Articles | Volume 25, issue 4
Hydrol. Earth Syst. Sci., 25, 1993–2008, 2021
https://doi.org/10.5194/hess-25-1993-2021
Hydrol. Earth Syst. Sci., 25, 1993–2008, 2021
https://doi.org/10.5194/hess-25-1993-2021
Research article
14 Apr 2021
Research article | 14 Apr 2021

Hysteresis in soil hydraulic conductivity as driven by salinity and sodicity – a modeling framework

Isaac Kramer et al.

Related authors

Compaction effects on evaporation and salt precipitation in drying porous media
Nurit Goldberg-Yehuda, Shmuel Assouline, Yair Mau, and Uri Nachshon
Hydrol. Earth Syst. Sci., 26, 2499–2517, https://doi.org/10.5194/hess-26-2499-2022,https://doi.org/10.5194/hess-26-2499-2022, 2022
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Theory development
Compaction effects on evaporation and salt precipitation in drying porous media
Nurit Goldberg-Yehuda, Shmuel Assouline, Yair Mau, and Uri Nachshon
Hydrol. Earth Syst. Sci., 26, 2499–2517, https://doi.org/10.5194/hess-26-2499-2022,https://doi.org/10.5194/hess-26-2499-2022, 2022
Short summary
Evaporation front and its motion
Jiří Mls
Hydrol. Earth Syst. Sci., 26, 397–406, https://doi.org/10.5194/hess-26-397-2022,https://doi.org/10.5194/hess-26-397-2022, 2022
Short summary
HESS Opinions: Unsaturated infiltration – the need for a reconsideration of historical misconceptions
Peter F. Germann
Hydrol. Earth Syst. Sci., 25, 1097–1101, https://doi.org/10.5194/hess-25-1097-2021,https://doi.org/10.5194/hess-25-1097-2021, 2021
Short summary
Sigmoidal water retention function with improved behaviour in dry and wet soils
Gerrit Huibert de Rooij, Juliane Mai, and Raneem Madi
Hydrol. Earth Syst. Sci., 25, 983–1007, https://doi.org/10.5194/hess-25-983-2021,https://doi.org/10.5194/hess-25-983-2021, 2021
Short summary
The challenges of an in situ validation of a nonequilibrium model of soil heat and moisture dynamics during fires
William J. Massman
Hydrol. Earth Syst. Sci., 25, 685–709, https://doi.org/10.5194/hess-25-685-2021,https://doi.org/10.5194/hess-25-685-2021, 2021
Short summary

Cited articles

Ali, A., Biggs, A. J., Šimůnek, J., and Bennett, J. M.: A pH-Based Pedotransfer Function for Scaling Saturated Hydraulic Conductivity Reduction: Improved Estimation of Hydraulic Dynamics in HYDRUS, Vadose Zone J., 18, 1, https://doi.org/10.2136/vzj2019.07.0072, 2019. a
Bennett, J. M., Marchuk, A., Marchuk, S., and Raine, S. R.: Towards predicting the soil-specific threshold electrolyte concentration of soil as a reduction in saturated hydraulic conductivity: The role of clay net negative charge, Geoderma, 337, 122–131, https://doi.org/10.1016/j.geoderma.2018.08.030, 2019. a
Chen, Y. and Banin, A.: Scanning electron microscope (SEM) observations of soil structure changes induced by sodium-calcium exchange in relation to hydraulic conductivity, Soil Science, 120, 428–436, 1975. a, b, c
Cook, F. J., Jayawardane, N. S., Rassam, D. W., Christen, E. W., Hornbuckle, J. W., Stirzaker, R. J., Bristow, K. L., and Biswas, T. K.: The state of measuring, diagnosing, ameliorating and managing solute effects in irrigated systems, CRC for Irrigation Futures Technical Report, CRC for Irrigation Futures, Darling Heights, 2006. a
Dane, J. H. and Klute, A.: Salt Effects on the Hydraulic Properties of a Swelling Soil, Soil Sci. Soc. Am. J., 41, 1043–1049, https://doi.org/10.2136/sssaj1977.03615995004100060005x, 1977. a, b
Download
Short summary
Salinity and sodicity can cause irreversible degradation to soil, threatening agricultural production and food security. To date, very little is known about the degree to which soil degradation can be reversible. We introduce a model for describing this partial reversibility (hysteresis) and lay out the experimental procedures necessary for characterizing the soil in this regard. We must shift our focus from degradation measurements to reversal measurements so that we can maintain healthy soils.