Articles | Volume 24, issue 11
https://doi.org/10.5194/hess-24-5077-2020
https://doi.org/10.5194/hess-24-5077-2020
Research article
 | 
03 Nov 2020
Research article |  | 03 Nov 2020

Uncertainty in nonstationary frequency analysis of South Korea's daily rainfall peak over threshold excesses associated with covariates

Okjeong Lee, Jeonghyeon Choi, Jeongeun Won, and Sangdan Kim

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Uncertainty analysis
On the visual detection of non-natural records in streamflow time series: challenges and impacts
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023,https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Historical rainfall data in northern Italy predict larger meteorological drought hazard than climate projections
Rui Guo and Alberto Montanari
Hydrol. Earth Syst. Sci., 27, 2847–2863, https://doi.org/10.5194/hess-27-2847-2023,https://doi.org/10.5194/hess-27-2847-2023, 2023
Short summary
Daytime-only mean data enhance understanding of land–atmosphere coupling
Zun Yin, Kirsten L. Findell, Paul Dirmeyer, Elena Shevliakova, Sergey Malyshev, Khaled Ghannam, Nina Raoult, and Zhihong Tan
Hydrol. Earth Syst. Sci., 27, 861–872, https://doi.org/10.5194/hess-27-861-2023,https://doi.org/10.5194/hess-27-861-2023, 2023
Short summary
Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning
Lei Xu, Nengcheng Chen, Chao Yang, Hongchu Yu, and Zeqiang Chen
Hydrol. Earth Syst. Sci., 26, 2923–2938, https://doi.org/10.5194/hess-26-2923-2022,https://doi.org/10.5194/hess-26-2923-2022, 2022
Short summary
Unraveling the contribution of potential evaporation formulation to uncertainty under climate change
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022,https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary

Cited articles

Abbaspour, K., Yang, J. Maximov, I., Siber, R., Bogner, K., Mieleitner, J., and Srinivasan, R.: Modelling hydrology and water quality in the pre-Alpine/Alpine thur watershed using SWAT, J. Hydrol., 333, 413–430, https://doi.org/10.1016/j.jhydrol.2006.09.014, 2007. 
Agilan, V. and Umamahesh, N. V.: Modelling nonlinear trend for developing non-stationary rainfall intensity–duration–frequency curve, Int. J. Climatol., 37, 1265–1281, https://doi.org/10.1002/joc.4774, 2017a. 
Agilan, V. and Umamahesh, N.: What are the best covariates for developing nonstationary rainfall Intensity-Duration-Frequency relationship?, Adv. Water. Resour., 101, 11–22, https://doi.org/10.1016/j.advwatres.2016.12.016, 2017b. 
Agilan, V. and Umamahesh, N: Covariate and parameter uncertainty in non-stationary rainfall IDF curve, Int. J. Climatol., 38, 365–383, https://doi.org/10.1002/joc.5181, 2018. 
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Control, 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Download
Short summary
The uncertainty of the model interpreting rainfall extremes with temperature is analyzed. The performance of the model focuses on the reliability of the output. It has been found that the selection of temperatures suitable for extreme levels plays an important role in improving model reliability. Based on this, a methodology is proposed to quantify the degree of uncertainty inherent in the change in rainfall extremes due to global warming.