Articles | Volume 25, issue 5
https://doi.org/10.5194/hess-25-2663-2021
https://doi.org/10.5194/hess-25-2663-2021
Research article
 | 
20 May 2021
Research article |  | 20 May 2021

A Bayesian approach to understanding the key factors influencing temporal variability in stream water quality – a case study in the Great Barrier Reef catchments

Shuci Liu, Dongryeol Ryu, J. Angus Webb, Anna Lintern, Danlu Guo, David Waters, and Andrew W. Western

Related authors

Synthesizing the impacts of baseflow contribution on concentration–discharge (CQ) relationships across Australia using a Bayesian hierarchical model
Danlu Guo, Camille Minaudo, Anna Lintern, Ulrike Bende-Michl, Shuci Liu, Kefeng Zhang, and Clément Duvert
Hydrol. Earth Syst. Sci., 26, 1–16, https://doi.org/10.5194/hess-26-1-2022,https://doi.org/10.5194/hess-26-1-2022, 2022
Short summary
A data-based predictive model for spatiotemporal variability in stream water quality
Danlu Guo, Anna Lintern, J. Angus Webb, Dongryeol Ryu, Ulrike Bende-Michl, Shuci Liu, and Andrew William Western
Hydrol. Earth Syst. Sci., 24, 827–847, https://doi.org/10.5194/hess-24-827-2020,https://doi.org/10.5194/hess-24-827-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Improving the hydrological consistency of a process-based solute-transport model by simultaneous calibration of streamflow and stream concentrations
Jordy Salmon-Monviola, Ophélie Fovet, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 127–158, https://doi.org/10.5194/hess-29-127-2025,https://doi.org/10.5194/hess-29-127-2025, 2025
Short summary
Leveraging a time-series event separation method to disentangle time-varying hydrologic controls on streamflow – application to wildfire-affected catchments
Haley A. Canham, Belize Lane, Colin B. Phillips, and Brendan P. Murphy
Hydrol. Earth Syst. Sci., 29, 27–43, https://doi.org/10.5194/hess-29-27-2025,https://doi.org/10.5194/hess-29-27-2025, 2025
Short summary
The significance of the leaf area index for evapotranspiration estimation in SWAT-T for characteristic land cover types of West Africa
Fabian Merk, Timo Schaffhauser, Faizan Anwar, Ye Tuo, Jean-Martial Cohard, and Markus Disse
Hydrol. Earth Syst. Sci., 28, 5511–5539, https://doi.org/10.5194/hess-28-5511-2024,https://doi.org/10.5194/hess-28-5511-2024, 2024
Short summary
Improved representation of soil moisture processes through incorporation of cosmic-ray neutron count measurements in a large-scale hydrologic model
Eshrat Fatima, Rohini Kumar, Sabine Attinger, Maren Kaluza, Oldrich Rakovec, Corinna Rebmann, Rafael Rosolem, Sascha E. Oswald, Luis Samaniego, Steffen Zacharias, and Martin Schrön
Hydrol. Earth Syst. Sci., 28, 5419–5441, https://doi.org/10.5194/hess-28-5419-2024,https://doi.org/10.5194/hess-28-5419-2024, 2024
Short summary
Spatio-temporal patterns and trends of streamflow in water-scarce Mediterranean basins
Laia Estrada, Xavier Garcia, Joan Saló-Grau, Rafael Marcé, Antoni Munné, and Vicenç Acuña
Hydrol. Earth Syst. Sci., 28, 5353–5373, https://doi.org/10.5194/hess-28-5353-2024,https://doi.org/10.5194/hess-28-5353-2024, 2024
Short summary

Cited articles

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., and Kløve, B.: A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model, J. Hydrol., 524, 733–752, 2015. 
Abbott, M., Bathurst, J., Cunge, J., O'connell, P., and Rasmussen, J.: An introduction to the European Hydrological System—Systeme Hydrologique Europeen,“SHE”, 2: Structure of a physically-based, distributed modelling system, J. Hydrol., 87, 61–77, 1986. 
Arnold, J. G. and Fohrer, N.: SWAT2000: current capabilities and research opportunities in applied watershed modelling, Hydrol. Process., 19, 563–572, 2005. 
Atkinson, A. B.: The box-cox transformation: Review and extensions, Stat. Sci., 36, 239–255, 2021. 
Atkinson, R., Power, R., Lemon, D., O'Hagan, R., Dovey, D., and Kinny, D.: The Australian Hydrological Geospatial Fabric–Development Methodology and Conceptual Architecture, Citeseer, 2008. 
Download
Short summary
Riverine water quality can change markedly at one particular location. This study developed predictive models to represent the temporal variation in stream water quality across the Great Barrier Reef catchments, Australia. The model structures were informed by a data-driven approach, which is useful for identifying important factors determining temporal changes in water quality and, in turn, providing critical information for developing management strategies.