Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5953-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5953-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flexible vector-based spatial configurations in land models
Shervan Gharari
CORRESPONDING AUTHOR
Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada
Martyn P. Clark
Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada
Naoki Mizukami
National Center for Atmospheric Research, Boulder, Colorado, USA
Wouter J. M. Knoben
Centre for Hydrology, University of Saskatchewan, Canmore, Alberta, Canada
Jefferson S. Wong
Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Alain Pietroniro
Department of Civil Engineering, University of Calgary, Calgary, Alberta, Canada
Related authors
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Chayan Roychoudhury, Rajesh Kumar, Cenlin He, William Y. Y. Cheng, Kirpa Ram, Naoki Mizukami, and Avelino F. Arellano
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-275, https://doi.org/10.5194/essd-2025-275, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a 17-year, 12 km regional dataset for Asia that uniquely captures aerosol–weather–snow interactions. By assimilating satellite data into a chemistry–climate model, it provides hourly to three-hourly fields of meteorology, air quality, and snow-related variables. Evaluations show good agreement with observations, and source attribution of black carbon is also provided to quantify pollution pathways to Asia’s glaciers, major freshwater source for over a billion people.
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025, https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Short summary
Hydrologic models are needed to provide simulations of water availability, floods, and droughts. The accuracy of these simulations is often quantified with so-called performance scores. A common thought is that different models are more or less applicable to different landscapes, depending on how the model works. We show that performance scores are not helpful in distinguishing between different models and thus cannot easily be used to select an appropriate model for a specific place.
Fabián Lema, Pablo A. Mendoza, Nicolás A. Vásquez, Naoki Mizukami, Mauricio Zambrano-Bigiarini, and Ximena Vargas
Hydrol. Earth Syst. Sci., 29, 1981–2002, https://doi.org/10.5194/hess-29-1981-2025, https://doi.org/10.5194/hess-29-1981-2025, 2025
Short summary
Short summary
Hydrological droughts affect ecosystems and socioeconomic activities worldwide. Despite the fact that they are commonly described with the Standardized Streamflow Index (SSI), there is limited understanding of what they truly reflect in terms of water cycle processes. Here, we used state-of-the-art hydrological models in Andean basins to examine drivers of SSI fluctuations. The results highlight the importance of careful selection of indices and timescales for accurate drought characterization and monitoring.
Wouter J. M. Knoben, Kasra Keshavarz, Laura Torres-Rojas, Cyril Thébault, Nathaniel W. Chaney, Alain Pietroniro, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2025-893, https://doi.org/10.5194/egusphere-2025-893, 2025
Short summary
Short summary
Many existing data sets for hydrologic analysis tend treat catchments as single, spatially homogeneous units, focus on daily data and typically do not support more complex models. This paper introduces a data set that goes beyond this setup by: (1) providing data at higher spatial and temporal resolution, (2) specifically considering the data requirements of all common hydrologic model types, (3) using statistical summaries of the data aimed at quantifying spatial and temporal heterogeneity.
Mozhgan A. Farahani, Andrew W. Wood, Guoqiang Tang, and Naoki Mizukami
EGUsphere, https://doi.org/10.5194/egusphere-2025-38, https://doi.org/10.5194/egusphere-2025-38, 2025
Short summary
Short summary
We present a new strategy to calibrate large-domain land/hydrology models over diverse and extensive regions. Using SUMMA and mizuRoute models, our approach integrates catchment attributes, model parameters, and performance metrics to optimize streamflow simulations. By leveraging recent innovations in machine learning methods and concepts for hydrology, we improve calibration outcomes and enable regionalization to ungauged basins, which is valuable for national-scale water security studies.
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Yalan Song, Wouter J. M. Knoben, Martyn P. Clark, Dapeng Feng, Kathryn Lawson, Kamlesh Sawadekar, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 28, 3051–3077, https://doi.org/10.5194/hess-28-3051-2024, https://doi.org/10.5194/hess-28-3051-2024, 2024
Short summary
Short summary
Differentiable models (DMs) integrate neural networks and physical equations for accuracy, interpretability, and knowledge discovery. We developed an adjoint-based DM for ordinary differential equations (ODEs) for hydrological modeling, reducing distorted fluxes and physical parameters from errors in models that use explicit and operation-splitting schemes. With a better numerical scheme and improved structure, the adjoint-based DM matches or surpasses long short-term memory (LSTM) performance.
Tek Kshetri, Amir Khatibi, Yiwen Mok, Shahabul Alam, Hongli Liu, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2023-3049, https://doi.org/10.5194/egusphere-2023-3049, 2024
Preprint withdrawn
Short summary
Short summary
This study reveals a crucial discovery: when tweaking model parameters, similar performance metrics might mislead—different parameter settings can yield comparable results in snow depth predictions. This "equifinality" challenges past studies, suggesting that evaluating model tweaks based on performance alone might not reflect actual variations in snow depth forecasts.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Diogo Costa, Kyle Klenk, Wouter Knoben, Andrew Ireson, Raymond J. Spiteri, and Martyn Clark
EGUsphere, https://doi.org/10.5194/egusphere-2023-2787, https://doi.org/10.5194/egusphere-2023-2787, 2023
Preprint archived
Short summary
Short summary
This work helps improve water quality simulations in aquatic ecosystems through a new modeling concept, which we termed “OpenWQ”. It allows tailoring biogeochemistry calculations and integration with existing hydrological (water quantity) simulation tools. The integration is demonstrated with two hydrological models. The models were tested for different pollution scenarios. This paper helps improve interoperability, transparency, flexibility, and reproducibility in water quality simulations.
Nicolás Cortés-Salazar, Nicolás Vásquez, Naoki Mizukami, Pablo A. Mendoza, and Ximena Vargas
Hydrol. Earth Syst. Sci., 27, 3505–3524, https://doi.org/10.5194/hess-27-3505-2023, https://doi.org/10.5194/hess-27-3505-2023, 2023
Short summary
Short summary
This paper shows how important river models can be for water resource applications that involve hydrological models and, in particular, parameter calibration. To this end, we conduct numerical experiments in a pilot basin using a combination of hydrologic model simulations obtained from a large sample of parameter sets and different routing methods. We find that routing can affect streamflow simulations, even at monthly time steps; the choice of parameters; and relevant streamflow metrics.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Zhi Li, Shang Gao, Mengye Chen, Jonathan Gourley, Naoki Mizukami, and Yang Hong
Geosci. Model Dev., 15, 6181–6196, https://doi.org/10.5194/gmd-15-6181-2022, https://doi.org/10.5194/gmd-15-6181-2022, 2022
Short summary
Short summary
Operational streamflow prediction at a continental scale is critical for national water resources management. However, limited computational resources often impede such processes, with streamflow routing being one of the most time-consuming parts. This study presents a recent development of a hydrologic system that incorporates a vector-based routing scheme with a lake module that markedly speeds up streamflow prediction. Moreover, accuracy is improved and flood false alarms are mitigated.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Wouter J. M. Knoben and Diana Spieler
Hydrol. Earth Syst. Sci., 26, 3299–3314, https://doi.org/10.5194/hess-26-3299-2022, https://doi.org/10.5194/hess-26-3299-2022, 2022
Short summary
Short summary
This paper introduces educational materials that can be used to teach students about model structure uncertainty in hydrological modelling. There are many different hydrological models and differences between these models impact their usefulness in different places. Such models are often used to support decision making about water resources and to perform hydrological science, and it is thus important for students to understand that model choice matters.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
Guoqiang Tang, Martyn P. Clark, Simon Michael Papalexiou, Andrew J. Newman, Andrew W. Wood, Dominique Brunet, and Paul H. Whitfield
Earth Syst. Sci. Data, 13, 3337–3362, https://doi.org/10.5194/essd-13-3337-2021, https://doi.org/10.5194/essd-13-3337-2021, 2021
Short summary
Short summary
Probabilistic estimates are useful to quantify the uncertainties in meteorological datasets. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° spatial resolution from 1979 to 2018. It is expected to be useful for hydrological and meteorological applications in North America.
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Cited articles
Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley and Sons, 2011.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology/Un modèle à base physique de zone d'appel
variable de l'hydrologie du bassin versant, Hydrolog. Sci. J.,
24, 43–69, 1979.
Beven, K. J., Cloke, H., Pappenberger, F., Lamb, R., and Hunter, N.:
Hyperresolution information and hyperresolution ignorance in modelling the
hydrology of the land surface, Sci. China Earth Sci., 58,
25–35, https://doi.org/10.1007/s11430-014-5003-4, 2015.
Blöschl, G., Grayson, R. B., and Sivapalan, M.: On the
representative elementary area (REA) concept and its utility for distributed
rainfall-runoff modelling, Hydrol. Process., 9, 313–330, 1995.
Chaney, N. W., Van Huijgevoort, M. H. J., Shevliakova, E., Malyshev, S., Milly, P. C. D., Gauthier, P. P. G., and Sulman, B. N.: Harnessing big data to rethink land heterogeneity in Earth system models, Hydrol. Earth Syst. Sci., 22, 3311–3330, https://doi.org/10.5194/hess-22-3311-2018, 2018.
Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for process‐based hydrologic modeling: 1. Modeling concept, Water Resour. Res., 51, 2498–2514, https://doi.org/10.1002/2015WR017198, 2015.
Clark, M. P., Schaefli, B., Schymanski, S. J., Samaniego, L., Luce, C. H., Jackson, B. M., Freer, J. E., Arnold, J. R., Moore, R. D., Istanbulluoglu, E., and Ceola, S.: Improving the theoretical underpinnings of process‐based hydrologic models, Water Resour. Res., 52, 2350–2365, https://doi.org/10.1002/2015WR017910, 2016.
Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism, Hydrol. Earth Syst. Sci., 21, 3427–3440, https://doi.org/10.5194/hess-21-3427-2017, 2017.
Dang, T. D., Chowdhury, A. F. M. K., and Galelli, S.: On the representation of water reservoir storage and operations in large-scale hydrological models: implications on model parameterization and climate change impact assessments, Hydrol. Earth Syst. Sci., 24, 397–416, https://doi.org/10.5194/hess-24-397-2020, 2020.
Demaria, E. M., Nijssen, B., and Wagener, T.: Monte Carlo sensitivity analysis
of land surface parameters using the Variable Infiltration Capacity model,
J. Geophys. Res.-Atmos., 112, D11113, https://doi.org/10.1029/2006JD007534, 2007.
Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst, L., and Wiberg, D.: Global Agro-ecological Zones Assessment for Agriculture (GAEZ
2008), IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008.
Flügel, W. A.: Delineating hydrological response units by geographical
information system analyses for regional hydrological modelling using
PRMS/MMS in the drainage basin of the River Bröl, Germany, Hydrol.
Process., 9, 423–436, 1995.
Gharari, S., Hrachowitz, M., Fenicia, F., and Savenije, H. H. G.: Hydrological landscape classification: investigating the performance of HAND based landscape classifications in a central European meso-scale catchment, Hydrol. Earth Syst. Sci., 15, 3275–3291, https://doi.org/10.5194/hess-15-3275-2011, 2011.
Gharari, S., Hrachowitz, M., Fenicia, F., Gao, H., and Savenije, H. H. G.: Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration, Hydrol. Earth Syst. Sci., 18, 4839–4859, https://doi.org/10.5194/hess-18-4839-2014, 2014.
Gharari, S., Clark, M., Mizukami, N., Wong, J. S., Pietroniro, A., and
Wheater, H.: Improving the representation of subsurface water movement
in land models, J. Hydrometeorol., 2401–2418, https://doi.org/10.1175/JHM-D-19-0108.1, 2019.
Gupta, H. V., Wagener, T., and Liu, Y.: Reconciling theory with observations: elements of a diagnostic approach to model evaluation, Hydrol. Process., 22, 3802–3813, https://doi.org/10.1002/hyp.6989, 2008.
Haddeland, I., Matheussen, B. V., and Lettenmaier, D. P.: Influence of
spatial resolution on simulated streamflow in a macroscale hydrologic model,
Water Resour. Res., 38, 29-1–29-10, https://doi.org/10.1029/2001WR000854, 2002.
Haddeland, I., Lettenmaier, D. P., and Skaugen, T.: Effects of irrigation on
the water and energy balances of the Colorado and Mekong river basins,
J. Hydrol., 324, 210–223, 2006.
Hrachowitz, M. and Clark, M. P.: HESS Opinions: The complementary merits of competing modelling philosophies in hydrology, Hydrol. Earth Syst. Sci., 21, 3953–3973, https://doi.org/10.5194/hess-21-3953-2017, 2017.
Jarvis, P. G.: The interpretation of the variations in leaf water potential
and stomatal conductance found in canopies in the field, Philos.
T. Roy. Soc. B,
273, 593–610, 1976.
Kalogirou, S.: Solar Energy Engineering, edited by: Kalogirou, S. A.,
Academic Press, https://doi.org/10.1016/B978-0-12-374501-9.00013-3, 2009.
Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology, Water Resour. Res., 42, W03S04, https://doi.org/10.1029/2005WR004362, 2006.
Kirkby, M. J. and Weyman, D. R.: Measurements of contributing area in very
small drainage basins, Department of Geography,
University of Bristol, Bristol, UK, 1974.
Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., and Woods,
R. A.: A brief analysis of conceptual model structure uncertainty using 36
models and 559 catchments, Water Resour. Res., 56, e2019WR025975,
https://doi.org/10.1029/2019WR025975, 2020.
Knudsen, J., Thomsen, A., and Refsgaard, J. C.: WATBALA Semi-Distributed,
Physically Based Hydrological Modelling System, Hydrol. Res., 17,
347–362, https://doi.org/10.2166/nh.1986.0026, 1986.
Koster, R. D. and Suarez, M. J.: Modeling the land surface boundary in
climate models as a composite of independent vegetation stands, J.
Geophys. Res.-Atmos., 97, 2697–2715, 1992.
Kouwen, N., Soulis, E. D., Pietroniro, A., Donald, J., and Harrington, R. A.:
Grouped response units for distributed hydrologic modeling, J. Water
Res. Pl., 119, 289–305, 1993.
Latifovic, R., Zhu, Z., Cihlar, J., Giri, C., and Olthof, I.: Land cover
mapping of North and Central America – Global Land Cover 2000, Remote
Sens. Environ., 89, 116–127, https://doi.org/10.1016/j.rse.2003.11.002, 2004.
Lehner, B., Verdin, K., and Jarvis, A.: HydroSHEDS technical documentation,
version 1.0, World Wildlife Fund, Washington DC, USA, 1–27, 2006.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos.,
99, 14415–14428, 1994.
Liang, X., Guo, J., and Leung, L. R.: Assessment of the effects of spatial
resolutions on daily water flux simulations, J. Hydrol., 298,
287–310, 2004.
Liu, H., Tolson, B. A., Craig, J. R., and Shafii, M.: A priori discretization
error metrics for distributed hydrologic modeling applications, J. Hydrol., 543,
873–891, 2016.
Manabe, S.: Climate and the ocean circulation: I. The atmospheric
circulation and the hydrology of the earth's surface, Mon. Weather Rev.,
97, 739–774, 1969.
Marsh, C. B., Pomeroy, J. W., and Spiteri, R. J.: Implications of mountain
shading on calculating energy for snowmelt using unstructured triangular
meshes, Hydrol. Process., 26, 1767–1778, 2012.
Matott, L. S.: OSTRICH: An optimization software tool: Documentation and
users guide, University at Buffalo, Buffalo, NY, USA, 2005.
Maxwell, R. M., Condon, L. E., and Kollet, S. J.: A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3, Geosci. Model Dev., 8, 923–937, https://doi.org/10.5194/gmd-8-923-2015, 2015.
Melsen, L., Teuling, A., Torfs, P., Zappa, M., Mizukami, N., Clark, M., and Uijlenhoet, R.: Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin, Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, 2016.
Merz, R., Tarasova, L., and Basso, S.: Parameter's controls of distributed
catchment models – How much information is in conventional catchment
descriptors?, Water Resour. Res., 56, e2019WR026008, https://doi.org/10.1029/2019WR026008, 2020.
Mizukami, N., Clark, M. P., Sampson, K., Nijssen, B., Mao, Y., McMillan, H., Viger, R. J., Markstrom, S. L., Hay, L. E., Woods, R., Arnold, J. R., and Brekke, L. D.: mizuRoute version 1: a river network routing tool for a continental domain water resources applications, Geosci. Model Dev., 9, 2223–2238, https://doi.org/10.5194/gmd-9-2223-2016, 2016.
Naef, F., Scherrer, S., and Weiler, M.: A process based assessment of the
potential to reduce flood runoff by land use change, J. Hydrol.,
267, 74–79, 2002.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Newman, A. J., Clark, M. P., Winstral, A., Marks, D., and Seyfried, M.: The use
of similarity concepts to represent subgrid variability in land surface
models: Case study in a snowmelt-dominated watershed, J.
Hydrometeorol., 15, 1717–1738, 2014.
Nijssen, B., O'Donnell, G. M., Hamlet, A. F., and Lettenmaier, D. P.: Hydrologic
sensitivity of global rivers to climate change, Climatic Change, 50,
143–175, 2001.
Niu, G. Y., Yang, Z. L., Dickinson, R. E., and Gulden, L. E.: A simple
TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate
models, J. Geophys. Res.-Atmos., 110, D21106, https://doi.org/10.1029/2005JD006111, 2005.
Olivera, F., Valenzuela, M., Srinivasan, R., Choi, J., Cho, H., Koka, S., and
Agrawal, A.: ArcGIS-SWAT: A Geodata Model and GIS Interface for SWAT,
J. Am. Water Resour. As., 42,
295–309, https://doi.org/10.1111/j.1752-1688.2006.tb03839.x, 2006.
Oudin, L., Kay, A., Andréassian, V., and Perrin, C.: Are seemingly
physically similar catchments truly hydrologically similar?, Water Resour,
Res, 46, W11558, https://doi.org/10.1029/2009WR008887, 2010.
Park, S. J. and Van De Giesen, N.: Soil-landscape delineation to define
spatial sampling domains for hillslope hydrology, J. Hydrol.,
295, 28–46, 2004.
Pietroniro, A., Fortin, V., Kouwen, N., Neal, C., Turcotte, R., Davison, B., Verseghy, D., Soulis, E. D., Caldwell, R., Evora, N., and Pellerin, P.: Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale, Hydrol. Earth Syst. Sci., 11, 1279–1294, https://doi.org/10.5194/hess-11-1279-2007, 2007.
Pigeon, K. E. and Jiskoot, H.: Meteorological controls on snowpack formation
and dynamics in the southern Canadian Rocky Mountains, Arct. Antarct.
Alp. Res., 40, 716–730, 2008.
Pitman, A. J.: The evolution of, and revolution in, land surface schemes
designed for climate models, Int. J. Climatol., 23, 479–510, 2003.
Rasmussen, R. and Liu, C.: High Resolution WRF Simulations of the Current
and Future Climate of North America, Research Data Archive at the National
Center for Atmospheric Research, Computational and Information Systems
Laboratory, https://doi.org/10.5065/D6V40SXP, 2017.
Reggiani, P., Hassanizadeh, S. M., Sivapalan, M., and Gray, W. G.: A unifying
framework for watershed thermodynamics: constitutive relationships, Adv.
Water Resour., 23, 15–39, 1999.
Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G.,
Tomasella, J., and Waterloo, M. J.: HAND, a new terrain descriptor using
SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia, Remote
Sens. Environ., 112, 3469–3481, 2008.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter
regionalization of a grid-based hydrologic model at the mesoscale, Water
Resour, Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010.
Samaniego, L., Kumar, R., Thober, S., Rakovec, O., Zink, M., Wanders, N., Eisner, S., Müller Schmied, H., Sutanudjaja, E. H., Warrach-Sagi, K., and Attinger, S.: Toward seamless hydrologic predictions across spatial scales, Hydrol. Earth Syst. Sci., 21, 4323–4346, https://doi.org/10.5194/hess-21-4323-2017, 2017.
Sarbu, I. and Sebarchievici, C.: Thermal Energy Storage, in: Solar Heating and Cooling Systems, edited by: Sarbu, I. and Sebarchievici, C., Academic Press, 99–138, https://doi.org/10.1016/B978-0-12-811662-3.01001-X, 2017.
Savenije, H. H. G.: HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”, Hydrol. Earth Syst. Sci., 14, 2681–2692, https://doi.org/10.5194/hess-14-2681-2010, 2010.
Shrestha, P., Sulis, M., Simmer, C., and Kollet, S.: Impacts of grid resolution on surface energy fluxes simulated with an integrated surface-groundwater flow model, Hydrol. Earth Syst. Sci., 19, 4317–4326, https://doi.org/10.5194/hess-19-4317-2015, 2015.
Singh, R. S., Reager, J. T., Miller, N. L. and Famiglietti, J. S.: Toward
hyper-resolution land-surface modeling: The effects of fine-scale topography
and soil texture on CLM 4.0 simulations over the S outhwestern US, Water
Resour. Res., 51, 2648–2667, 2015.
Troy, T. J., Wood, E. F., and Sheffield, J.: An efficient calibration method
for continental-scale land surface modeling, Water Resour. Res.,
44, W09411, https://doi.org/10.1029/2007WR006513, 2008.
Uhlenbrook, S., Roser, S., and Tilch, N.: Hydrological process representation
at the meso-scale: the potential of a distributed, conceptual catchment
model, J. Hydrol., 291, 278–296, 2004.
Vionnet, V., Fortin, V., Gaborit, E., Roy, G., Abrahamowicz, M., Gasset, N., and Pomeroy, J. W.: Assessing the factors governing the ability to predict late-spring flooding in cold-region mountain basins, Hydrol. Earth Syst. Sci., 24, 2141–2165, https://doi.org/10.5194/hess-24-2141-2020, 2020.
Vivoni, E. R., Ivanov, V. Y., Bras, R. L., and Entekhabi, D.:
Generation of triangulated irregular networks based on hydrological
similarity, J. Hydrol. Eng., 9, 288–302, 2004.
Winter, T. C.: The concept of hydrologic landscapes, J.
Am. Water Resour. As., 37, 335–349, 2001.
Wood, E. F., Sivapalan, M., Beven, K., and Band, L.: Effects of spatial
variability and scale with implications to hydrologic modeling, J.
Hydrol., 102, 29–47, 1988.
Wood, E. F., Roundy, J. K., Troy, T. J., Van Beek, L. P. H., Bierkens, M. F.,
Blyth, E., de Roo, A., Döll, P., Ek, M., Famiglietti, J., and Gochis, D.:
Hyperresolution global land surface modeling: Meeting a grand challenge for
monitoring Earth's terrestrial water, Water Resour. Res., 47, W05301, https://doi.org/10.1029/2010WR010090, 2011.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G., and Pavelsky,
T.: MERIT Hydro: A high-resolution global hydrography map based on latest
topography datasets, Water Resour. Res., 55, 5053–5073, https://doi.org/10.1029/2019WR024873, 2019.
Yassin, F., Razavi, S., Elshamy, M., Davison, B., Sapriza-Azuri, G., and Wheater, H.: Representation and improved parameterization of reservoir operation in hydrological and land-surface models, Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, 2019.
Yoon, J.-H., Shoemaker, C. A.: Improved real-coded GA for groundwater
bioremediation, J. Comput. Civil Eng., 15, 224–231, 2001.
Zhao, R.-J., Zhang, Y.-L., Fang, L.-R., Liu, X.-R., and Zhang, Q.-S.: The Xinanjiang Model, Hydrological Forecasting Proceedings Oxford Symposium, IASH, 129, 351–356, 1980.
Short summary
This work explores the trade-off between the accuracy of the representation of geospatial data, such as land cover, soil type, and elevation zones, in a land (surface) model and its performance in the context of modeling. We used a vector-based setup instead of the commonly used grid-based setup to identify this trade-off. We also assessed the often neglected parameter uncertainty and its impact on the land model simulations.
This work explores the trade-off between the accuracy of the representation of geospatial data,...