compo-
nents, which seem to be highly dependent on the autocorrela-
tion and slightly correlated with area and the ellipsoidal axes.
It has to be mentioned that, apart from the standard devia-
tion intensities, also the mean, median, and maximum spatial
intensities were investigated. Nevertheless, it was found that
the Isd1 and Isd2 had the higher correlation weights, and since
there is a high collinearity between these intensity predictors,
they were left out of the predictor’s importance analysis.

The application of the PIC analyses requires that the most
important predictors should be introduced to the analysis
first. Hence, based on the Pearson correlation values from Ta-
ble 3, the following most important predictors were selected:
area – A (as the maximum correlation value from the first

row), intensity – PIsd1 (as the maximum correlation value
from the second row), velocity x – Vx30 (as the maximum
correlation value from the third row), velocity y – Vy30 (as
the maximum correlation value from the fourth row), and to-
tal lifetime – A (as the maximum correlation value from the
fifth row). The results of the PIC analysis are shown in the
lower row of Table 3 and in Appendix 11.2. For storm dura-
tion lower than 3 h, where a lot of zeros are present, the PIC
method seems to be unable to converge to stable results or to
identify important predictors. For the intensity and velocity
components, the PIC identifies only one important predic-
tor, which, in the case of the intensity and velocity in the y
direction, does not correspond to the most important predic-
tor fed first in the analysis. In contrast, for total lifetime and
area, only for storms that last longer than 3 h is the method
able to converge and give the most important predictors: for
area – A, Vg, past Vy30, and Lnow; for total lifetime – A,
Velg, Lnow, and Jmin30. At the moment it is unclear why the
PIC method is unable to perform well for all of the target
variables and storm groups. One reason might be that only
the area and total lifetime are dependent on the chosen tar-
get variables. Another most probable reason might be that
for the other target variables the heavy tail of the probabil-
ity distribution and the high zero sample size may influence
the calculation of the joint and mutual probability distribu-
tion. The total lifetime is an easier target to be analysed,
which means the values are not zero and its distribution is
not as heavy tailed as the distribution of the other variables.
The other variables, depending on the lead time, have more
zeros included and have an asymptotic density function. It
seems that, whenever zeros are not present, like in the case
of storms lasting longer than 3 h, the PIC is able to repre-
sent quite well the important predictors. However, the reason
why this method performs poorly for the application at hand,
even though developed specifically for the k-NN application,
is not completely understood and is not investigated further
for the time being since it is outside the scope of this paper.

Overall, the results from the Pearson correlation seem
more robust and stable (throughout the lead times and storm
groups) than the PIC method (refer to Appendices 11.1 and
11.2); the importance weights increase with the lifetime of
the storm and decrease with higher lead time. These be-
haviours are expected, as with increasing lead time the uncer-
tainty becomes bigger and with increasing lifetime the storm
dynamic becomes more persistent (due to the large scales and
the stratiform movements involved). Moreover, the impor-
tant predictors do not change drastically from one lead time
or storm group to the other, as seen in the PIC. Therefore,
the predictors estimated from the correlation with the given
weights in Table 3 are used as input to the k-NN application.
In order to make sure that the predictor set from the Pearson
correlation was the right one, the improvement in the sin-
gle k-NN training error of using these predictors instead of
the ones from PIC are shown in Fig. 7. The results shown in
this figure are computed according to Eq. (11) (where “new”
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Table 3. Strength of the relationship between the selected predictors and the target variables averaged for three lead times and storm duration
groups (original weights can be seen in Appendices 11.1 and 11.2) based on two predictor identification methods: upper – correlation –
and lower – PIC weights. The green shade indicates the strength of the relationship, with 0 for no relationship at all and 1 for the highest
dependency.

is the k-NN with correlation weights and “ref” is the k-NN
with PIC weights) for the target-based k-NN approach (solid
lines) and storm-based k-NN approach (dashed lines) and are
averaged for three groups of nowcast times as indicated in the
optimization of the k-NN (Sect. 3.2.3) and in the legend of
Fig. 7.

The results from Fig. 7 indicate that, for the area, intensity,
and velocity components, the Pearson correlation weights
improve the performance of target-based k-NN from 5 % up
to 100 % compared to the PIC weights. This happens mainly
for the short lead times (LT<+60 min) throughout the three
groups of nowcast times. For longer lead times there seems to
be no significant difference between the predictor sets. The
same cannot be said for the total lifetime as a target vari-
able: here the Pearson correlation weights do not give the
best results for all the nowcast times. In fact, here the k-NNs
based on the PIC weights seem to be more appropriate and
yielded better results. However, as the other four target vari-
ables are better for the Pearson correlation, this predictor set
was selected for all applications of the k-NNs (with different
weights according to Table 3) to keep the results consistent
with one another. A further analysis was done that proved
that the application of the correlation weights produces lower
errors than the non-weighted k-NN application (all weights
of the most important predictors from Pearson correlation are
assigned as 1).

Lastly, it should be emphasized that, for the computation
of predictor weights, all the events were grouped together,
and thus when applying the k-NN nowcast in the cross-
validation mode, there is a potential that the information will
leak from the importance analysis to the performance of the
k-NN (also illustrated in Fig. 3c). In other words, the per-
formance of the k-NN will be better, because the weights
were derived from all the events grouped together. Typically,
in modelling applications, the optimization dataset should be

clearly separated by the validating one in order to remove
the effect of such information leakage. For this purpose, the
correlation weights were computed 110 times, on a leave-
one-event-out cross-sampling, in order to investigate their
dependence on the event database. The results of such cross-
sampling are visualized in Appendix 11.3 and indicate a very
low deviation of the predictor weights (lower than 0.01) over
all the target variables. The shown low variability of the Pear-
son correlation weights justifies the decision to estimate the
weights from the whole database, as the potential informa-
tion leakage likely does not affect the results of the k-NN
performance. This is another reason favouring the calcula-
tion of the predictor’s weights based on the Pearson corre-
lation. On the other hand, the weights from the PIC anal-
ysis change very drastically depending on the dataset, and
hence the effect of the information leakage would be much
larger in the k-NN developed from PIC weights. Moreover, a
sensitivity analysis as done in Appendix 11.3 cannot be per-
formed for the PIC analysis because it would be extremely
time-consuming.

4.2 Optimizing the deterministic k-NN nowcast

Once the most important predictors and their weights are de-
termined, the optimization of the single k-NN nowcast for the
two k-NN applications (storm-based and target-based) was
performed. The optimal k values obtained from minimizing
the MAE produced by k-NN are shown in Fig. 8, upper row.
The results are computed for the given nowcast times, lead
times, and target variables for both k-NN applications (VS1
target-based and VS2 storm-based). For the four target vari-
ables, area, intensity, and velocities in the x and y directions,
the number of optimal values decreases quasi-exponentially
for a lead time up to 1 h. After these lead times, when the ma-
jority of the storms are dissipated, the optimal k number con-
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Figure 7. The median mean absolute error (MAE) improvement per lead time and target variable from applying the k-NN (VS1 target-based,
VS2 storm-based) with the predictors and weights derived by the Pearson correlation instead of PIC. The improvements are averaged for
different times of nowcast. The green plot region indicates a positive improvement of the correlation predictors in comparison to the PIC,
and the red region indicates a deterioration.

verges at 1, meaning that the closest neighbour is enough to
predict the dissipation of the storms. In contrast, for the very
short lead times, the closest identified neighbour is unable to
capture the growth/decay processes of the storms, and thus
the response has to be the average from k neighbours, with
k depending strongly on target variable, nowcast time, lead
time, and total lifetime. This seems to be the case also for the
total lifetime, where averages between 3 and 15 neighbours
are computed asKmin. Overall, k = 1 seems to yield the low-
est MAE for the majority of the lead times, nowcast times,
and target variables and therefore is selected to continue fur-
ther with the analyses. However, selecting the first neighbour
does not satisfy the requirement that nature does not repeat
itself, and ideally k>1 should be achieved such that the re-
sponses from similar neighbours can be averaged to create
a new response. For this purpose, the optimal K values were
additionally obtained by minimizing the absolute ME and are
shown in Fig. 8 – lower row. Here the overestimation and un-
derestimation of different storms balance one another, and
the results seem to converge when averaging three to five
neighbours. A direct comparison of the MAE for k ∼ 2–5
and k = 1 was performed in order to understand whether a
higher k will benefit the application of both k-NN versions.
The median improvements of using neighbours from 2 to 5
instead of 1 (over the selected groups of nowcast times) are
shown only for the total lifetime in Table 4. The other target
variables are left outside this analysis as the improvements
averaged over all the lead times are very close to zero, as
the dissipation of storms is captured well by all five closest
neighbours. From the results of Table 4 it is clear that k = 4
brings the most advantages and hence was selected for both
applications as a better compromise. The selection of k = 4
is not an optimization per se, as it was not learned with ar-
tificial intelligence. Instead it was selected based on human
intuition, and it does not represent the best possible training
ofKmin. For a more complex optimization, machine learning
can be employed in the future to learn the parameters of the
exponential relationship between Kmin, lead time, nowcast
time, and target variable. In that case a proper splitting of the
database into training and validation should be done in or-
der to avoid information being leaked from the optimization

Table 4. The median improvement of the total lifetime MAE when
using k = 2–5 instead of k = 1 over the three selected groups of
nowcast times.

to the validation of the k-NN. In our case, the effect of the
information leakage at this stage (also illustrated in Fig. 3c)
is minimized by obtaining Kmin on a cross-sampling of the
events and averaged over the events, lead times, and nowcast
times.

4.3 Results of the deterministic 4-NN nowcast

The median MAE of the 4-NN determinist nowcast over all
the events, run for both target- and storm-based approaches,
is shown in Fig. 9 for each lead time and target variable. The
results are grouped according to the storm duration: (i) upper
row – for storms that last for 30 min, (ii) middle row – for
storms that last for up to 3 h, and (iii) lower row – for storms
that last longer than 3 h and are averaged for nowcast times
given in Table 2. As also shown in the optimization of the
4-NN, the target-based k-NN exhibits lower area, intensity,
and velocity errors than the storm-based 4-NN. Table 5a il-
lustrates the median deterioration (–) or improvement (+) in
percent (%) over all lead times that the storm-based 4-NN
can reach when compared to the target-based one.

For storms lasting less than 30 min, the MAE decreases
with the lead time, and past LT+ 30 min is mostly zero, as
the dissipations of the storms have been captured success-
fully. The total lifetime of the majority of the storms can be
captured with ∼ 15 min overestimation/underestimation re-
gardless of the nowcast time. The errors for the four target
variables (except total lifetime) are lower for the later now-
cast times than for the earlier ones (as expected). The differ-
ence between the storm- and target-based 4-NN is very small
for area, intensity, and total lifetime but much higher for the
velocity components (with the storm-based one exhibiting up
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Figure 8. The optimization of the k-NN per target variable based on predictors and weights derived from Pearson correlation analysis: the
median optimal selected “k” neighbours yielding the lowest absolute errors over the 110 events. Two k-NN applications are shown here –
VS1 in solid line and VS2 in dashed line. First row – the optimal neighbour is found by minimizing the MAE for a given group of nowcast
times per event. Second row – the optimal neighbour is found by minimizing the MAE for the given group of nowcast times per event. The
red dashed horizontal line indicates the k = 4 that is chosen in this study for the deterministic k-NN application.

Figure 9. The median MAE over all the events for each target variable (area, intensity, and velocity in the x and y directions and total
lifetime) based on two 4-NN applications: VS1 in solid and VS2 in dashed lines. The performance is shown for storms that are shorter than
30 min (upper row), shorter than 3 h (middle row), and longer than 3 h (lower row) and over the selected nowcast times. Nowcast time dictates
when the nowcast is issued relative to storm initiation.
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Table 5. Median deterioration (–) or improvement (+) of k-NN storm-based (VS2) compared to target-based (VS1) over all lead times
according to the storm duration and nowcast times (shown in percentage). Equation (11) is used here, where “ref” is the target-based and
“new” is the storm-based k-NN.

to 40 % higher errors than the target-based one). The biggest
difference seems to be for shorter lead times (LT<+1 h). For
the storms lasting up to 3 h, the same behaviour is, more or
less, observed. The only difference is for nowcasts issued at
the third hour of the storm’s existence (last moment the storm
is observed). Here it is clear that the 4-NN fails to capture the
dissipation of the storms that last exactly 3 h; however, this
is attributed to the number of available storms with durations
of 3 h (median over six storms available). Since the area, in-
tensity, and total lifetime are overestimated and do not con-
verge to zero for high lead times, it is clear that the nearest
neighbours are being selected from the longer storms that do
not dissipate within the next 3 h. The differences between the
two 4-NN approaches are visible mainly for lead times of up
to 30 min (except the nowcast at the third hour of a storm’s
life); afterwards, the errors relatively converge to each other.
The storm-based 4-NN produces circa 10 %–20 % higher er-
rors than the target-based one for the nowcast times lower
than 3 h, while for the nowcast time of 3 h, the errors are up
to 100 % higher than the target-based one. At these storms
as well, the higher discrepancy between the two versions of
4-NN is seen at the velocity components.

For the storms that last longer than 3 h (of the 100 storms
available), the same problem as in the nowcast time of 3 h
seen before is present. The total lifetime is clearly underes-
timated (up to 100 min) as due to the database the informa-
tion is taken from shorter storms. It is important to notice
here, that, although 70 storms are present, because of the
leave-one-event-out validation, the storm database is actu-
ally smaller. Nevertheless, the error is manifested here differ-
ently: as the long storms are more persistent in their features,
area, intensity, and velocity components are captured better

for the short lead times with the error increasing at higher
lead times. Here too the nowcast issued at the earlier stages of
the storm’s life exhibits higher errors than in the later stages.
Especially for the nowcast at the sixth hour of the storm’s
existence, the errors are quite low for all five target variables
due to the persistence of the stratiform storms. For this group
of long storms, the storm-based nowcast yields up to 10 %
higher errors than the target-based one, with only a few ex-
ceptions depending on the time of nowcast and variable. It
is clear that the storm-based 4-NN is more influenced by the
number of available storms than the target-based approach.

Figure 10 shows the improvement that the 4-NN intro-
duces to the nowcast when compared to the Lagrangian per-
sistence (either target- or storm-based) and is averaged per
lead time for each of the three groups of storms and the re-
spective times of nowcast. Since the Lagrangian persistence
does not issue a total lifetime nowcast, only the four tar-
get variables (area, intensity, and the velocity components)
are considered. The green area indicates the percent of im-
provement from the application of the 4-NN approach, and
the red area indicates the percent of deterioration from the
4-NN application (Lagrangian persistence is better). Addi-
tionally, median improvements (+) or deterioration (–) over
all lead times of the storm-based approach compared to the
target-based 4-NN approach with respect to the Lagrangian
persistence are illustrated in Table 5c. For the 30 min storms,
the 4-NN approaches (both target- and storm-based) are con-
siderably better than the Lagrangian persistence: improve-
ment is higher than 50 % from LT+ 15 min and up to 100 %
from LT+ 60 min. The improvement is greater for nowcast
at the 15th minute of storm existence (when the persistence
predictors are considered). It is clear that, due to the auto-
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correlation, the Lagrangian persistence is more reliable for
the short lead times and for earlier nowcast times. However,
after LT+ 15 min and for nowcast times near the dissipation
of the storms, where the non-linear relationships govern, the
improvements from the nearest neighbour are more signif-
icant. The target-based 4-NN results in slightly higher im-
provements than the storm-based one only for lead times up
to 30 min: past this lead time the improvements from both
versions converge. For the storms that last between 30 min
and 3 h, the improvements are introduced first after LT+ 15
or +30 min depending on the nowcast time: increasing now-
cast time increases the improvement as well. The only ex-
ception is for the nowcast of area and intensity in the third
hour of the storm’s existence, where no clear improvement
of the 4-NN approaches could be seen before LT+ 30 min or
LT+ 1 h. This low improvement for the nowcast time of 3 h
was expected following the poor performance of the 4-NN
shown in Fig. 9. It seems like the Lagrangian persistence is
particularly good for predicting the area and intensity at very
short lead times (up to LT+ 20 min). Here, for nowcast times
of 5 min, the Lagrangian persistence is 100 % better than any
of the 4-NN approaches, but the same is not true for the ve-
locity components, with the Lagrangian persistence exhibit-
ing very low advantages against the 4-NN for the short lead
times. Regarding the difference of the two 4-NN approaches,
with few exceptions, the storm-based nowcast exhibits simi-
lar improvements to the target-based one. Another exception
is the nowcast time of 3 h, where the storm-based improve-
ments are clearly lower, especially for the higher lead times,
than the target-based ones (up to 40 %). For storms lasting
longer than 3 h, the improvements are present for lead times
higher than 2 h. Since the features of the long storms (mostly
of a stratiform nature) are persistent in time, it is understand-
able for the Lagrangian persistence to deliver better nowcasts
up to LT+ 2 h. Past this lead time non-linear transformations
should be considered. Here, even though the storm database
is small, the non-linear predictions based on the 4-NN cap-
ture better these transformations than the persistence. The
improvement introduced by the storm-based one are gener-
ally 20 % to 30 % lower than the improvements introduced
by the target-based one.

To conclude, the 4-NN deterministic nowcast brings up
to 100 % improvements for lead times higher than the pre-
dictability limit of the Lagrangian persistence and depends
mainly on the storm type and the size of the database. Over-
all, for all storms the improvement is mainly at the high lead
times and later times of nowcast, as the 4-NN captures par-
ticularly well the dissipation of the storms. The results from
the long events suffer the most from the small size of the
database. This was anticipated, as the events were mainly
selected from convective events that have the potential to
cause urban floods. A bigger database, with more stratiform
events included, can introduce a higher improvement to the
Lagrangian persistence. These improvements are expected to
be higher for lead times longer than 2 h but are yet to be seen

if a larger database can also behave better than the persis-
tence even for lead times shorter than the predictability limit.
Regarding the two different 4-NN approaches, the storm-
based nowcast performs 0 %–40 % worse than the target-
based nowcast, introducing generally 40 % lower improve-
ments to the Lagrangian persistence. The main differences
between these two approaches lie between the growth and
decay processes, which the target-based 4-NN can capture
better. Also, these differences are particularly larger for the
velocity components and for the total lifetime than in the area
and intensity as target variables. Furthermore, it seems that
the storm-based 4-NN is more susceptible to the size of the
database than the target-based one. Nevertheless, there are
some cases where the storm-based nowcast behaves better
than the target-based nowcast (as illustrated with green in
Table 5a), even though the target-based approach should be
profiting more from the selected predictors and their respec-
tive weights. A better-optimized Kmin for each lead time and
nowcast time may actually improve further on the results of
both 4-NN versions and give the advantages mainly to the
target-based nowcast.

4.4 Results of the ensemble 30-NN nowcast

The median CRPS over all the events for the probabilistic
30NNs (in solid lines) together with the median MAE for the
deterministic 4-NN (in dashed lines) are illustrated respec-
tively for the storm-based approach in Fig. 11 and for the
target-based approach in Fig. 12. The results are shown as
in the previous figures for each lead time and target variable
for storms divided into three groups according to their dura-
tion and averaged depending on the time of nowcast. Addi-
tionally, the median improvements (+) or deterioration (–) of
storm-based CRPS values in comparison to the target-based
ones are given in Table 5b. For the 30 min-long storms, the
errors of the probabilistic nowcast are typically lower than
the single 4-NN nowcast for all the variables, lead times, and
nowcast times, independent of the 30NNs approach (either
storm- or target-based). In contrast to the deterministic 4-
NN, the probabilistic 30NNs performance is not very depen-
dent on the nowcast time (mainly for area, intensity, and to-
tal lifetime). The storm-based 30NNs have up to 50 % higher
errors than the target-based ones but on the other hand can
have up to 40 % lower errors than the target-based ones for
nowcast times of 30 min. This suggests that storms of this
duration behave similarly, and their dissipation can be pre-
dicted adequately by the storm-based approach with more
than four similar neighbours. For storms that last less than
3 h, the same performance is also exhibited: the probabilistic
30NNs have lower errors than the deterministic 4-NN. The
difference between the target- and storm-based nowcasts is
within the range of the single 4-NN nowcast for the first four
target variables, with storm-based 30NNs having 15 % higher
errors in the first 30 min of the nowcast than the target-based
ones. For intensity and the total lifetime, both of the 30NNs
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Figure 10. The median improvements over all the events that the single 4-NN application can introduce in the nowcast of the target variables
(area, intensity, and velocity in the x and y directions) in comparison to the Lagrangian persistence. The results are shown for each 4-NN
application: VS1 in solid and VS2 in dashed lines and calculated separately for storms that last for less than 30 min (upper row), less than
3 h (middle row), and more than 3 h (lower row) and for the respective nowcast times. The green region of the plot indicates a positive
improvement (better nowcast by the 4-NN application), and the red region indicates a deterioration (better nowcast by the Lagrangian
persistence).

exhibit very similar errors for most of the nowcast times. It is
worth mentioning here that for the nowcast at the third hour
of storm existence the errors are much lower than the sin-
gle 4-NN nowcast. This proves that the most similar storms
are within the 30 members but not within the first four neigh-
bours selected in the case of the single 4-NN nowcast. Due to
the non-representativeness in the database, the errors of the
longer storms are considerably higher than the other storm
groups, and the errors of the first four target variables in-
crease with the lead time and decrease with the nowcast time,
as in the case of the deterministic 4-NN nowcasts. However,
here, unlike the other storm groups, the differences between
the storm-based and target-based approaches are visible past
a 30 min lead time, with the storm-based errors being up to
15 % higher than the target-based ones.

Overall, the ensemble results are clearly better than the
single 4-NN nowcast, suggesting that the best responses are
obtained by singular neighbours (either the closest one or
within the 30 neighbours) and not by averaging. Thus, there
is still room for improving the single 4-NN nowcast by se-
lecting better the important predictors and their weights or
averaging differently the nearest neighbours. Nevertheless,
the results from Figs. 11 and 12 emphasize that similar
storms do behave similarly and that the developed k-NN in

the given database with 30 ensembles gives satisfactory re-
sults. Compared to the deterministic 4-NN, it has the advan-
tage that no k-optimization is needed, and the two approaches
(storm- and target-based) have fewer discrepancies with one
another.

Figure 13 demonstrates the improvement of the proba-
bilistic 30NNs when compared to the Lagrangian persistence
(storm-based in dashed line and target-based in solid line).
As before, the median improvement over the events is com-
puted and shown for each storm duration group, nowcast
time, lead time, and target variable (expect for the total life-
time). For all three groups it is clear that performance in-
creases considerably with the lead time, suggesting that the
ensemble predictions are particularly useful for the longer
lead times where the single nowcast is not able to capture
the storm evolution. For short storms (duration shorter than
30 min), the Lagrangian persistence is only better for the
area and intensity at 5 min nowcast time and for very short
lead times (up to 10 min). However, past this lead time, the
probabilistic 30NNs have the clear advantage, with improve-
ments up to 100 %. Past LT+ 30min, which coincides with
the predictability limit of the Lagrangian persistence at such
scales, there is no difference between the nowcast time and
the 30NNs approach (less than 1 % for all target variables and
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Figure 11. The median CRPS over all the events for each target variable (area, intensity, and velocity in the x and y directions and total
lifetime) in the storm-based applications: 4-NN (deterministic) in dashed and 30NNs (probabilistic) in solid lines. The performance is
computed over storms that are shorter than 30 min (upper row), shorter than 3 h (middle row), and longer than 3 h (lower row) and over the
selected nowcast times.

nowcast times). For storms that last less than 3 h, the results
are slightly worse than the very short storms but still exhibit
the same patterns. Here too the main improvements of the
30NNs probabilistic approach is seen between LT+ 15 min
and LT+ 30 min for all the target variables. In this storm
group it is interesting that the results from the nowcast time
of 3 h exhibit different behaviours than the deterministic ap-
proach. This is expected as the Lagrangian persistence per-
forms particularly poorly because it cannot model the storm
dissipations. The difference between the two types of 30-NN
is insignificant although a bit higher than for the very short
storms (∼ 2.5 % difference). For the longer storms the bene-
fit of the probabilistic 30NNs is seen mainly for LT+ 60 min
to LT+ 120 min but is still not as high as in the other storm
groups. The worse performance is at a nowcast time of 5 min,
where the 30NNs fail to bring any advantage to the prediction
of area and intensity when compared to the Lagrangian per-
sistence. It is interesting from these storms that the improve-
ment is more significant at the velocity components than in
the area and intensity predictions. This suggests that the ve-
locity components are more persistent (see Fig. 4) and easier
to predict from similar storms.

As a conclusion, the probabilistic nowcasts are better than
the Lagrangian persistence mainly for convective storms that
last less than 3 h and lead times longer than LT+ 15 min. Of
course, there is still room for improving the 30NNs applica-
tion by increasing the size of the past database. Overall, it
seems that the velocity components can be captured much
better by the 30NNs application than the Lagrangian persis-
tence, while the Lagrangian persistence is more suitable for
long persistent storms and for nowcast times of 5 min, where
not enough information is available to select similar storms.
An increase in the database, with more stratiform storms,
may improve the performance of the 30NNs and its advan-
tage over the Lagrangian persistence. However, the value of
the probabilistic 30NNs relies mainly on the nowcasting of
convective events. Moreover, the possibility of merging La-
grangian persistence with a probabilistic 30NNs approach
should be explored and further investigated; the Lagrangian
persistence should be implemented for very short lead times
(up to 30 min) and for the first nowcast times where the pre-
dictors are not enough to select similar past storms.
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Figure 12. The median CRPS over all the events for each target variable (area, intensity, and velocity in the x and y directions and total
lifetime) in the target-based applications: 4-NN (deterministic) in dashed and 30NNs (probabilistic) in solid lines. The median errors are
computed over storms that are shorter than 30 min (upper row), shorter than 3 h (middle row), and longer than 3 h (lower row) and over the
selected nowcast times.

4.5 Nowcasting the unmatched storms

For the optimization and testing of the k-NN approaches, the
unmatched storms from the tracking algorithm were left out-
side of the database. Nevertheless, in an online application
(operational nowcast), when the storm is recognized for the
first time, one cannot predict whether the storm will be an
artefact or whether it will not be matched by the tracking
algorithm. Therefore, it is important to investigate how the
developed k-NN deals with these unmatched storms. Fig-
ure 14 illustrates the median performance over the 110 events
of the developed target-based (upper row) and storm-based
(lower row) k-NN when predicting the target variables of
the unmatched storms from a past database of only matched
storms (storms with duration equal to or longer than 10 min).
As in the previous results, the 30NNs probabilistic applica-
tion yields better errors than the deterministic one, causing
an overestimation of these storms for the first 10–20 min for
the target-based approach and 15–30 min for the storm-based
one. A direct comparison of these errors with the Lagrangian
persistence is shown in Fig. 15, with the deterministic 4-NN
in the upper row and the probabilistic 30NNs in the lower
row. As expected, the probabilistic 30NNs bring the most im-

provement when compared to the Lagrangian persistence for
all lead times and target variables. Thus, even though most
of these unmatched storms will be overestimated in their du-
ration, the 30NNs will capture their dissipation much better
than either the deterministic 4-NN or the Lagrangian persis-
tence.

5 Conclusions

Accurate predictions of rainfall storms at fine temporal and
spatial scales (5 min, 1 km2) based on radar data are quite
challenging to achieve. The errors associated with the radar
measurements, identification, and tracking of the storms and
more importantly the extrapolation of the storms in the fu-
ture based on the Lagrangian persistence limit the forecast
horizons of such object-oriented radar-based nowcasts to 30–
45 min for convective storms and to 1 h for stratiform events
(Shehu and Haberlandt, 2021). The focus of this paper was
the improvement of the storm-oriented radar-based nowcasts
by considering other non-linear behaviours for future extrap-
olation instead of Lagrangian persistence. For this purpose,
a nearest-neighbour approach was proposed that predicts fu-
ture behaviours based on past observed behaviours of simi-
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Figure 13. The median improvements over all events that the 30NNs nowcast can introduce into the nowcast of the target variables (area,
intensity, and velocity in the x and y directions) in comparison to the Lagrangian persistence. The results are shown for each 30NNs
application, VS1 in solid and VS2 in dashed lines, and are calculated separately for storms that last for less than 30 min (upper row),
less than 3 h (middle row) and more than 3 h (lower row) and for the respective nowcast times. The green region of the plot indicates a
positive improvement (better nowcast by the 4-NN application) and the red region indicates a deterioration (better nowcast by the Lagrangian
persistence).

Figure 14. Median CRPS error over the 110 events for each of the target variables nowcasted from 4-NN deterministic (in dashed lines) and
30NNs probabilistic (in solid lines) applications for both target- (upper row) and storm-based (lower row) approaches. The results shown
here are from the “unmatched storms” when the nowcast time is 5 min.

lar storms. The method was developed and validated for the
Hanover Radar Range, where storms from 110 events were
pooled together and used in a “leave-one-event-out” cross-
validation. From 110 events a total of around 5200 storms
with different morphologies were identified and tracked with

HyRaTrac in order to build up the database for the k-NN im-
plementation. The storms were treated as ellipses, and for
each state of the storms’ evolution different features (describ-
ing both present and past states) were computed. The k-NN
approach was developed on these features to predict the be-
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Figure 15. Median performance improvement over the 110 events for each of the target variables nowcasted from 4-NN deterministic (upper
row) and 30NNs probabilistic (lower row) applications when compared to the Lagrangian persistence for both target- (dashed line) and
storm-based (solid line) approaches. The results shown here are from the “unmatched storms” when nowcast time is 5 min.

haviour of the storms in the future (for lead times up to 3 h)
through five target variables (area, intensity, velocities in the
x and y directions, and total lifetime).

First an importance analysis was performed in order to
recognize the most important predictors for each target vari-
able. Two different approaches were employed for this pur-
pose: Pearson correlation and partial information correlation
(PIC). A comparison of these two methods revealed that for
the application at hand Pearson correlation is more reliable
at determining important predictors and delivers 5 %–30 %
better results than the PIC method. However, the PIC seems
promising mainly for determining the most important predic-
tors of the area and total lifetime for storms longer than 3 h
and is still recommended for investigation in the future. The
area, intensity, and total lifetime of the storms seem to be co-
dependent on one another and on the features that describe
their evolution. In particular, the variance of the spatial in-
tensity is an important predictor for the three of them. On the
other hand, the velocity components are dependent more on
features that describe their evolution. Nevertheless, there is
still a dependency of the area and velocity components, and
this should be included when predicting each other, mainly
for long lead times.

The weights derived from the Pearson correlation were
used for the similarity estimation of different storms based
on the Euclidian distance. Two k-NN approaches were de-
veloped on two similarity metrics: (a) target-based approach
– similarity was computed for each target independently and
indicates the best performance possible by the given predic-
tors and weights; (b) storm-based approach – similarity was
computed for each storm, keeping the relationship between
the target variables. For the two approaches a deterministic
(averaging the 4 nearest neighbours) nowcast and a proba-
bilistic (with the 30 nearest neighbours) nowcast were issued

for all of the storms in leave-one-event-out cross-validation
mode. In the deterministic nowcast the difference between
the two remains mainly at short lead times (up to 30 min)
and at the velocity components, with the storm-based re-
sults yielding up to 40 % higher errors than the target-based
ones. However, at higher lead times the difference between
the two became insignificant, as the dissipation processes
were captured well for the majority of the storms. The same
behaviours were observed as well in the ensemble now-
cast, with target-based ensembles being slightly better than
the storm-based nowcast. Overall, the storm-based approach
seems reasonable for area, intensity, and total lifetime, as
they are co-dependent and their relationship should be main-
tained for each storm, while the target-based approach cap-
tures better the velocity components. A combination of both
approaches may result in better nowcasting of storm charac-
teristics.

To investigate which value each of the two k-NN ap-
proaches introduces to the nowcast, their errors (for both
deterministic and probabilistic nowcast) were compared to
the errors produced by the Lagrangian persistence. For both
of the approaches the improvement was more than 50 % for
convective storms for lead times higher than 15 min and for
mesoscale storms for lead times higher than 2 h. The results
were particularly good for the small convective storms due
to the high number of storms available in the database. For
the mesoscale storms (with duration longer than 3 h), the im-
provements were not satisfactory due to the small sample size
of such long storms. Increasing the sample size is expected
to improve the performance of the k-NN for these storms as
well. However, when consulting the probabilistic k-NN ap-
plication it seems that, even for these storms and the given
database, there are enough similar members in the 30 neigh-
bours that are better than the Lagrangian persistence. This
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emphasizes that the probabilistic nowcast is less affected by
the sample size than the deterministic 4-NN. Moreover, the
differences between the storm-based and target-based ap-
proaches become smaller in the probabilistic approach than
in the deterministic one. Lastly, the optimization of the ade-
quate neighbours for the deterministic approach is far more
complex than implemented here, but when issuing the proba-
bilistic nowcast there is no need to optimize the k number. It
is clear that the probabilistic application of the k-NN outper-
forms the deterministic one and has more potential for future
works.

Overall, the results suggest that if the database is big
enough, storms that behave similarly can be recognized by
their features, and their responses are useful in improving
the nowcast up to 3 h lead times. We recommend the use of
the nearest neighbour in a probabilistic application (30NNs)
to capture better the storm characteristics at different lead
times. A merging with the Lagrangian persistence for short
lead times (up to 15 min) and early nowcast times can also
be implemented. Further improvements can be achieved if
the predictor importance is estimated better (i.e. Monte Carlo
approach or neural networks) or if additional predictors are
included from other data sources like cloud information from
satellite data, temperature, convective available potential en-
ergy (CAPE), and convective inhibition (CIN) from numer-
ical weather prediction models, lightning flash activity, ad-
ditional measurements from Doppler or dual-polarized radar
data (like phase shift, Doppler velocity, vertical profile at dif-
ferent elevation angles), or various geographical information
(such as distance from heavy urbanized areas, mountains, or
water bodies). The main benefit of the probabilistic 30NNs
is mainly seen for convective events and the creation of new
nowcasting rules based on the predicted storm characteris-
tics.

Improving the nowcasting of storm characteristics is the
first step in improving rainfall nowcasting at fine temporal
and spatial scales. In a second step, knowledge about the
storm characteristics (as nowcasted by the 30NNs) should be
implemented in the spatial structure of the storms to estimate
rainfall intensities at fine scales (1 km2 and 5 min). There are
two options to deal with the spatial distribution of the rain-
fall intensities inside the storm region (which has so far not
been treated in this study). (1) Increase/reduce the area by the
given nowcasted area (as a target variable) for each lead time,
scale the average intensity with the nowcasted intensity, and
move the position of the storm in the future with the now-
casted velocity in the x and y directions. (2) Take the spa-
tial information of the selected neighbours, perform an opti-
mization in space (such that the present storm’s and neigh-
bour storm’s locations match), and assign this spatial infor-
mation to the present storm for each lead time. The former
is an extension of the target-based 30NNs, while the later is
an extension of the storm-based 30NNs. So far, the compari-
son between these two versions showed that the target-based
approach is better suited mainly to nowcasting the velocity

components, and thus a merging of the two could also be
reasonable: the storm-based approach is used for nowcasting
area–intensity–total lifetime (features that are co-dependent
based on the life cycle characteristics of convective storms)
and the target-based approach for the nowcasting of the ve-
locity components. Future work (Part II – Point-scale rain-
fall intensities) will include the integration of the developed
30NNs application in the object-oriented radar-based now-
cast to extend the rainfall predictability limit at fine spatial
and temporal scales (1 km2 and 5 min). The main focus of
Part II will be to investigate whether the methodology ap-
plied here can also introduce improvements at the local scale,
i.e. validation with the measurements from the rain-gauge
observations.
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Appendix A

Table A1. Strength of the relationship between the selected predictors and the target variables averaged for three lead times and storm
duration groups based on correlation values. The green shade indicates the strength of the relationship, with 0 for no relationship at all and 1
for the highest dependency. The averaged computed values for each target variable (last row) are used as bases for Table 3. The correlation
weights are absolute values of the correlation values between the predictors at specific lead times and target variables.
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Table A2. Strength of the relationship between the selected predictors and the target variables averaged for three lead times and storm
duration groups based on the PIC method. The green shade indicates the strength of the relationship, with 0 for no relationship at all and
1 for the highest dependency. The averaged computed values for each target variable (last row) are used as bases for Table 3: for intensity
and velocity in the x and y directions, since the PIC recognized only one predictor as important, and the average value is given as 1 for the
selected respective predictor.
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Figure A1. The standard deviation of the Pearson correlation weights between predictors and target variables obtained from a cross-sampling
of the events (leave one event at a time out). The box plot for each target variable describes the spread of the standard deviation over all
selected predictors.
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