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Abstract. Stream water quality is highly variable both across
space and time. Water quality monitoring programmes have
collected a large amount of data that provide a good basis for
investigating the key drivers of spatial and temporal variabil-
ity. Event-based water quality monitoring data in the Great
Barrier Reef catchments in northern Australia provide an op-
portunity to further our understanding of water quality dy-
namics in subtropical and tropical regions. This study inves-
tigated nine water quality constituents, including sediments,
nutrients and salinity, with the aim of (1) identifying the in-
fluential environmental drivers of temporal variation in flow
event concentrations and (2) developing a modelling frame-
work to predict the temporal variation in water quality at
multiple sites simultaneously. This study used a hierarchical
Bayesian model averaging framework to explore the relation-
ship between event concentration and catchment-scale en-
vironmental variables (e.g. runoff, rainfall and groundcover
conditions). Key factors affecting the temporal changes in
water quality varied among constituent concentrations and
between catchments. Catchment rainfall and runoff affected
in-stream particulate constituents, while catchment wetness
and vegetation cover had more impact on dissolved nutrient
concentration and salinity. In addition, in large dry catch-
ments, antecedent catchment soil moisture and vegetation
had a large influence on dissolved nutrients, which highlights
the important effect of catchment hydrological connectivity
on pollutant mobilisation and delivery.

1 Introduction

In-stream water quality plays a vital role in influencing
the health of freshwater ecosystems (Pérez-Gutiérrez et al.,
2017), which in turn underpins environmental, social and
economic sustainability (McGrane, 2016; Ustaoğlu et al.,
2020). Pollution derived from agricultural land and urban de-
velopment has led to water quality degradation in streams
and lakes in many regions of the world (Ren et al., 2003).
Among these water quality issues, coastal regions with high
agricultural production have been delivering large amounts
of pollutants to the ocean, where marine ecosystems are vul-
nerable to the evaluated levels of nutrients and sediments
(Gorman et al., 2009). It is estimated that 60 % of coastal
rivers in the USA have been moderately to severely degraded
(Gorman et al., 2009; Howarth et al., 2002). Therefore, to
protect both freshwater and marine ecosystems, better man-
agement of catchment-derived pollutants is needed.

Surface water quality is highly variable across spatial and
temporal scales (Guo et al., 2019; Lintern et al., 2018a).
These spatial and temporal variations are the result of com-
plex interactions between four key pollutant processes in
catchments, namely, sources (e.g. atmospheric deposition or
anthropogenic inputs), mobilisation (e.g. detachment from
the sources), delivery (e.g. transport from sources to receiv-
ing waters) and transformation (e.g. biogeochemical pro-
cesses; Granger et al., 2010; Harris, 2001; Lintern et al.,
2018a). Across different catchments, spatial differences in
water quality concentration can vary markedly due, in part,
to heterogeneity of natural landscapes in catchments (e.g.

Published by Copernicus Publications on behalf of the European Geosciences Union.



2664 S. Liu et al.: Key factors influencing water quality temporal variability in GBR catchments

geology, topography and climate) and human-induced ac-
tivities (e.g. agricultural and urban development; Liu et al.,
2018; Mainali et al., 2019). At a site, water quality concen-
trations can also exhibit significant daily, event, seasonal and
annual variability driven by variations in climatic conditions,
in-stream biogeochemical processes and hydrological trans-
port (Thompson et al., 2011). Thus, it can be challenging to
design effective catchment water quality management strate-
gies without a sound understanding of the spatial and tem-
poral variation in water quality and the associated driving
factors.

While it has been acknowledged that both spatial and tem-
poral variations in water quality are of great importance for
effective water resources management (Guo et al., 2020), this
study focused on identifying key drivers of the temporal vari-
ability in water quality. It follows our previous study inves-
tigating spatial variation in water quality in the same region
(Liu et al., 2018). A wide range of environmental factors may
affect temporal changes in water quality. Runoff and rain-
fall have been considered as important factors and the most
commonly used explanatory variables to describe temporal
variation in water quality (Deletic and Maksimovic, 1998),
for example, early work by Hem (1948) and Walling (1984).
Studies considering hydrometeorological drivers have been
typically related to the mobilisation and delivery of pollu-
tants. Catchment soil moisture and evapotranspiration can
also have an important role in determining the hydrologi-
cal cycle (e.g. runoff generation), such as sediments (Bieger
et al., 2014), nutrients (Lam et al., 2010) and salinity (Bre-
vik et al., 2006; Tweed et al., 2007), thereby affecting the
surface water quality. In addition, riverine water quality has
been found to be strongly influenced by seasonal changes
in vegetation cover (de Mello et al., 2018; Griffith et al.,
2002; Shi et al., 2017). For instance, satellite-derived veg-
etation indices have provided an opportunity to explore the
relationship between land cover and water quality temporal
dynamics (Griffith, 2002; Singh et al., 2013). Even though
significant research efforts have been made to explore the
relationship between water quality and these environmental
conditions, a comprehensive understanding of their relative
importance in diverse environments and at large scales is still
lacking.

Process-based and statistical modelling approaches have
been widely used to investigate water quality temporal dy-
namics in response to changes in the above-mentioned en-
vironmental factors (Fu et al., 2019; Wellen et al., 2015).
Process-based water quality models use complex mass bal-
ance structures describing the water quality source, mobil-
isation and transport processes (Abbott et al., 1986; Mer-
ritt et al., 2003). They are typically based on hydrological
and biogeochemical processes that can affect the generation
and transport of pollutants into receiving waters. These mod-
els (e.g. Soil and Water Assessment Tool – SWAT – and
source catchments) have been applied to assess the impact
of land use management and climate on sediment and pollu-

tant concentrations (Arnold and Fohrer, 2005; Francesconi
et al., 2016; Qi et al., 2018), optimise water management
and delivery for agriculture, industry and environmental uses
(Ly et al., 2019), and estimate pollutant generation, loss and
transport processes (Jayakrishnan et al., 2005; McCloskey
et al., 2021). However, the complexity of process-based mod-
els results in intensive data and calibration requirements, and
large-scale application has been limited (Abbaspour et al.,
2015; Arnold and Fohrer, 2005). These models may also have
large uncertainties in the interpretability of the parameters
and their characterisation of the effects of specific processes
(Wade et al., 2002), such as denitrification in streams (Filoso
et al., 2004).

On the other hand, statistical water quality models have a
relatively simple mathematical structure, an ability to quan-
tify predictive uncertainty (Kasiviswanathan and Sudheer,
2013; Srivastav et al., 2007) and low requirement for a pri-
ori information on distinct processes (Letcher et al., 2002;
Mainali et al., 2019; Schwarz et al., 2006). However, existing
statistical water quality modelling studies have limitations.
First, water quality monitoring data have often been limited
to low sampling frequencies, typically using monthly grab
samples. This can result in a lack of information on water
quality dynamics over runoff and/or storm events, which is
when a significant proportion of nutrients and sediment loads
are transported (Lloyd et al., 2016; Sherriff et al., 2015). Sec-
ond, most studies on statistical water quality modelling have
only investigated the relationship between water quality and
explanatory variables in a single or limited number of catch-
ments in small regions (Chang et al., 2015; Khan et al., 2020;
Koci et al., 2020). Few studies have investigated water qual-
ity at multiple locations using the same modelling frame-
work. Lastly, studies have usually relied on a single best
model with an assumption that it best approximated the true
drivers of water quality (Paliwal et al., 2007; Zhang et al.,
2009). This ignores the issue of selection uncertainty. Fur-
thermore, relying on a single model structure might result
in misleading conclusions or overconfidence in the results
(Wintle et al., 2003).

This study attempted to address these knowledge gaps in
statistical water quality models, taking advantages of event-
based water quality monitoring data from the Great Barrier
Reef (GBR) catchments in northern Australia, where land-
derived pollutants have posed threats to ecosystem health
of the GBR lagoon (Brodie et al., 2012; McKergow et al.,
2005b). We address the limitations in statistical water qual-
ity models by using the following: (1) Bayesian hierarchi-
cal modelling was used to investigate water quality temporal
variation, which allowed the prediction of water quality in
multiple catchments and, simultaneously, quantified parame-
ter uncertainty (Gelman et al., 2013; Rode et al., 2010; Webb
and King, 2009); and (2) Bayesian model averaging (BMA)
approaches were used to identify the relative importance of
the different environmental factors and provide multi-model
weighted predictions, which have been shown to better quan-
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tify the uncertainty arising from model selection (Höge et al.,
2019; Raftery et al., 1997; Wang et al., 2012). We targeted
nine common water quality indicators, including sediments,
nutrients and salinity. This is a subset of the constituents that
have been monitored in the GBR water quality monitoring
programme. Our analyses are conducted on constituents that
are of great concern to the coral reef ecosystem (McCloskey
et al., 2017) and could provide a useful comprehensive pic-
ture on the overall water quality status. Finally, we have con-
strained the variables to only the real parameters that can be
directly measured (with the exception of NOx), which helps
to understand full sediment and nutrient loads being exported
to the GBR lagoon. Overall, this study aimed to (1) iden-
tify the key drivers of temporal variation in water quality and
(2) predict water quality temporal variation using a Bayesian
multi-model approach.

2 Materials and methods

2.1 Study area

The GBR catchments, situated in northeastern Australia
(Fig. 1), consist of six natural resource management regions
whose streams and rivers discharge into the Great Barrier
Reef lagoon. These catchments cover a 437 354 km2, approx-
imately a quarter of the state of Queensland, and exhibit sig-
nificant diversity in climatic, geological and topographical
landscape characteristics, as well as in land use and land
management (Bartley et al., 2018; Gilbert and Brodie, 2001).
The GBR catchments range from small, steep, high-energy
streams in the wet tropics, which are dominated by sugar-
cane crops and rainforest, to large inland catchments used
for savannah grazing and crops (e.g. grain) and with exten-
sive low-energy floodplains in the dry tropics (Table 1; Davis
et al., 2017; Koci et al., 2019; McKergow et al., 2005a). Spa-
tial and temporal variations in rainfall in the GBR catch-
ments are a major cause of the diversity in land use patterns.
Annual rainfall ranges from less than 500 mm in the south-
west to more than 8000 mm in the northeast (Fig. 2c; Davis
et al., 2017; Kuhnert et al., 2009). Distinct wet (November
to April) and dry (May to October) seasons result in high
seasonal variation in runoff, and the El Niño–Southern Os-
cillation (ENSO) leads to high interannual variability (Day
and McKeon, 2018). In the dry tropics, a few large events in
the wet season contribute the majority of annual runoff, and
constant low flow dominates during the dry season (Jarihani
et al., 2017).

A total of 32 sites within the GBR catchments were se-
lected as case study catchments (Fig. 1 and Table S1 in the
Supplement). Previous multivariate analysis of the patterns
of time-averaged concentrations indicated that there were
two groups of sites (Table 1 and Fig. 2a). We found that dif-
ferences in geographic and/or hydroclimatic catchment char-
acteristics (Fig. 2b–d) are the key factors that distinguished

Figure 1. The Great Barrier Reef (GBR) catchments, monitoring
sites, land uses and the six natural resource management (NRM)
regions. Land uses have the following characteristics: (1) con-
servation (forest, woodland, savannah, etc., for conservation pur-
poses), (2) dryland (rainfed agriculture, including cereals but ex-
cluding grazing and sugar cane), (3) grazing (primarily cattle graz-
ing of native and introduced vegetation), (4) intensive (urban areas,
roads, etc.); (5) irrigated (irrigated cropping, excluding sugar cane);
(6) sugar (rainfed and irrigated sugar cane) and (7) water (water
bodies, including lake, river and marsh/wetland).

the two clusters of sites (e.g. small wet areas, i.e. cluster 1,
near the coast where topography, or orography, plays an im-
portant role in rainfall generation; Liu et al., 2018). Such ge-
ographic differences also lead to more dispersed sites in the
drier area (cluster 2).

2.2 Data collection and preparation

2.2.1 Water quality data

The nine studied constituents were total suspended solids
(TSSs), particulate nitrogen (PN), oxidised nitrogen (NOx),
ammonium nitrogen (NH4), dissolved organic nitrogen
(DON), filterable reactive phosphorus (FRP), dissolved or-
ganic phosphorus (DOP), particulate phosphorus (PP), and
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Figure 2. Spatial information of the GBR catchments northeastern Australia. (a) Site locations showing two groups based on the clustering
analysis of spatial variability in time-averaged water quality (Liu et al., 2018). (b) Topographic elevation (250 m resolution; Geoscience
Australia, 2008). (c) Annual average rainfall (Atkinson et al., 2008, 2012). (d) Updated Köppen–Geiger climate zone classification (Peel
et al., 2007).
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Table 1. Summary of differences in landscape characteristics between the two clusters of sites (Liu et al., 2018).

Cluster Climate Hydrology Land use or land cover Topography

1 Wet tropics region, with high
annual rainfall

Perennial, high-energy rivers Dominated by conservation
(e.g. rainforest) and cropping
(e.g. sugar)

Small and steep

2 Mostly dry tropics and rela-
tively dry areas, with clear sea-
sonal variability in rainfall

Ephemeral, low-energy rivers
that cease to flow in dry periods

Dominated by brigalow na-
tive vegetation and pastures for
grazing

Large and flat

electrical conductivity (EC). Water quality monitoring data
collected for the 32 GBR catchments over the 11-year period
of 2006 to 2016 were obtained from the loads monitoring
programme (Turner et al., 2012). This data set contained both
high-frequency event-based samples (e.g. daily or every few
hours by automatic samplers) that were taken during runoff
events and grab samples (e.g. monthly) that were taken un-
der baseflow conditions (Orr et al., 2014; Waters and Pack-
ett, 2007). As EC data from the loads monitoring programme
were limited, we extracted additional EC data from the Wa-
ter Monitoring Information Portal provided by the Depart-
ment of Natural Resources, Mines and Energy of Queens-
land (DNRME, 2016) to complement the loads monitoring
programme records.

2.2.2 Event mean concentration

We extracted continuous discharge records for each site from
the Water Monitoring Information Portal (DNRME, 2016) to
identify individual runoff events. An automated hydrograph
analysis tool – HydRun (Tang and Carey, 2017) – was used
to delineate runoff events. This approach allowed us to ex-
tract runoff event on the baseflow-free hydrograph by spec-
ifying a set of parameters (e.g. β filter coefficient – ReTh
difference between two flows to set the local minima for
event extraction). This toolbox directly returned the start and
end points of an event, thereby avoiding time-consuming
and subjective inconsistent outcomes. The key parameters
used for the HydRun toolbox are provided in Table S2 in the
Supplement, and an example hydrograph output is provided
in Fig. S1. These parameters are determined based on rec-
ommended values from the literature (Garzon-Garcia et al.,
2016; Ladson et al., 2013; Zhang et al., 2017) and a manual
review of all event hydrographs ensured overall consistency.
The event mean concentration (EMC) was then calculated
for each event that had at least two samples on each of the
rising and falling limbs of the hydrograph. Thus, for each
EMC, a minimum of four samples was achieved, which is
above the standard (three samples per event) set by Bartley
et al. (2012). On average, there were 14 samples per event
across the nine constituents (ranging from 12 for DOP to 16
for EC; Table S3 in the Supplement). This ensured that the
water quality dynamics over a runoff event were reasonably

well captured and that the derived EMCs were reliable (Wa-
ters and Packett, 2007). For each event, the EMC of a con-
stituent was calculated as the total load per unit flow volume
within the event using the following (Bartley et al., 2012):

EMC=
Event Load

Event Flow Volume
=

∑n
j=0

cj+cj+1
2 · qj+1/2 · tj+1/2∑n

j=0qj+1/2 · tj+1/2
, (1)

where n is the total number of samples for a given event, cj is
concentration of the j th sample, and qj+1/2 and tj+1/2 are
the intersample mean discharge and time interval between
j th and (j+1)th samples. The concentrations at the start and
end of the event (c0 and cn+1) are assumed to be the averaged
value for samples during baseflow (with baseflow identified
in the previous section). The EMCs were essentially flow-
weighted mean concentrations over individual runoff events,
which allowed the comparison of water quality across catch-
ments with contrasting flow regimes (e.g. two clusters of sites
in Fig. 2; Cooke et al., 2000; Richards and Baker, 1993). A
total of 1412 events was identified across the 32 sites, and
depending on data availability, EMCs were calculated for be-
tween 21 % (DOP) and 43 % (TSS) of these identified runoff
events (Table S2).

The derived EMCs (i.e. rather than the individual water
quality samples) were Box–Cox transformed to improve the
symmetry of the response variable (Box and Cox, 1964).
The normalisation of the predictand is necessary to facilitate
the fitting process and fulfil the statistical assumption of our
model. This is because we use a Bayesian linear regression
with the response variable sampled from a normal distribu-
tion (Sect. 2.3.1; Atkinson, 2021; Castillo et al., 2015; Hoet-
ing et al., 2002). The site-level Box–Cox transformation pa-
rameter λ for each constituent was first identified, using the
car package in R (Fox et al., 2012; R Core Team, 2013).
Then, for each constituent, the average λ from the 32 sites
was used to transform all available EMCs for that specific
constituent. This ensured that an identical transformation pa-
rameter was applied across the different sites for each con-
stituent (Guo et al., 2019).

2.2.3 Explanatory variables

This study investigated the effect of various hydrologic,
climatic and vegetation cover characteristics for different
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Table 2. Explanatory variables and their data sources.

Explanatory variable Unit Spatial resolution Source

Daily runoff mmd−1 Point measurements Queensland Department of Natural Resources, Mines and En-
ergy (DNRME, 2016). Available at https://water-monitoring.
information.qld.gov.au/ (last access: 1 September 2016)

Daily rainfall mm 5 km× 5 km Australia Water Availability Project (AWAP; Raupach et al., 2009).
Available at http://www.csiro.au/awap/ (last access: 1 June 2017)

Daily temperature ◦C

16 d normalised difference
vegetation index (NDVI)

– 1 km× 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) –
MOD13A2v006 (Didan, 2015). Available at https://earthdata.nasa.
gov/ (last access: 24 October 2016)

Daily soil moisture (root
zone 0–100 cm)

mm 5 km× 5 km Australia Landscape Water Balance model (AWRA-L; Frost et al.,
2016). Available at http://www.bom.gov.au/water/landscape (last
access: 1 March 2017)

Daily actual ET mm

The term ET refers to evapotranspiration.

events. These characteristics included runoff, catchment root
zone soil moisture, actual evapotranspiration rainfall, air
temperature and vegetation cover. The continuous stream-
flow monitoring data, gridded weather and climatic products
and remotely sensed imagery were used to derive catchment
average conditions for each event (Table 2).

For individual runoff events identified in the previous sec-
tion, three groups of event characteristics were prepared,
characterising pre-event, during-event and post-event condi-
tions (Table 3). Except for runoff, data for all explanatory
variables were first extracted from gridded data using catch-
ment boundaries were delineated using the Geofabric (Aus-
tralian Hydrological Geospatial Fabric) tool provided by the
Australian Bureau of Meteorology (Atkinson et al., 2008;
Fig. 1). The catchment-average time series data were then
averaged over the specific time window related to the event
(Table 3).

The explanatory variables in the during-event conditions
were averaged over the duration of the event. For the pre-
event and post-event conditions, the 7 d prior to and after
the event were used as the time window (except NDVI). The
7 d period was the median of the time of concentration (i.e.
the time for runoff to travel from the most remote point of
the catchment to the monitoring site) across all catchments.
These were estimated from catchment topography using the
Bransby–William’s equation, following its wide application
in Australian catchments for flood estimation (Pilgrim et al.,
1987). The ground cover was quantified by NDVI, an indi-
cator of the biophysical condition of the vegetation canopy
(Griffith et al., 2002). Previous studies have also shown that
there is a time lag between water availability and a change
in ground cover, which is typically 3 months for Australian
catchments (De Keersmaecker et al., 2015). Therefore, to

represent the pre-event ground cover condition, we averaged
all available NDVI measurements for 3 months prior to an
event. The runoff after the event (7 d) was also included as
an indicator of catchment wetness at the end of the event to
assess if the hydrologic condition towards the end of an event
influences the temporal variation in water quality.

Similar to the EMCs, all the explanatory variables were
Box–Cox transformed, following the procedure described in
Sect. 2.2.2. In addition, prior to the analyses, both trans-
formed EMCs and explanatory variables were standardised
to a mean of 0 and standard deviation of 1. As such, the
magnitude of a coefficient indicates the effect of each pre-
dictor relative to other predictors (Wan et al., 2014). The
cross-correlation (non-parametric Spearman’s rank correla-
tion coefficient) of all transformed predictors is provided in
Fig. S2 in the Supplement. Some of the variables are prox-
ies for the same process, and thus, some paired predictors
are highly correlated (e.g. pre-event NDVI and during-event
NDVI with Spearman’s ρ= 0.97). Freckleton (2011) high-
lighted that, when applying the model averaging approach, it
is not safe to simply exclude correlated variables without due
consideration of their likely independent effects. In our case,
the high correlation among predictors mainly comes from
time lag effects between predictors (e.g. pre-event, during
event and post-event). The relative importance of these pre-
dictors provides a strong management indication for future
water quality management strategies. Therefore, we have
not removed any correlated predictors in this analysis. It is
likely that different model structures result in similar predic-
tive performance (discussed in the analysis of the results, i.e.
Sect. 3.1).
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Table 3. The three groups of event characteristics and the averaging method.

Group Explanatory variable Abbreviation used in figures
and tables in the paper

Calculation method

During event Average runoff Event_ave_Q Average of daily runoff during the event
Maximum runoff Event_max_Q Maximum of daily runoff during the event
Average rainfall Event_ave_P Average of daily rainfall during the event
Maximum rainfall Event_max_P Maximum of daily rainfall during the event
Average temperature Event_T Average of daily temperature during the event
Average NDVI Event_NDVI Average of NDVI during the event
Average soil moisture Event_SM Average of daily soil moisture during the event
Average actual ET Event_AET Average of daily actual ET during the event

Pre-event Average runoff Ante_Q Average of daily runoff for 7 d prior to the event
Average rainfall Ante_P Average of daily rainfall for 7 d prior to the event
Average NDVI Ante_NDVI Average of NDVI for 3 months prior to the event
Average soil moisture Ante_SM Average of daily soil moisture for 7 d prior to the event
Average actual ET Ante_AET Average of actual ET for 7 d prior to the event

Post-event Average runoff Post_Q Average of daily runoff for 7 d after the event

Note: Q – runoff; P – rainfall; T – temperature; NDVI – normalised difference vegetation index; SM – root zone soil moisture; ET – evapotranspiration.

Figure 3. Analyses steps – the detailed methods used in the hierarchical modelling framework and model prediction and evaluation are in
the following sections.

2.3 Modelling – driver identification and water quality
prediction using multi-model inference

The statistical analysis and modelling followed several steps
(Fig. 3). The Bayesian modelling framework was applied to
catchments in clusters 1 and 2 separately. There are strong
practical merits in handling the clusters separately. Previous
results from clustering analyses on spatial patterns of water
quality and catchment characteristics were highly correlated
and the two clusters had quite different key explanatory vari-
ables (Liu et al., 2018). If all the sites were pooled into the
same analysis, it would make it more difficult to identify a
universal set of key explanatory variables that represent both
clusters and likely increase the uncertainty of the coefficients
too. The analysis would identify the same key factors identi-
fied for the two different clusters. It is important to consider
and model these clusters separately so that we can better in-
form how water quality can be managed in these separate
environmental conditions.

2.3.1 Bayesian variable selection

To investigate the relative importance of individual predic-
tors, an indicator Bayesian variable selection method was
used, and it is called the Gibbs variable selection (GVS;
George and McCulloch, 1993). An auxiliary inclusion vari-
able In (Eq. 2) for each predictor was introduced to indicate
whether that predictor was in or out of an individual iteration
of the hierarchical modelling structure.

In

{
1, nthpredictor present
0, nthpredictor absent

}
. (2)

In was modelled at the top level of the hierarchy, which en-
abled the use of identical model structures (i.e. combination
of predictors) across different sites. The overarching hierar-
chical modelling framework was defined as follows:

yi,j ∼N(µi,jσ) (3)

µi,j =meanj +SDj ·1i,j (4)
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1i,j =

N∑
n=1

θn,j · xn,i,j (5)

θn,j = In ·βn,j . (6)

The data-level model (Eq. 3) assumed that the EMC of
a particular constituent (e.g. one of TSS, NOx, EC, etc.) at
ith time step in the j th subcatchment, yi,j , followed a nor-
mal distribution (denoted as N( q)), with mean µi,j and a
global standard deviation σ . The mean value, µi,j was mod-
elled as the observed site-level-averaged EMC meanj plus
SDj ·1i,j , with the latter term being defined as the deviation
from this averaged value (Eq. 4; Guo et al., 2019). The devi-
ation term incorporated the site-level-observed standard de-
viation SDj , making 1i,j a standardised measure that could
be compared across sites.1i,j was further modelled as a lin-
ear additive function (Eq. 5) of all candidate predictors xn in
n= 1, 2,. . . , N = 14 (e.g. event average runoff, rainfall and
NDVI). Consequently,1i,j was defined as the temporal vari-
ability in water quality and was the quantity of interest. The
effect size (θn,j ) of individual predictors was another latent
variable used in the GVS and was estimated as the product of
In and the regression coefficient βn,j (Eq. 6), such that θn,j
was either βn,j (In = 1) or 0 (In = 0).

2.3.2 Hierarchical prior specification and Bayesian
inference of key drivers

Bayesian inference required specification of prior distribu-
tions for each model parameter. We used a hierarchical con-
ditional prior specification for predictor coefficients, allow-
ing the site-specific parameter values that describe the ef-
fects of each of the temporal predictors (β1,j ,β2,j ...,βn,j )
to be exchangeable between sites (O’Hara and Sillanpää,
2009; Webb and King, 2009). The detail specification of pri-
ors for each model parameter can be found in the Supple-
ment. In addition, to identify key drivers affecting temporal
changes in water quality, the posterior inclusion probability
(PIP−P(In = 1|y); Eq. A8 in the Supplement) of each pre-
dictor was used to compare the relative importance of indi-
vidual predictors (i.e. how often the nth predictor was in the
model).

2.3.3 Prediction from multi-model inference

We used Bayesian model averaging to generate an ensemble
of predictions of temporal variation in EMC for individual
constituents (Eq. 7). The average posterior distribution of a
quantity of interest (i.e. temporal variability in EMC) was
generated using the parameters (e.g. β1,j ,β2,j ...,βn,j ) sam-
pled from the posterior distribution to simulate EMC values
using the specific model, which is defined as follows:

[
ŷ|y

]
=

L∑
x=1

[
ŷ|y,Mx

]
P(Mx |y), (7)

where [ŷ|y,Mx] is the posterior distribution of a vector ŷ

of (prediction) derived from model Mx , and P(Mk|y) is the
posterior model probability (PMP; Eq. A8 in the Supple-
ment; O’Hara and Sillanpää, 2009).

2.3.4 Model evaluation and implementation

The proposed modelling framework was applied to the two
clusters of sites independently. This allowed an investigation
of whether the spatial heterogeneity in catchment landscapes
led to differences in the key factors controlling temporal vari-
ation in water quality. The key drivers were determined as the
predictors with a PIP above 0.8 (i.e. over 80 % of the models
included these predictors).

To further understand the reliability and robustness of the
BMA framework, the consistency of the posterior inclusion
probability of individual predictors was investigated by re-
sampling subsets of the observations multiple times (Kohavi,
1995). For each cluster, 80 % of events within one site were
first randomly selected, and the posterior inclusion probabil-
ity for this subset of observations was estimated. This was
repeated 1000 times to produce a distribution of posterior
inclusion probabilities for individual predictors, which was
then used to assess the uncertainty in the posterior inclusion
probability.

An ensemble of the averaged prediction in temporal vari-
ability of each event was obtained from each iteration
of parameter updating, using Markov chain Monte Carlo
(MCMC). The model fit was evaluated using the Nash–
Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) between
the observed temporal variability and the median of ensem-
ble predictions ŷ derived from the BMA (Eq. 7). The NSE
was calculated at both the cluster levels and site levels. The
model residuals were also checked for normality and het-
eroscedasticity (i.e. relationship between the residual and
predictors). In addition, model performance was evaluated
by providing the 50 % and 95 % credible interval (CI) of each
prediction.

To compare the relative importance of the predictors that
have been widely used in the existing literature (i.e. runoff
and rainfall) and other predictors (e.g. soil moisture, tem-
perature, evapotranspiration and vegetation cover), the mod-
elling framework was recalibrated using only the rainfall-
and/or runoff-related predictors (including all pre-, during-
and post-event predictors). This estimated the degree of im-
provement in the model’s explanatory power with the inclu-
sion of environmental variables, such as catchment wetness
and ground vegetation cover conditions.

The hierarchical modelling framework was implemented
in JAGS (Plummer, 2013a), using the package rjags in R
(Plummer, 2013b; R Core Team, 2013), which enabled both
the estimation of parameter values from prior distributions
with MCMC and the generation of model-averaged predic-
tions. The MCMC sampling had three parallel chains with
25 000 iterations for each chain. The first 5000 iterations
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were discarded as a burn-in period to allow convergence of
the Markov chains, resulting in 60 000 values to estimate the
posterior distribution for each model parameter and make
model predictions.

3 Results

3.1 Key drivers of temporal variability in water quality

The three key measures that were used to quantify the ef-
fect of individual predictors are (1) estimates of posterior
inclusion probability (PIP), which quantifies relative impor-
tance of individual predictors; (2) posterior model probabil-
ity (PMP), which estimates differences in plausible model
structures; and (3) posterior distributions of coefficients for
the key drivers (i.e. effect size; e.g. θ1,j ,θ2,j ...,θn,j in Eq. 6),
which measures direction and magnitude of the effect of key
predictors on water quality temporal variability.

Posterior inclusion probability (Fig. 4 and Table S3 in Sup-
plement) from the Bayesian modelling results indicated that,
in general, antecedent vegetation condition and antecedent
soil moisture were key factors in explaining temporal vari-
ation in water quality, especially for cluster 2 (warmer and
drier) sites. Catchment runoff and rainfall were the second
most important group of factors, especially for particulate
pollutants (TSS, PN and PP; clusters 1 and 2) and salinity.
In addition, the three groups of predictors (pre-, during and
post-event) showed varying effects among the constituents.
With regard to during-event conditions, event average runoff
(Event_ave_Q), event maximum runoff (Event_max_Q) and
event average rainfall (Event_ave_P) were three important
factors with relatively high PIP. In contrast, among pre-event
conditions, antecedent NDVI (Ante_NDVI) and antecedent
soil moisture (Ante_SM) were driving factors for the majority
of the constituents. Post-event runoff (Post_Q) only affected
a few constituents (e.g. on NOx and FRP for cluster 2) com-
pared with the other two groups of predictors. Overall, there
were notable differences in the important predictors for clus-
ters 1 and 2, and more important predictors were found for
the cluster 2 sites.

It is also worth noting that strong correlations between pre-
dictors does not necessary mean that the posterior inclusion
probability of these factors is similar (e.g. 1.00 and 0.34 for
pre-event NDVI and event NDVI, respectively, for DON in
cluster 2). The BMA can handle the collinearity by shrinking
the posterior distribution of inclusion probability of one of
the correlated variables towards zero (Nakagawa and Freck-
leton, 2011; Posch et al., 2020; Walker, 2019). This shrinkage
effect leads to a lower posterior probability of a more com-
plex model that includes correlated variables because each
extra predictor dilutes the prior density of the existing pre-
dictor that it correlates with. Such a complex model is un-
likely to be selected unless the loss in posterior probability

can be outweighed by the gain in achieving a higher likeli-
hood (Daoud, 2017; Hinne et al., 2020; Kruschke, 2014).

Results from here on will focus mainly on TSS, NOx and
FRP due to their impacts on the marine receiving environ-
ment. Results for the other six constituents are in the Supple-
ment. Figure 5 shows the posterior model probabilities for
TSS, NOx and FRP for the 100 models with highest PMP
(Figs. S3 and S4 in the Supplement show other constituents).
Red indicates a negative influence and blue a positive influ-
ence. The difference in PIP between the two clusters resulted
in quite different plausible model structures (models with rel-
atively high posterior model probability). A stand-out differ-
ence between the results for the two clusters was antecedent
vegetation cover condition (Ante_NDVI), which tended to be
a more important predictor of TSS for cluster 2 than for clus-
ter 1 (Fig. 5a). In addition, the plausible models for cluster 2
were generally more complex (with a larger number of pre-
dictors), except for DOP and EC (Figs. B3 and B4).

The distribution of posterior model coefficients for the key
predictors (Figs. 6, B5 and B6) further demonstrated that
the key drivers of temporal variability in water quality vary
between catchments and between constituents. During-event
runoff and rainfall tended to have a positive effect on sed-
iment and particulate constituents and a negative effect on
NOx and EC. In addition, there was strong negative effect of
antecedent vegetation condition on the majority of the con-
stituents.

The uncertainty in PIP, derived from 1000 subsampled
BMA runs (Figs. 7, B7 and B8) highlighted that the BMA
results were robust for most constituents, except for EC
(Fig. S7c in the Supplement). BMA tends to identify impor-
tant predictors and is less sensitive to the input data, which
is evidenced by the relatively narrow range of interquartile
ranges (IQRs), when PIP for a specific predictor is large (e.g.
antecedent soil moisture for FRP in Fig. 7). It is also worth
noting that large uncertainty in the PIP for EC was observed,
indicating the BMA results were sensitive to the observations
of EC. This might be related to data availability, which is fur-
ther discussed in Sect. 4.2.

3.2 Predictive performance

Moderate levels of temporal variability were explained by
the BMA framework for the two independent clusters of sites
(Figs. 8, S9 and S10 in the Supplement). At the cluster level,
the NSE ranged from 0.04 (DOP) to 0.68 (EC) and from
0.34 (NH4) to 0.64 (NOx) for clusters 1 and 2 (full model
columns in Table S6 in the Supplement), respectively. The
comparison of the modelling performance (posterior median
of BMA prediction) showed that the modelling framework
performed better on the cluster 2 sites than cluster 1 (Fig. 8;
red; 50 % prediction CI – cluster 2), except for NH4 and EC
(not shown). This was reflected in a better match to the 1 : 1
line within the 90 % prediction CI for cluster 2 catchments.
According to model performance criteria recommended by
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Figure 4. Posterior inclusion probability (PIP) of each candidate predictor for (a) cluster 1 (wet) catchments and (b) cluster 2 (dry) catch-
ments. Dark blue refers to high PIP, and light blue refers to low PIP. The definitions of the abbreviations of each predictor on the y axes are
given in Table 3.

Moriasi et al. (2015), model performance is satisfactory (Ta-
ble S7 in the Supplement), especially for the cluster 2 mod-
els. Generally, low NSE is acceptable for modelling nutrients
and sediment compared to hydrology. It is also worth noting
that, in contrast to the models developed here, most of the
water quality models evaluated in Moriasi et al. (2015) are
process-based models and focus on individual catchments.

It is also worth noting that the prediction interval for EC
(Fig. S10c) was much wider than the rest of the constituents.
Similar results were found in the site-level performance, with
the average site-level NSE (Fig. S11 in the Supplement) for
cluster 2 models typically higher than for cluster 1. The site-
specific performance varied across sites, with the largest vari-
ation in EC (NSE for the cluster 2 result ranged from approx-
imately 0.20 to 0.90). The modelling performance of DOP in
the cluster 1 sites was poor (NSE= 0.04); all candidate co-
variates had low predictive power, resulting in the poor mix-
ing of chains of the inclusion variable In (i.e. posterior In was
around 0.5). The model residuals were normally distributed
(Fig. S12 in the Supplement), and there was no clear het-
eroscedasticity within the residuals (Figs. S13 to S21 in the
Supplement).

Table S6 (Supplement) compares the model performance
using rainfall- and/or runoff-related predictors only and all
candidate predictors (full model). A large increase in NSE
was found for most dissolved nutrient species (e.g. NOx,
NH4, DON, FRP and DOP) for the full model. Notably, for
NH4 in cluster 1, factors other than rainfall and runoff ex-
plained almost all the variability that could be captured by
the BMA.

4 Discussion

4.1 Factors influencing temporal variability in stream
water quality

4.1.1 Runoff and rainfall

Our results demonstrated that runoff and rainfall were impor-
tant factors in explaining the temporal dynamics of particu-
late pollutants (i.e. TSS, PN and PP) and dissolved species
(e.g. NOx, DOP and EC) in the GBR catchments. These re-
sults align with the findings of previous studies that have used
these variables to understand changes in water quality over
time (Beiter et al., 2020; McKergow et al., 2003; Schwarz
et al., 2006).

Hydrologic and climatic variables (i.e. rainfall and runoff)
showed distinct effects on different constituents and differ-
ent groups of catchments. The positive effect of event runoff
and rainfall on sediment and particulate nutrients (i.e. PN and
PP) revealed their underlying impacts on pollutant mobili-
sation and transport processes in catchments (Hirsch et al.,
2010; Lintern et al., 2018b; Musolff et al., 2015). In con-
trast, there were negative effects of during-event runoff on
NOx (cluster 1), DOP (cluster 2) and EC (both clusters). For
NOx and EC, this was most likely caused by hydrological
transport processes; these constituents tend to be transported
to receiving rivers via subsurface flows (Kratz et al., 1997;
McKergow et al., 2003). For events with relatively low sur-
face runoff, higher NOx and EC event concentrations could
be expected in these catchments (Clow and Sueker, 2000;
Skoulikidis et al., 2006). In addition, for DOP, in-stream bio-
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Figure 5. Comparison of BMA model coefficients and cumulative model probabilities (only the first 100 models ranked according to the
highest probability are shown) between cluster 1 (wet – a, c, e) and cluster 2 (dry – b, d, f) sites for (a) TSS, (b) NOx and (c) FRP. Each
column in the heat map represents the one specific model (ranked from the highest model probability from left to right), and the width of
the column is normalised by the posterior model probability (i.e. the widest columns indicate models with the largest increase in probability
compared to the next most probable model). The colour indicates the direction of the coefficients; red is negative, and blue is positive. The
coefficient value was averaged across the posterior median value of the site-specific coefficient within each cluster (effect size, θn,j , in Eq. 6).
The definitions of the abbreviations of each predictor on the y axes are given in Table 3.
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Figure 6. Distribution of median of site-level coefficients for all plausible models in BMA between cluster 1 (wet – a, c, e) and cluster 2
(dry – b, d, f) sites for (a) TSS, (b) NOx and (c) FRP. Only predictors with PIP >0.8 are included. For each specific model structure, the
coefficient value of a predictor was the median of the site-specific coefficient across all sites (effect size, θn,j , in Eq. 6). The distribution of
this value thus represents the probability of the model (PMP) and the variability in the same predictor across different sites. Black dots show
the median, grey vertical lines show the 95 % CI, and blue coloured vertical lines show the 50 % CI. The definitions of the abbreviations of
each predictor on x axes are given in Table 3.

geochemical cycling was likely to have caused the negative
effect of event runoff. The events with low runoff, coupled
with high temperatures (positive effect of event temperature
for DOP cluster 2; Fig. S4a) may relate to increases in the
rate of P releases from organic forms at higher temperatures
(Verheyen et al., 2015).

Post-event runoff (Post_Q) showed effects on specific con-
stituents (e.g. NOx, FRP and EC). There are two alternative

reasons that might explain this. First, high post-event runoff
may be an indicator of large baseflow contribution during
the events (Cuomo and Guida, 2016). Therefore, as discussed
in the above paragraph, constituents that can be transported
through subsurface flows tend to be influenced by amount of
runoff post-event. Alternatively, it was significantly and pos-
itively correlated with other event characteristics and catch-
ment biophysical conditions (e.g. vegetation cover; Fig. S2).
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Figure 7. The comparisons of the distribution of posterior inclusion probabilities of the individual predictors derived from 1000 subsampled
BMA runs. The boxes are the interquartile ranges (IQRs; 25th to 75th percentile), and the whiskers are the ranges between the 1.5 IQR of
the lower quartile and 1.5 IQR of the higher quartile. The vertical bar is the median. Blue shows cluster 1 (wet) catchments, and red shows
cluster 2 (dry) catchments. The definitions of the abbreviations of each predictor on y axes are given in Table 3.

Together, these intercorrelated factors could have influenced
pollutant source, mobilisation and delivery (see discussions
below; Granger et al., 2010; Lintern et al., 2018a).

4.1.2 Vegetation cover

Vegetation cover was another driving factor that was found
to have influenced water quality dynamics; antecedent NDVI
(Ante_NDVI) was included in the plausible models more fre-
quently than event NDVI. The negative effect of antecedent
NDVI on particulate and dissolved nutrients (except for
DOP) was in line with previous studies that have found that
NDVI was negatively correlated with these constituent con-
centrations in streams (Griffith et al., 2002; Masocha et al.,

2017). An explanation for these results could be that high
vegetation groundcover tended to stabilise the surface soil
and reduce sediment losses by erosion (Meyer et al., 1997;
Singh et al., 2008). In addition, vegetation nutrient assimila-
tion and retention processes consumed nutrients in sediment
and waterbodies, and these processes peaked in spring and
early summer, typically before the wet season in the GBR
catchments (Tabacchi et al., 2000; Vymazal, 2007).

The effect of antecedent NDVI varied among groups of
constituents in clusters 1 and 2. Specifically, it was a key
predictor for NOx, NH4 and FRP for cluster 1 and almost
all constituents for cluster 2. This can be explained by the
contrasting landscapes and climate of these two regions (Liu
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Figure 8. Performance of the BMA models of the temporal vari-
ability of three constituents across 32 sites, represented by predic-
tion intervals from BMA and observed Box–Cox EMC across two
clusters of sites for (a, b) TSS, (c, d) NOx and (e, f) FRP. Each bar
shows a single event, and all events at all sites in the cluster are
included. The NSE values were calculated based on median predic-
tions. Black dots show prediction median, and grey vertical lines
show the 95 % CI. Coloured vertical lines show the 50 % CI, and
blue is cluster 1 (wet) catchments, and red is cluster 2 (dry) catch-
ments. Dashed black lines are the 1 : 1 relationship.

et al., 2018). In the dense, vegetation-covered catchments in
cluster 1 (i.e. the sites in the wet tropics), dissolved inorganic
nutrient losses were likely due to more fertile soils (e.g. ap-
plication of fertiliser on sugarcane) during the growing sea-
son (McKergow et al., 2005a). Furthermore, denser natural
vegetation cover (e.g. riparian vegetation and forest) could
increase plant uptake and assimilation of dissolved nutrients
compared to the sparse vegetation cover in the dry tropics
(cluster 2) region. Conversely, among cluster 2 sites, vege-

tation coverage showed clear seasonal variation, which was
linked closely to the seasonality in rainfall and grazing ac-
tivity. Sediments and particulate pollutants were likely to be
mobilised in grazed catchments (high rate of soil erosion)
and delivered to streams via surface runoff (Neil et al., 2002;
Turner et al., 2012). More importantly, high vegetation cover
tended to mitigate mobilisation of pollutants through stabil-
ising the surface soil and reducing sediment losses from ero-
sion (Meyer et al., 1997; Singh et al., 2008).

4.1.3 Soil moisture and evapotranspiration

The results showed that soil moisture (SM) and actual evap-
otranspiration (AET) had a high impact on different con-
stituents, particularly in the cluster 2 catchments (e.g. an-
tecedent soil moisture – DON and EC; antecedent AET –
TSS and EC). These two variables were intercorrelated and
affect the hydrological cycle and vegetation cover (Correll,
1996). The results indicated that antecedent soil moisture had
a negative effect on PN, NOx, NH4, DON, DOP and FRP.
On one hand, this was expected as antecedent soil moisture
was positively correlated with vegetation cover, and high soil
moisture tends to reduce soil erosion and increase plant nu-
trient uptake. It may also be that soil water content affected
soil microbial activity, influencing the biogeochemical pro-
cesses in catchments, such as denitrification (Doran et al.,
1988; Weier et al., 1993). The rate of denitrification was also
enhanced under anoxic conditions, when soil moisture was
high (Zhu et al., 2019). On the other hand, higher soil wa-
ter can be associated with increased shallow subsurface flow
and leaching of some constituents such as NOx (Zhu et al.,
2018). This appears not to occur to a sufficient extent for it
to override other impacts of soil moisture.

4.1.4 Temperature

Our results suggested that average event temperature
(Event_T) had a positive effect on NOx, FRP and DOP. This
may be attributed to the strong negative cross-correlation be-
tween temperature and event runoff and antecedent vegeta-
tion condition (Fig. S2). Rainfall during a warmer period
might have been associated with less event runoff, resulting
in higher event mean concentrations (Sect. 4.1.1). The effect
of event temperature can be also attributed to the fact that
the higher temperatures could lead to more recent minerali-
sation of nutrients, increasing readily transportable dissolved
nutrient sources (Liu et al., 2017; Wang et al., 2020). Tem-
perature is one controlling factor that affects pollution trans-
formation (Barnard et al., 2005). For instance, temperature
has a direct impact on the activity of microorganisms, which
affects the intensity of biological processes such as denitrifi-
cation (Wakelin et al., 2011). In addition, higher event tem-
perature might be associated with higher pre-event tempera-
ture, resulting in poor groundcover, potentially lowering the
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dissolved nutrients losses through plant assimilation and/or
uptake (Sect. 4.1.2; Muro et al., 2018).

4.2 Predicting temporal variations in water quality

The Bayesian modelling framework in this study provided
a useful tool to assess in-stream water quality dynamics.
The models were able to explain more temporal variation in
NOx and EC than in other constituents. This is related to the
sources and delivery processes of these two constituents. An-
thropogenic inputs (e.g. agriculture) for NOx and large stores
in groundwater together with limited geochemical transfor-
mation for EC (salts) suggested that temporal changes in
event concentration could be well captured by the changes
in catchment hydroclimatic and vegetation conditions. In ad-
dition, NOx and EC tend to be transported in subsurface flow
pathways. The dynamics of catchment soil wetness and veg-
etation cover have been previously linked to hydrological
interactions between surface and subsurface flows (Ursino
et al., 2004). The incorporation of soil moisture and veg-
etation cover into the Bayesian modelling framework more
readily allowed the description of the main ecohydrological
processes of these two constituents.

In contrast, model performance for DOP was poor in
cluster 1 catchments, which can be explained by two rea-
sons. First, in the wet tropics catchments, DOP concentra-
tions were generally stable, regardless of changes in flow,
which can be explained by chemical exchange processes be-
tween water and sediment in stream (White et al., 1998).
This means that the variability in DOP cannot be captured
by the environmental variables considered here. Second, the
poor performance might be attributed to the data set hav-
ing fewer observations of DOP EMCs among cluster 1 sites.
There were only 66 observations, compared to the next low-
est number of 167 (EC) among other constituents in the clus-
ter 1 catchments, which may not be sufficient to fully inform
the model. This small sample size could have led to (1) poor
mixing of MCMC chains for inclusion variables (Fig. S8a
in the Supplement), where no predictors showed predictive
power, and (2) the BMA failed to identify the plausible mod-
els, since none of the candidate models had enough predic-
tive power to fit the data well (Guthke, 2017; Höge et al.,
2019). Continuous DOP monitoring would be required to
achieve a better understanding of the factors driving temporal
variation in this constituent. Therefore, we did not infer any
conclusions from the modelling results of DOP in cluster 1
due to the poor modelling performance.

The modelling performance in this study is generally
higher than our previous studies (i.e. Guo et al. (2019, 2020)).
This improved performance can be attributed to the follow-
ing:

1. Differences in water quality monitoring data.

Rivers in Queensland are more event dominated; thus,
we used event-based water quality data compared to our

previous studies, which used monthly water quality data
in Victoria. The uncertainty in event-based water quality
samples has less impact on modelling performance be-
cause we considered the variability in streamflow when
developing EMCs in this study (Chen et al., 2017; Les-
sels and Bishop, 2015; Letcher et al., 2002).

2. Differences in modelling methods.

Here, we used a model-averaging approach that consid-
ered model predictions from multiple candidate models,
rather than a single model approach that was used our
previous studies (Guo et al., 2020, 2019). This approach
is a more robust approach to providing predictions be-
cause the predictions consider the model selection un-
certainty (Höge et al., 2019; Raftery et al., 1997).

Statistical modelling in hydrology or water quality is af-
fected by uncertainty, only some of which can be charac-
terised within any particular modelling framework (Kavet-
ski et al., 2006; Mantovan and Todini, 2006; Renard et al.,
2010). The Bayesian modelling framework used in this study
incorporated the uncertainties in model selection (between
model), observations and model parameters (within model)
directly into the model predictions (Steel, 2019). This is a
more comprehensive characterisation than in studies where
model structures are assumed a priori. Reporting of predic-
tive uncertainty of temporal variations in water quality also
provided valuable information on the confidence in the aver-
aged predictions. In addition, as discussed in Sect. 2.3, due
to strong practical and conceptual reasons, our modelling
framework was applied to two clusters of sites separately.
However, this method can be used anywhere, e.g. a single
modelling framework for all sites. Thus, we are not making
claims that there are always variables that will be important
in such catchments. Our method is universal, but our results
are not.

Nevertheless, limitations remain in the BMA approach
which are important to understand. For example, for EC,
there was a larger predictive uncertainty and larger uncer-
tainty in posterior inclusion probability for each predictor
from the robustness assessment than estimated in the fit to
the complete data set. A limitation of BMA is that the pos-
terior model probability could be sensitive to the specifi-
cation of the parameter prior distribution (Fernandez et al.,
2001). Specifying more informative priors on model param-
eters (i.e. inclusion variable In) would have the effect of re-
stricting the set of candidate models (Rockey and Temple,
2016). Indeed, several studies have compared different pre-
dictive performances of different prior specification of BMA
coefficients and found that the choice of prior matters (Ba-
yarri et al., 2012; Liang et al., 2008). Future investigation
of the sensitivity of prior distributions for BMA coefficients
might achieve a reduction in predictive uncertainty and insta-
bility in posterior inclusion probabilities.
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4.3 Management implications

The identification of key drivers of temporal variation in
water quality can inform catchment water quality manage-
ment. The results of this study showed that the effects of
hydro-climatic drivers (e.g. rainfall and runoff) and vegeta-
tion cover varied among constituents and regions. This may
allow funding bodies, such as government and regional nat-
ural resource management groups, to identify regions where
land management and restoration would have a greater ef-
fect on mitigating sediments and nutrients export. The re-
sults suggested that, compared to wet catchments, maintain-
ing vegetation ground cover in large dry grazed catchments
(e.g. the Burdekin and Fitzroy catchments in cluster 2) be-
fore the wet seasons could be an effective way of reducing
sediment losses via erosion processes. These results are con-
sistent with current, improved land management practices
across the GBR catchments (Brodie et al., 2012; Queensland
Government, 2017). Management measures (e.g. establish-
ment of wetlands, revegetation and/or rehabilitation of gul-
lies and stabilisation of river banks) can reduce sediment
losses from hillslope and gully erosions (Koci et al., 2020;
Sherriff et al., 2016). In addition, catchment-specific man-
agement that accounts for temporal variation in catchment
hydrological connectivity is required for the control of dis-
solved nutrients. Dominant flow pathways for dissolved nu-
trients can vary spatially and temporally. For example, sub-
surface flow in the wet tropics region have tended to transmit
more dissolved nutrients because prolonged wet conditions
lead to this region being more likely to be connected via lat-
eral subsurface flow (Geng et al., 2017). The enhanced mo-
bilisation of leached dissolved nutrients from intensive crop-
ping (e.g. sugarcane) from perched groundwater should be
targeted in these catchments (Melland et al., 2012). Manage-
ment practices, such as conservation tillage, and adaptation
of the 4R concept (right source, right rate, right time and
right place) for fertiliser application may help to minimise
dissolved nitrogen losses (Lintern et al., 2020; Snyder, 2017).

5 Conclusions

This study provides a data-driven understanding of key
drivers influencing the temporal variation in water quality.
A hierarchical Bayesian model averaging framework was
used to identify the key environmental drivers and predict
the water quality dynamics at multiple catchments. Results
showed that the temporal dynamics of water quality can be
predicted well using models considering the combined ef-
fects of hydroclimate and vegetation groundcover. The ef-
fects of key hydro-climatic and vegetation conditions varied
among different constituents and across regions. This study
reinforces the importance of vegetation cover management
as one key management response, especially for large grazed
catchments. Future investigation could involve the develop-

ment of a spatio-temporal modelling framework to fully cap-
ture the water quality dynamics. More importantly, it has
continued to be challenging to prioritise management prac-
tices and evaluate the effectiveness of the improved man-
agement interventions. Consequently, with more land man-
agement surveys and continuous water quality monitoring
data available, an extended temporal or spatio-temporal mod-
elling framework could potentially be used to assess if the
success of the restoration measures.
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