Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-1761-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1761-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Space–time variability in soil moisture droughts in the Himalayan region
International Centre for Integrated Mountain Development (ICIMOD),
Kathmandu, Nepal
Saurav Pradhananga
International Centre for Integrated Mountain Development (ICIMOD),
Kathmandu, Nepal
Narayan Kumar Shrestha
International Centre for Integrated Mountain Development (ICIMOD),
Kathmandu, Nepal
School of Engineering, University of Guelph, Guelph, Canada
Sven Kralisch
Department of Geoinformation Science, Friedrich Schiller University
Jena, Jena, Germany
Institute of Data Science, German Aerospace Center (DLR), Jena,
Germany
Jayandra P. Shrestha
International Centre for Integrated Mountain Development (ICIMOD),
Kathmandu, Nepal
Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand
Manfred Fink
Department of Geoinformation Science, Friedrich Schiller University
Jena, Jena, Germany
Related authors
No articles found.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci., 29, 1615–1636, https://doi.org/10.5194/hess-29-1615-2025, https://doi.org/10.5194/hess-29-1615-2025, 2025
Short summary
Short summary
Our study projects how climate change will affect the drying of river segments and stream networks in Europe, using advanced modelling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent and intense and will start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists for evaluating the ecological health of river ecosystem.
Giovanny Mosquera, Daniela Rosero-López, José Daza, Daniel Escobar-Camacho, Annika Künne, Patricio Crespo, Sven Kralisch, Jordan Karubian, and Andrea Encalada
EGUsphere, https://doi.org/10.5194/egusphere-2025-71, https://doi.org/10.5194/egusphere-2025-71, 2025
Short summary
Short summary
Tropical forests supply the water needs of millions of people around the world. Hydrological intermittency, defined as the cessation of river and stream flow, reduces the ability of these forests to provide continuous flow throughout the year. However, there is a lack of knowledge about the factors that cause hydrological intermittency in tropical forests. The results reveal that geology is a key factor causing hydrological intermittency in the Ecuadorian forest of the Chocó-Darién ecoregion.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Cited articles
Alemohammad, S. H., Kolassa, J., Prigent, C., Aires, F., and Gentine, P.: Global downscaling of remotely sensed soil moisture using neural networks, Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, 2018.
Allen, R. G., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration:
Guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO, Rome, 1998.
Bayissa, Y., Maskey, S., Tadesse, T., van Andel, S. J., Moges, S., van Griensven, A., and Solomatine, D.: Comparison of the performance of six
drought indices in characterizing historical drought for the upper Blue Nile
Basin, Ethiopia, Geosciences (Switzerland), 8, 1–26, https://doi.org/10.3390/geosciences8030081, 2018.
Bhandari, G. and Panthi, B. B.: Analysis of Agricultural Drought and its
Effects on Productivity at Different District of Nepal, J. Inst. Sci. Technol., 19, 106–110, https://doi.org/10.3126/jist.v19i1.13835, 2014.
Dahal, P., Shrestha, N. S., Shrestha, M. L., Krakauer, N. Y., Panthi, J.,
Pradhanang, S. M., Jha, A., and Lakhankar, T.: Drought risk assessment in
central Nepal: temporal and spatial analysis, Nat. Hazards, 80, 1913–1932, https://doi.org/10.1007/s11069-015-2055-5, 2016.
Dai, A.: Characteristics and trends in various forms of the Palmer Drought
Severity Index during 1900–2008, J. Geophys. Res.-Atmos., 116, D12115, https://doi.org/10.1029/2010JD015541, 2011.
Dai, A.: Increasing drought under global warming in observations and models,
Nat. Clim. Change, 3, 52–58, https://doi.org/10.1038/nclimate1633, 2013.
Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L.,
Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sens. Environ., 203, 185–215, https://doi.org/10.1016/j.rse.2017.07.001, 2017.
Eeckman, J., Nepal, S., Chevallier, P., Camensuli, G., Delclaux, F., Boone,
A., and de Rouw, A.: Comparing the ISBA and J2000 approaches for surface flows modelling at the local scale in the Everest region, J. Hydrol., 569, 705–719, https://doi.org/10.1016/j.jhydrol.2018.12.022, 2019.
Firoz, A. B. M., Nauditt, A., Fink, M., and Ribbe, L.: Quantifying human impacts on hydrological drought using a combined modelling approach in a tropical river basin in central Vietnam, Hydrol. Earth Syst. Sci., 22, 547–565, https://doi.org/10.5194/hess-22-547-2018, 2018.
Flügel, W.-A.: Delineating hydrological response units by geographical
information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany, Hydrol. Process., 9, 423–436, https://doi.org/10.1002/hyp.3360090313, 1995.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of
the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Hamal, K., Sharma, S., Khadka, N., Haile, G. G., Joshi, B. B., Xu, T., and
Dawadi, B.: Assessment of drought impacts on crop yields across Nepal during 1987–2017, Meteorol. Appl., 27, 1–18, https://doi.org/10.1002/met.1950, 2020.
Hijioka, Y., Lin, E., Pereira, J. J., Corlett, R. T., Cui, X., Insarov, G. E., Lasco, R. D., E. Lindgren, A., and Surjan, A.: Asia, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E.,
Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., and Mastrandrea, P. R., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1327–1370, 2014.
Huang, S., Huang, Q., Chang, J., Leng, G., and Xing, L.: The response of
agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China, Agr. Water Manage., 159, 45–54, https://doi.org/10.1016/j.agwat.2015.05.023, 2015.
IPCC: Summary for policymakers, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contributions of the Working Group II to the Fifth Assessment Report, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 2014.
IPCC: Summary for Policymakers, in: Climate Change and Land: an IPCC special
report on climate change, desertification, land degradation, sustainable
land management, food security, and greenhouse gas fluxes in terrestrial
ecosystems, edited by: Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., and Malley, J., available at: https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf, last access: 26 March 2021, in press, 2019.
Joshi, N. and Dongol, R.: Severity of climate induced drought and its impact
on migration: a study of Ramechhap District, Nepal, Trop. Agricult. Res., 29, 194–211, https://doi.org/10.4038/tar.v29i2.8289, 2018.
Kaini, S., Nepal, S., Pradhananga, S., Gardner, T., and Sharma, A. K.:
Representative general circulation models selection and downscaling of climate data for the transboundary Koshi river basin in China and Nepal, Int. J. Climatol., 40, 4131–4149, https://doi.org/10.1002/joc.6447, 2020.
Karki, R., Hasson, S., Schickhoff, U., Scholten, T., and Böhner, J.: Rising Precipitation Extremes across Nepal, Climate, 5, cli5010004, https://doi.org/10.3390/cli5010004, 2017.
Kralisch, S.: JAMS – Downloads, available at: http://jams.uni-jena.de/downloads/, last access: 26 March 2021.
Kralisch, S. and Fischer, C.: Model representation, parameter calibration and parallel computing – The jams approach, in: iEMSs 2012 – Managing Resources of a Limited Planet: Proceedings of the 6th Biennial Meeting of the International Environmental Modelling and Software Society, 1–5 July 2012, Leipzig, 2012.
Kralisch, S. and Krause, P.: JAMS A Framework for Natural Resource Model Development and Application, edited by: Voinov, A., Jakeman, A., and Rizzoli, A. E., in: Proceedings of the iEMSs Third Biannual Meeting “Summit on Environmental Modelling and Software”, Burlington, USA, 2006.
Krause, P.: Das hydrologische Modellsystem J2000: Beschreibung und Anwendung
in großen Flußeinzugsgebieten, Schriften des Forschungszentrum
Jülich, Reihe Umwelt/Environment, Band 29, Forschungszentrum Jülich, Jülich, 2001.
Krause, P.: Quantifying the Impact of Land Use Changes on the Water Balance of Large Catchments using the J2000 Model, Phys. Chem. Earth, 27, 663–673, 2002.
Krause, P., Bende-Michl, U., Fink, M., Helmschrot, J., Kralisch, S., and Kuenne, A.: Parameter sensitivity analysis of the JAMS/J2000-S model to
improve water and nutrient transport process simulation – a case study for
the Duck catchment in Tasmania, in: 18th World IMACS/MODSIM Congress, 13–17 July 2009, Cairns, Australia, 1727–1732, 2009.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011.
Liu, Y. Y., Dorigo, W. A., Parinussa, R. M., de Jeu, R. A. M., Wagner, W.,
McCabe, M. F., Evans, J. P., and van Dijk, A. I. J. M.: Trend-preserving
blending of passive and active microwave soil moisture retrievals, Remote
Sens. Environ., 123, 280–297, https://doi.org/10.1016/j.rse.2012.03.014, 2012.
Mallya, G., Mishra, V., Niyogi, D., Tripathi, S., and Govindaraju, R. S.:
Trends and variability of droughts over the Indian monsoon region, Weather
Clim. Extrem., 12, 43–68, https://doi.org/10.1016/j.wace.2016.01.002, 2015.
McKee, T. B., Nolan, J., and Kleist, J.: The relationship of drought frequency and duration to time scales, Preprints, in: Eighth Conf. on Applied Climatology, Amer. Meteor, Soc., California, 1993.
McKee, T. B., Doesken, N. J., and Kleist, J.: Drought monitoring with multiple time scales, in: Proceedings of the 9th Conference on Applied Climatology, 15–20 January 1995, Dallas, 1995.
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol., 391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010.
Monteleone, B., Bonaccorso, B., and Martina, M.: A joint probabilistic index for objective drought identification: the case study of Haiti, Nat. Hazards Earth Syst. Sci., 20, 471–487, https://doi.org/10.5194/nhess-20-471-2020, 2020.
Narasimhan, B. and Srinivasan, R.: Development and evaluation of Soil
Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring, Agr. Forest Meteorol., 133, 69–88, https://doi.org/10.1016/j.agrformet.2005.07.012, 2005.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models, Part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.
Nauditt, A., Firoz, A. B. M., Trinh, V. Q., Fink, M., Stolpe, H., and Ribbe,
L.: Hydrological Drought Risk Assessment in an Anthropogenically Impacted
Tropical Catchment, Central Vietnam, in: Water Resources Development and
Management, Springer, Singapore, https://doi.org/10.1007/978-981-10-2624-9_14, 2017.
Nepal, S.: Evaluating Upstream-Downstream Linkages of Hydrological Dynamics
in the Himalayan Region, PhD Thesis, Friedrich Schiller University of Jena,
Jena, 2012.
Nepal, S., Krause, P., Flügel, W.-A., Fink, M., and Fischer, C.: Understanding the hydrological system dynamics of a glaciated alpine catchment in the Himalayan region using the J2000 hydrological model, Hydrol. Process., 28, 1329–1344, 2014.
Nepal, S., Flügel, W. A., Krause, P., Fink, M., and Fischer, C.: Assessment of spatial transferability of process-based hydrological model
parameters in two neighbouring catchments in the Himalayan Region, Hydrol. Process., 31, 2812–2826, https://doi.org/10.1002/hyp.11199, 2017.
Prabhakar, S. V. R. K. and Shaw, R.: Climate change adaptation implications
for drought risk mitigation: A perspective for India, Climatic Change, 88, 113–130, https://doi.org/10.1007/s10584-007-9330-8, 2008.
Rajbhandari, R., Shrestha, A. B., Nepal, S., and Wahid, S.: Projection of Future Precipitation and Temperature Change over the Transboundary Koshi
River Basin Using Regional Climate Model PRECIS, Atmos. Clim. Sci., 08, 83763, https://doi.org/10.4236/acs.2018.82012, 2018.
Regmi, H. R.: Effect of unusual weather on cereal crop production and
household food security, J. Agricult. Environ., 8, 20–29, https://doi.org/10.3126/aej.v8i0.723, 2007.
Riebsame, W. E.: Drought and natural resources management in the United
States: impacts and implications of the 1987–89 drought, Routledge, available at:
https://www.routledge.com/Drought-And-Natural-Resources-Management-In-The-United
(last access: 2 March 2021), 1991.
Sheffield, J.: A simulated soil moisture based drought analysis for the United States, J. Geophys. Res., 109, D24108, https://doi.org/10.1029/2004JD005182, 2004.
Shrestha, A. B., Wake, C. P., Dibb, J. E., and Mayewski, P. A.: Precipitation
fluctuations in the Nepal Himalaya and its vicinity and relationship with
some large scale climatological parameters, Int. J. Climatol., 20, 317–327,
https://doi.org/10.1002/(SICI)1097-0088(20000315)20:3<317::AID-JOC476>3.0.CO;2-G, 2000.
Shrestha, N. K., Qamer, F. M., Pedreros, D., Murthy, M. S. R., Wahid, S. M.,
and Shrestha, M.: Evaluating the accuracy of Climate Hazard Group (CHG)
satellite rainfall estimates for precipitation based drought monitoring in
Koshi basin, Nepal, J. Hydrol.: Reg. Stud., 13, 138–151, https://doi.org/10.1016/j.ejrh.2017.08.004, 2017.
Shrestha, S. and Nepal, S.: Water balance assessment under different glacier
coverage scenarios in the Hunza basin, Water (Switzerland), 11, w11061124, https://doi.org/10.3390/w11061124, 2019.
Stefan, S., Ghioca, M., Rimbu, N., and Boroneant, C.: Study of meteorological
and hydrological drought in southern Romania from observational data, Int. J. Climatol., 24, 871–881, https://doi.org/10.1002/joc.1039, 2004.
Su, B., Huang, J., Fischer, T., Wang, Y., Kundzewicz, Z. W., Zhai, J., Sun, H., Wang, A., Zeng, X., Wang, G., Tao, H., Gemmer, M., Li, X., and Jiang, T.:
Drought losses in China might double between the 1.5 ∘C and 2.0 ∘C warming, P. Natl. Acad. Sci. USA, 115, 10600–10605, https://doi.org/10.1073/pnas.1802129115, 2018.
Van-Loon, A. F.: Hydrological drought explained, Wiley Interdisciplin. Rev.: Water, 2, 359–392, https://doi.org/10.1002/wat2.1085, 2015.
Wang, A., Lettenmaier, D. P., and Sheffield, J.: Soil moisture drought in
China, 1950–2006, J. Climate, 24, 3257–3271, https://doi.org/10.1175/2011JCLI3733.1, 2011.
Wang, D., Hejazi, M., Cai, X., and Valocchi, A. J.: Climate change impact on
meteorological, agricultural, and hydrological drought in central Illinois,
Water Resour. Res., 47, 9527, https://doi.org/10.1029/2010WR009845, 2011.
Wu, H., Xiong, D., Liu, B., Zhang, S., Yuan, Y., Fang, Y., Chidi, C. L., and
Dahal, N. M.: Spatio-temporal analysis of drought variability using CWSI in
the Koshi river basin (KRB), Int. J. Environ. Res. Publ. Health, 16, ijerph16173100, https://doi.org/10.3390/ijerph16173100, 2019.
Short summary
This paper examines soil moisture drought in the central Himalayan region by applying a process-based hydrological model. Our results suggest that both the occurrence and severity of droughts have increased over the last 3 decades, especially in the winter and
pre-monsoon seasons. The insights provided into the frequency, spatial coverage, and severity of the drought conditions can provide valuable inputs towards improved management of water resources and greater agricultural productivity.
This paper examines soil moisture drought in the central Himalayan region by applying a...