
Hydrol. Earth Syst. Sci., 24, 5077–5093, 2020
https://doi.org/10.5194/hess-24-5077-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Uncertainty in nonstationary frequency analysis of South Korea’s
daily rainfall peak over threshold excesses associated with covariates
Okjeong Lee1, Jeonghyeon Choi2, Jeongeun Won2, and Sangdan Kim1

1Department of Environmental Engineering, Pukyong National University, Busan, 48513, Republic of Korea
2Division of Earth Environmental System Science (Major of Environmental Engineering),
Pukyong National University, Busan, 48513, Republic of Korea

Correspondence: Sangdan Kim (skim@pknu.ac.kr)

Received: 14 April 2020 – Discussion started: 12 May 2020
Revised: 2 August 2020 – Accepted: 17 September 2020 – Published: 3 November 2020

Abstract. Several methods have been proposed to analyze
the frequency of nonstationary anomalies. The applicability
of the nonstationary frequency analysis has been mainly eval-
uated based on the agreement between the time series data
and the applied probability distribution. However, since the
uncertainty in the parameter estimate of the probability dis-
tribution is the main source of uncertainty in frequency anal-
ysis, the uncertainty in the correspondence between samples
and probability distribution is inevitably large. In this study,
an extreme rainfall frequency analysis is performed that fits
the peak over threshold series to the covariate-based non-
stationary generalized Pareto distribution. By quantitatively
evaluating the uncertainty of daily rainfall quantile estimates
at 13 sites of the Korea Meteorological Administration using
the Bayesian approach, we tried to evaluate the applicabil-
ity of the nonstationary frequency analysis with a focus on
uncertainty. The results indicated that the inclusion of dew
point temperature (DPT) or surface air temperature (SAT)
generally improved the goodness of fit of the model for the
observed samples. The uncertainty of the estimated rainfall
quantiles was evaluated by the confidence interval of the en-
semble generated by the Markov chain Monte Carlo. The
results showed that the width of the confidence interval of
quantiles could be greatly amplified due to extreme values of
the covariate. In order to compensate for the weakness of the
nonstationary model exposed by the uncertainty, a method of
specifying a reference value of a covariate corresponding to
a nonexceedance probability has been proposed. The results
of the study revealed that the reference covariate plays an im-
portant role in the reliability of the nonstationary model. In
addition, when the reference covariate was given, it was con-

firmed that the uncertainty reduction in quantile estimates for
the increase in the sample size was more pronounced in the
nonstationary model. Finally, it was discussed how informa-
tion on a global temperature rise could be integrated with a
DPT or SAT-based nonstationary frequency analysis. Thus,
a method to quantify the uncertainty of the rate of change in
future quantiles due to global warming, using rainfall quan-
tile ensembles obtained in the uncertainty analysis process,
has been formulated.

1 Introduction

Human activity in the last century has caused global sur-
face air temperature to rise (Karl et al., 2009; Min et al.,
2011). When the temperature rises by 1 ◦C, the moisture re-
tention capacity in the atmosphere increases by about 7 %,
which directly affects precipitation (Trenberth, 2011; Sim et
al., 2019). The higher the amount of the water vapor in the at-
mosphere, the more likely it is to increase precipitation (Berg
et al., 2013), and increasing surface air temperature and in-
creasing atmospheric moisture content can increase proba-
ble maximum precipitation or rainfall extremes (Kunkel et
al., 2013; Lee and Kim, 2018). As a result, global warming
damages the performance of drainage system infrastructure
such as embankments, sewers, and dams (Das et al., 2011;
Jongman et al., 2014), increasing the risk of climate extremes
(Emori and Brown, 2005; Hao et al., 2013). In fact, looking
at ground observations around the world shows that rainfall
extremes have increased significantly over the past century
(Karl and Knight, 1998; DeGaetano, 2009). Global studies
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have shown that precipitation has increased in northern Aus-
tralia, central Africa, central America, and southwest Asia
(Groisman et al., 2012).

The current infrastructure design concept for dealing with
rainfall extremes is based on the estimation of design rain-
fall depth using frequency analysis of annual maximum se-
ries of various durations in a region (Madsen et al., 2002,
2009; Hosking and Wallis, 2005; Sugahara et al., 2009; Had-
dad et al., 2011; Willems, 2013; Kim et al., 2020). Current
design rainfall depth is based on the concept of stationarity
in time, which assumes that the probability of occurrence of
extreme rainfall events is not expected to change significantly
over time. However, natural environmental changes, such as
global warming, have a serious impact on the assumptions
of the stationarity of the observations. Nonstationarity is an
important issue that can never be ignored in areas related
to drainage system design, as it can alter the design flood
volume obtained using the stationary frequency analysis of
observed rainfall extremes. The probability of occurrence of
extreme rainfall events is expected to change due to global
warming (Lee et al., 2016), and this change is called nonsta-
tionarity by many authors (Alexander et al., 2006; Gregersen
et al., 2013).

Several methods have been proposed to address nonsta-
tionarities in the time series (Cunha et al., 2011; Yilmaz and
Perera, 2013; Jang et al., 2015; Moon et al., 2016), and many
studies have been conducted to examine changes in design
rainfall depth or return levels under nonstationary conditions
(Salvadori and DeMichele, 2010; Graler et al., 2013; Has-
sanzadeh et al., 2013; Salas and Obeysekera, 2013; Shin et
al., 2014; Choi et al., 2019). Looking at the probability dis-
tributions and parameters applied to the above studies, most
of the nonstationary frequency analysis is performed by ex-
pressing specific parameters of the Gumbel or generalized
extreme value (GEV) distribution as a function of the co-
variate including time (Kim et al., 2017). In extreme rainfall
series, nonstationarity may be explicitly expressed as a func-
tion of time but may also be related to climate variables in the
same or preceding time periods where rainfall extremes oc-
curred (Zhang et al., 2010). Several studies have reported that
it was reasonable to use climate variables rather than time for
covariates to represent nonstationarities in the nonstationary
frequency analysis (Agilan and Umamahesh, 2017a; Sen et
al., 2020). Recently, studies have been performed that ana-
lyze the nonstationary frequency using climate variables for
annual maximum rainfall series (Villarini et al., 2009; Agi-
lan and Umamahesh, 2017b; Lee et al., 2018; Ouarda et al.,
2019). In addition, studies have been conducted to analyze
the nonstationary frequency using peak over threshold (POT)
series for the purpose of reducing the uncertainty occurring
in the sample size (Tramblay et al., 2013; Jung et al., 2018;
Lee et al., 2020).

In this research trend, what is of interest in this study
is how to examine the relative superiority of the station-
ary and nonstationary models. Most studies use an Akaike

information criterion (AIC), and similar indicators, which
evaluates how well the time series and probability distribu-
tion match in order to select the optimal model from vari-
ous candidates of nonstationary models, including the sta-
tionary model (Akaike, 1974; Ganguli and Coulibaly, 2017;
Iliopoulou et al., 2018; Lee et al., 2020). However, the re-
sults of selecting the optimal model by these methods are
highly likely to vary, depending on the sample size. Efforts
to develop and apply a nonstationary model for frequency
analysis to reflect changing environmental conditions can be
hampered by the additional uncertainty associated with the
model’s complexity and working with the sampling uncer-
tainty. In other words, the reliability of rainfall quantiles es-
timated by a complex nonstationary model may not be sub-
stantially improved, or when various environmental condi-
tions are reflected, insufficient model reliability can easily
lead to physically inconsistent results (Serinaldi and Kilsby,
2015). From this point of view, investigating which model
has less uncertainty in the rainfall quantile as a result of fre-
quency analysis can be an important determinant for select-
ing an optimal model. This is because a model with a rel-
atively smaller uncertainty in the estimated rainfall quantile
can be regarded as a more reliable model.

Whether or not the nonstationary model provides more re-
liable rainfall quantile estimates than the stationary model
raises a lot of controversy. Serinaldi and Kilsby (2015)
warned that uncertainty in nonstationary models might be
greater since nonstationary models were more complex than
stationary models. Agilan and Umamahesh (2018) investi-
gated the effect of covariate selection on uncertainty in the
covariate-based nonstationary analysis using annual maxi-
mum series. Ouarda et al. (2020) indicated that uncertainty
was likely to work as a major weakness in the applicability
of the nonstationary model through the analysis of the United
Arab Emirates (UAE) annual maximum rainfall series.

In this study, a nonstationary frequency analysis using dew
point temperature (DPT) or surface air temperature (SAT)
as a covariate is performed. As can be seen from Lepore et
al. (2015), there is a strong scaling relationship between the
rainfall extreme and DPT or the rainfall extreme and SAT.
In addition, changes in DPT and SAT can directly affect the
atmospheric moisture retention governed by the Clausius–
Clapeyron equation, and in warmer climates, the moisture
content of the atmosphere increases and the intensity of pre-
cipitation increases at a similar rate (Trenberth et al., 2003;
Giorgi et al., 2019). That is, according to the Clausius–
Clapeyron relationship, the amount of moisture in the atmo-
sphere increases exponentially as the temperature increases,
and the amount of moisture in the atmosphere represents an
increase rate of 6 % K−1–7 % K−1 when other atmospheric
conditions are kept constant. To obtain a necessary under-
standing of the relationship between daily rainfall and DPT
and daily rainfall and SAT in South Korea, two prior studies
have been conducted (Sim et al., 2019; Lee et al., 2020). Sim
et al. (2019) analyzed the effects of DPT and SAT on daily
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rainfall extremes. Their results indicated that, even if there
was some cooling effect in the event of summer rainfall (Ali
and Mishra, 2017), daily rainfall extremes in South Korea
were very sensitive to DPT and SAT. Lee et al. (2020) pre-
sented a procedure to perform nonstationary frequency anal-
ysis using DPT or SAT as a covariate. They revealed that non-
stationary frequency analysis using future DPT or SAT could
yield more reasonable and persuasive projections of future
rainfall extremes. The purpose of this study is to focus on
the uncertainty of covariate-based nonstationary frequency
analysis using DPT or SAT. The uncertainty in analyzing the
nonstationary frequency of rainfall extremes using the an-
nual maximum series inevitably includes the uncertainty due
to the limitation of the sample size. In this study, the POT
series is extracted from daily rainfall data, with the aim of re-
ducing the uncertainty that comes from sample size as much
as possible. Using the Bayesian approach, the parameters of
the stationary and nonstationary generalized Pareto (GP) dis-
tributions for the POT excesses are sampled from the poste-
rior distribution. Using this, the performance of the station-
ary and nonstationary frequency analysis is investigated in
terms of uncertainty. We will also examine how uncertainty
in the nonstationary frequency analysis can be reduced by de-
termining the appropriate covariate value (i.e., DPT or SAT
value) corresponding to the rainfall quantile. Finally, the rate
of change in the rainfall quantile estimates for various DPT
or SAT rise scenarios considering global warming will be an-
alyzed based on uncertainty analysis.

2 Methods

2.1 Peak over threshold series and generalized Pareto
distribution

In this study, daily precipitation, daily DPT, and daily SAT
data were used from 1961 to 2017 at 13 sites, including the
Busan and Seoul sites of the Korea Meteorological Admin-
istration (see Fig. S1 in the Supplement). Figure 1 shows
the results of quantile regression using daily precipitation
data and DPT data on the day of precipitation as observed
at the Busan and Seoul sites. Since the Korea Meteorolog-
ical Administration only recognizes precipitation recorded
at 0.1 mm or more per day as official precipitation, a daily
rainfall depth of 0.1 mm or more was applied to the analy-
sis in this study. An example of this wet threshold can also
be found in Chan et al. (2016) and Roderick et al. (2020). In
fact, the application of a wet threshold does not significantly
affect the results of quantile regression. A regression slope of
95 % extreme daily rainfall depth corresponding to DPT was
estimated. For reference, the quantile regression equation for
the quantile τ (0.95 in Fig. 1) given in the quantile regression
analysis is as follows:

lnRτ = a+ bT , (1)

where Rτ is the daily rainfall depth, and T is the DPT of the
day when the daily rainfall occurred. The following Eq. (2)
was constructed using Eq. (1) when DPT increases by 1 ◦C:

dRτ /K = 100
(
eb− 1

)
. (2)

From Fig. 1, it can be found that when DPT increases by
1 ◦C, daily rainfall increases by 7 % to 8 %.

In general, rainfall frequency analysis is performed using
the annual maximum series or POT series. In the annual max-
imum series approach, the annual maximum rainfall series is
generally assumed to follow the GEV distribution, and vari-
ous studies have been conducted (Cheng et al., 2014). How-
ever, as the annual maximum series approach only consid-
ers one sample per year, the information contained in other
data is completely ignored, so the POT approach for select-
ing the maximum number of samples for frequency analysis
is being studied as an alternative (Hosseinzadehtalaei et al.,
2017). In other words, since the POT approach uses more
samples to enable an accurate parameter estimation of the
distribution, several studies recommend using the POT series
instead of the annual maximum series (Yilmaz et al., 2014).
The POT series is generally assumed to follow the GP distri-
bution (Coles, 2001).

The cumulative probability distribution function of the
stationary GP distribution for the POT series is as follows
(Hosking and Wallis, 1987):

F(x)= 1−
(

1− k
x− xo

α

)1/k

, (3)

where the range of x is xo < x <∞, α is the scale parameter,
and k is the shape parameter (k < 0). The threshold xo should
be determined in advance. The random variable x has a value
greater than xo, and it is assumed that the occurrence of x
follows the Poisson distribution described by the annual in-
cidence λ. The annual incidence λ can be defined as the num-
ber of selected POT excesses divided by the observation year.

To ensure the independence of POT excesses, data larger
than xo should be set so that they are not continuously se-
lected. To ensure this, many studies have performed various
clustering processes based on the time interval between ex-
treme events (Gregersen et al., 2017). In this study, individ-
ual rainfall events were first separated from the daily rainfall
series. The applied interevent time definition (IETD) is 1 d
(Kim and Han, 2010). Then, in a rainfall event, it was set to
select only one value at most as a POT series. For reference,
in this study, the threshold xo for extracting POT excesses
was assumed to be constant.

In nonstationary frequency analysis, temporally changing
parameters are applied to the probability distribution func-
tion (PDF). Various types of functions are applied to the pa-
rameters that change over time. In general, the shape param-
eter is often set to constant (López and Francés, 2013), but
the location or scale parameters are often considered func-
tions of time or covariate. Ali and Mishra (2017) applied the
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Figure 1. Sensitivity of 95 % daily rainfall depth to dew point temperature at (a) the Busan and (b) Seoul sites.

covariate to the location parameter of GEV, and Agilan and
Umamahesh (2017b) applied the covariate to location and
scale parameters of GEV. Nonstationary features in the GP
distribution are generally implemented by the scale parame-
ter (Coles, 2001; Khaliq et al., 2006). Although nonstation-
arity can be expressed using the shape parameter, it is not
a common practice since it is difficult to estimate the shape
parameter, especially when considering covariates (Renard
et al., 2006; Pujol et al., 2007). Although studies consider-
ing the nonstationarity of the threshold of the POT series
have been conducted (Tramblay et al., 2012), in this study
the nonstationarity was given only to the scale parameter of
the GP distribution as follows (Um et al., 2017):

αi = e
α1+α2Zi , (4)

where i is the order of occurrence of POT excesses (1 to n),
and covariateZi is the climate variable corresponding to POT
excesses (DPT or SAT on the day of POT excesses in this
study). Equation (4) shows how the covariate DPT or SAT
is included in the model. The daily averaged DPT or SAT
observed on the day of occurrence of each POT excess is
included in the scale parameter of the GP distribution, as
shown in Eq. (4), to construct the nonstationary GP distri-
bution. That is, when α2 > 0, the larger the DPT or SAT, the
larger the scale parameter. Therefore, the parameters of the
stationary GP distribution to be estimated are α and k, and
the parameters of the nonstationary GP distribution are α1,
α2, and k.

The formula for the rainfall quantile XT corresponding to
the return level of T year in the nonstationary GP distribution
using the covariate is as follows:

XT = xo+
1
k
eα1+α2Z

[
1−

(
1
λT

)k]
. (5)

From Eq. (5), rainfall quantile XT appears as a function of
covariate Z. That is, Eq. (5) shows that various rainfall quan-
tiles are calculated, depending on the value of the covariate

even at the same return level. Therefore, one of the problems
to be solved in the nonstationary frequency analysis using a
covariate is how to set the value of the covariate correspond-
ing to a specific quantile. Since it is often a requirement to
have a single design rainfall depth in practice, it is very cum-
bersome to give the result of calculating rainfall quantiles of
various values depending on a change in a covariate.

2.2 Metropolis–Hastings algorithm

The parameters of the GP distribution were estimated us-
ing the Metropolis–Hastings (MH) algorithm to account for
uncertainty. This algorithm is one of the algorithms for the
Markov chain Monte Carlo (MCMC) sampling, which takes
a sample from the posterior distribution of the parameter θ
given the observation data Y . The MH algorithm starts with
the initial parameter value θo. Then, N+M sequences of the
parameter θi (i = 1, · · ·, N +M) are generated through the
following procedure:

1. The candidate parameter θ∗ is generated from the pro-
posal distribution q(θ∗|θi−1). At this time, the proposal
distribution was applied to the truncated normal distri-
bution with mean θi−1 and variance6 in this study. The
upper and lower limits of the truncated normal distribu-
tion corresponding to the upper and lower limits of the
parameters were determined in advance.

2. Calculation of the reference value T for adoption is as
follows:

T =
π (Y |θ∗)q (θi−1|θ

∗)

π (Y |θi−1)q (θ∗|θi−1)
, (6)

where π(Y |θ∗) and π(Y |θi−1) are the likelihood values
in the parameters θ∗ and θi−1, respectively, and are de-
fined as follows:

π(Y |θ)∼

n∏
i=1
f (yi) , (7)

Hydrol. Earth Syst. Sci., 24, 5077–5093, 2020 https://doi.org/10.5194/hess-24-5077-2020



O. Lee et al.: Uncertainty in nonstationary frequency analysis of South Korea’s daily rainfall POT excesses 5081

Figure 2. Mean residual life plot at (a) the Busan and (b) Seoul sites. The solid line is the mean of the excesses of the threshold, and the
dotted line is approximated 95 % confidence intervals.

where f ( ) is the probability density function of the
GP distribution.

3. If min(1, T ) > u is satisfied for a uniform random num-
ber u between 0 and 1, θi = θ∗, otherwise θi = θi−1.

The Markov chain, constructed through the initial N itera-
tions, converges to a chain that randomly samples parameters
from the posterior distribution of parameters. At this time,
the parameter sampled before the initial N iterations should
be discarded.

Before using the MH algorithm, it is necessary to de-
termine the initial parameter θo, the proposal distribution
q(θ∗|θi−1), the initial iterative sampling number N , and the
total iterative sampling number N +M . The choice of the
initial parameter value θo is generally not sensitive to the re-
sults, while the choice of the proposal distribution q(θ∗|θi−1)

is important. The general method is to use a normal distribu-
tion with mean θi−1 and a constant covariance matrix 6. It is
recommended that one selects 6 so that the adoption rate of
min(1, T ) > u is 20 % to 70 %. The number of iterations to
be discarded, N , is known to be sufficient if more than 10 %
ofM is applied, and the number of samples,M , should be se-
cure enough to track the progress of the chain and converge
the average values of the parameter posterior distribution.

The characteristics of the posterior distribution of parame-
ters from the generated samples can be quantified. In general,
the final estimated parameter θ is calculated as follows:

θ =
1
M

N+M∑
i=N+1

θi . (8)

In addition, the variance of the estimated parameters can be
calculated from the generated samples.

3 Results

3.1 Selection of POT threshold

Since frequency analysis using POT excesses requires inde-
pendent rainfall data greater than the threshold xo, it is nec-
essary to set xo. One of the most commonly used methods
for setting the appropriate xo is the mean residual life plot
(Coles, 2001), and the results of applying it to the daily pre-
cipitation data at the Busan and Seoul sites are shown in
Fig. 2. In general, a nonlinear curve appears in a section
where a small xo is selected, and an approximate straight line
appears as xo increases. It is recommended that one sets xo in
this straight section. From Fig. 2, it can be found that the ap-
propriate range of xo is in the range of 30 to 150 mm d−1 for
both the Busan and Seoul sites. In this study, xo = 50 mm d−1

was set as a threshold for the POT series in both the Busan
and Seoul sites. Mean residual life plots for all applied sites
are shown in Fig. S2. In general, it can be recognized that it is
feasible to set xo = 50 mm d−1 as the threshold for the POT
time series at all sites.

3.2 Stationary frequency analysis

The parameters of the GP distribution were estimated using
the method of probability weighted moments (PWMs) and
the MH algorithm, respectively. Although maximum likeli-
hood estimation is an efficient method, it does not clearly
show efficiency, even in samples larger than 500 (Smith,
1985). The method of moments is generally known to be re-
liable, except when the shape parameter is less than −0.2.
When the likelihood that the shape parameter is less than 0 is
high, PWM estimation is recommended (Hosking and Wal-
lis, 1987). Figure 3 shows the result of the PWM parame-
ter estimation and the posterior distribution of parameters by
the MH algorithm at the Busan and Seoul sites. Since the
MH algorithm does not return a single value parameter but
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Figure 3. Posterior distribution of parameters of stationary and nonstationary GP distribution. (a) Scale and (b) shape parameters at the Busan
site, and (c) scale and (d) shape parameters at the Seoul site. The black vertical lines are a parameter calculated by probability weighted
moments (PWMs), which are expressed as a single value. The posterior distribution of parameters for the stationary GP distribution sampled
using the MH algorithm is indicated by red lines. The posterior distribution of parameters for the nonstationary GP distribution is indicated by
blue lines. The scale parameter of the nonstationary GP distribution using covariate is defined as a function of DPT. Therefore, the posterior
distribution of the scale parameters was derived on the assumption that DPT was given at 20.2567 ◦C (Busan site) and 21.4958 ◦C (Seoul
site), respectively.

estimates the posterior distribution of the parameter, infor-
mation about the uncertainty of the estimated parameter can
be obtained. It can be recognized that the posterior distribu-
tion of the scale parameter converged to an appropriate range,
even though a relatively wide range of uniform distribution
was assumed as being the prior distribution (the whole sec-
tion of the horizontal axis in Fig. 3). However, in the case of
the shape parameter, it can be found that the uncertainty is
formed relatively higher. That is, it can be seen that the un-
certainty that is included when fitting the POT series of the
Busan and Seoul sites to the GP distribution is mainly due to
the estimation of the shape parameter.

Table 1 shows the final estimated parameters at the Bu-
san and Seoul sites. The parameter estimation value of the
MH algorithm was defined as the ensemble average of the
samples extracted by MCMC from the posterior distribution,
as mentioned in Eq. (8). The parentheses of the parameter
estimation values by the MH algorithm in Table 1 are the
coefficients of the variation in the parameter. It can be found
that the PWM and MH algorithms give similar parameter val-

ues for both scale and shape parameters. The negative loga-
rithm likelihood (nllh) was also calculated similarly. From
the above results, it can be recognized that estimating pa-
rameters by the MH algorithm is applicable when attempting
to fit the POT time series to the GP distribution, and infor-
mation about the uncertainty of the estimated parameters is
also obtainable. It can also be found that the coefficient of
the variation in the ensemble of scale parameters sampled by
MCMC is less than 10 %, while the coefficient of the vari-
ation in the ensemble of shape parameters is around 40 %.
This means that the uncertainty of the shape parameters is
relatively high. Results for other sites tend to be similar to
those obtained at the Busan and Seoul sites. Results for other
sites are shown in Table S1 in the Supplement.

3.3 Nonstationary frequency analysis

To analyze the nonstationary frequency of the POT excesses,
the nonstationary GP distribution, in which the scale parame-
ter was defined as a function of DPT or SAT on the day when
the POT excesses occurred, was set as in Eq. (4). The pa-
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Table 1. Parameter estimation of stationary GP distribution at the
Busan and Seoul sites.

Site Parameter PWMs MH

Busan
α 33.5972 33.966 (8.54 %)
k −0.1423 −0.1477 (47.44 %)
nllh 1630.38 1630.42

Seoul
α 34.9666 35.1785 (8.93 %)
k −0.1633 −0.1772 (38.59 %)
nllh 1340.82 1340.87

rameters of the nonstationary GP distribution were estimated
using the MH algorithm, and Fig. 3 shows the posterior dis-
tribution of the parameters by the MH algorithm. Similar to
the stationary GP distribution, the posterior distribution of
the scale parameter converged to an appropriate range, al-
though a relatively wide range of prior distributions was as-
sumed. However, it can be recognized that the uncertainty is
still high in the case of the shape parameter.

The scale parameter finally estimated at the Busan site us-
ing Eq. (8) is α = exp[2.2149+ 0.071078 ·Z] (where Z is
DPT), and the shape parameter is k =−0.1123. The coef-
ficient of the variation in the scale parameter was 7.66 %
when the DPT was given at 20.2567 ◦C, and the coefficient
of the variation in the shape parameter was 44.02 %. There-
fore, when compared with the coefficient of the variation
in the parameters of the stationary GP distribution in Ta-
ble 1, it can be recognized that the uncertainty in both the
scale parameter and the shape parameter slightly decreased
in the nonstationary GP distribution. However, in the scale
parameter, these coefficients of variation were obtained un-
der the assumption of a specific DPT, so if the range of the
observed DPT was reflected, then the coefficient of the vari-
ation in the scale parameter of the nonstationary GP distri-
bution would have a larger value. The AIC of the stationary
model was AIC= 3264.84, and the AIC of the nonstationary
model was calculated as AIC= 3247.61. From the viewpoint
that the AIC of the nonstationary model is slightly smaller,
it can be said that the nonstationary model performs better
when expressing the frequency of the POT excesses than the
stationary model. The parameter estimation results of other
sites also showed a similar trend to those of the Busan site. In
other words, under certain DPT or SAT conditions, the uncer-
tainty of the scale and shape parameters of the nonstationary
model was slightly reduced than that of the stationary model,
and the AIC of the nonstationary model was calculated to be
smaller than the AIC of the stationary model.

3.4 Uncertainty analysis

The final goal of the frequency analysis is the estimation of
rainfall quantiles, but the parameters of probability distribu-
tion required for the estimation of quantiles and quantiles

are inevitably uncertain since they are estimated from limited
samples. Therefore, looking at the uncertainty of the parame-
ters of the probability distribution applied and the uncertainty
of the quantile derived as a result of frequency analysis give
important information for determining whether the model is
applicable. In this study, the following dimensionless quan-
titation factors were defined to quantify the uncertainty be-
tween the stationary and nonstationary models:

mfactor=
Width of 95PPU for parameter

estimated parameter value
, (9)

and

hfactor=
Width of 95PPU for rainfall quantile ensemble

rainfall quantile estimate
, (10)

where 95 PPU means 95 % predicted uncertainty of the cor-
responding variable (Abbaspour et al., 2007). In fact, the m
factor and h factor can be seen as the quantification of con-
fidence intervals of ensembles simulated by MCMC. That
is, the m factor and h factor of the estimated value indicate
how accurate the estimate is or how much the uncertainty is
(Ouarda et al., 2020). The greater the uncertainty of the pa-
rameter or rainfall quantile, the greater the value of 95 PPU.
That is, the quantitation factors of uncertainty expressed by
them factor and h factor reflect the diffusion or lack of preci-
sion of the ensemble sampled from the posterior distribution
(Motavita et al., 2019).

A total of 6000 parameter values were sampled from the
posterior distribution of parameters for each of the stationary
and nonstationary models, and 6000 rainfall quantile ensem-
bles corresponding to a return level of 100 years were gener-
ated. Equations (9) and (10) were used to quantify the uncer-
tainty for the parameters and the uncertainty for the rainfall
quantile. Table 2 shows the results at the Busan and Seoul
sites. For reference, the results of applying DPT or SAT as
a covariate at other sites are shown in Table S2. The param-
eters of the stationary GP distribution are α and k, whereas
the parameters of the nonstationary GP distribution are α1,
α2, and k; so, for direct comparison, the m factor derived
by converting α1 and α2 of the nonstationary GP distribu-
tion to α = exp[α1+α2DPTr] was expressed together. Here,
DPTr is a reference DPT and 20.2567 ◦C for the Busan site
and 21.4958 ◦C for the Seoul site, respectively. The reference
DPT will be discussed in detail in the discussion section.

The uncertainty of the parameters was first investigated for
the m factor of Eq. (9). It can be found that the uncertainty
of the scale parameter of the nonstationary model is less than
the uncertainty of the scale parameter of the stationary model
under the condition, given the reference DPT (10.9 % at the
Busan site and 1.7 % at the Seoul site). In the case of the
shape parameter, the Busan and Seoul sites showed differ-
ent results. The uncertainty of the nonstationary model de-
creased at the Busan site (10.2 %) but increased at the Seoul
site (9.9 %). This suggests that, even if a nonstationary model
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Table 2. Uncertainty of stationary and DPT-based nonstationary fre-
quency analysis at the Busan and Seoul sites.

Site Factor Parameter Stationary Nonstationary

Busan
m factor

α1
0.3278

0.5463
α2 0.8700
α 0.2920

k 1.7507 1.5717

h factor 100 years 0.7595
0.4771

(1.0274)

Seoul
m factor

α1
0.3407

0.7127
α2 0.8588
α 0.3349

k 1.4204 1.5613

h factor 100 years 0.7421
0.5331

(1.0273)

is introduced, it is difficult to expect that the uncertainty re-
sulting from the parameter estimation of the GP distribution
would be reduced. The fact that the uncertainty in the scale
parameter has been shown to be reduced is the result from the
condition under which a specific DPT is given, so it would be
also difficult to argue that the uncertainty in the scale param-
eter has been reduced if changes in DPT are reflected.

The h factor of the rainfall quantile corresponding to the
return level of 100 years was calculated in two ways. First,
under the condition that the reference DPT is given (i.e.,
when the reference value of DPT is applied), the h factor
of the nonstationary model is reduced by 37 % (at the Bu-
san site) and 28 % (at the Seoul site), compared to that of
the stationary model. However, under the condition that all
observed DPTs corresponding to POT excesses are applied,
the uncertainty from the parameter estimation and the effects
from the extreme values of the covariate are combined, and
the h factor of the nonstationary model exceeds the h factor
of the stationary model. That is, if the samples of the scale
parameter (i.e., α) are made by combining all samples of the
coefficients of the scale parameter (i.e., α1 and α2) and the
samples of all observed DPTs corresponding to each POT
excess, then the uncertainty of rainfall quantiles in the non-
stationary model is greater than the uncertainty of rainfall
quantiles in the stationary model. The amplification of the
uncertainty in the nonstationary model is because, as can be
seen from Eq. (4), samples of some extreme DPTs greatly
scatter samples of the scale parameter of the nonstationary
GP distribution. This can also be confirmed by the lower
right graphs in Fig. 4a and b. The width of the 95 PPU of the
scale parameter of the nonstationary model corresponding to
the value of the individual DPT is not significantly different
from the width of the scale parameter of the stationary model.
However, when all observed DPTs corresponding to the POT

excesses are involved in the sampling of the scale parameter,
it can be recognized that the range of the 95 PPU of the scale
parameter of the nonstationary model is very wide.

The above results indicate that although the nonstationary
model is better at fitting the performance for the observed
samples, it is difficult to admit that the nonstationary model
is more reliable than the stationary model due to the influ-
ence of the extreme values of the covariate when estimating
the rainfall quantile. Ouarda et al. (2020) also produced sim-
ilar results using the annual maximum rainfall series and the
nonstationary GEV distribution.

We want to note here the condition in which the value of
the covariate is given. In the upper left graphs of Fig. 4a
and b, the stationary quantile has a single value, while the
ensemble average of the nonstationary quantile shows vari-
ous values, depending on the value of DPT. In addition, the
95 PPU of the stationary quantile has a constant range regard-
less of the value of the covariate, whereas the 95 PPU of the
nonstationary quantile has a relatively wider range, depend-
ing on the value of the covariate (see the upper right graphs
in Fig. 4a and b). This is due to the covariate dependence
inherent in the scale parameter of the nonstationary GP dis-
tribution, as mentioned before. That is, since the range of the
ensemble of the nonstationary rainfall quantile is a result of
reflecting the extreme values of the covariate in addition to
the parameter uncertainty, it is more likely to be formed rela-
tively wider than the range of the ensemble of the stationary
rainfall quantile. It should be noted, however, that the width
of the nonstationary 95 PPU for a particular covariate value
is less than the width of the stationary 95 PPU.

In fact, since the covariate corresponding to each POT ex-
cess is a known value, the h factor of the rainfall quantile
corresponding to each POT excess can be obtained (see the
lower left graphs in Fig. 4a and b). Given the value of the
covariate, it can be recognized that the nonstationary h factor
is smaller than the stationary h factor. That is, if the value of
the covariate of the nonstationary model can be determined,
there is a room to say that the nonstationary frequency anal-
ysis is better in terms of reliability than the stationary fre-
quency analysis.

Figure 5 shows the empirical distribution of the rainfall
quantile corresponding to the return level of 100 years us-
ing DPT observed at the Busan and Seoul sites. Note that
the nonstationary GP distribution using the covariate returns
rainfall quantile of various values depends on the DPT cor-
responding to the POT excess. As can be seen in Fig. 5, the
nonstationary frequency analysis can provide an empirical
distribution of the rainfall quantile in the present condition
of DPT and in the future condition of elevated DPT due to
global warming. Therefore, the change in the rainfall quan-
tile, considering global warming, can be expressed explicitly.
While rainfall extremes derived from climate models have
significant bias and uncertainty, relatively reliable climate
model outputs can be obtained for DPT (O’Gorman, 2012;
Lenderink and Attema, 2015; Farnham et al., 2018). There-

Hydrol. Earth Syst. Sci., 24, 5077–5093, 2020 https://doi.org/10.5194/hess-24-5077-2020



O. Lee et al.: Uncertainty in nonstationary frequency analysis of South Korea’s daily rainfall POT excesses 5085

Figure 4. Changes in uncertainty for the covariate at (a) the Busan and (b) Seoul sites. The upper left figures in (a) and (b) show the POT
series (blank line) and the ensemble average of the stationary (blue line) and nonstationary (red line) rainfall quantile corresponding to the
return level of 100 years. In the upper right figures, the ensemble average (blue line for stationary model and red line for nonstationary
model) and 95 PPU of the stationary (blue dotted line) and nonstationary (red dotted line) rainfall quantile for the return level of 100 years
are shown. The lower left figures show the h factor of the stationary (blue line) and nonstationary (black line) rainfall quantile corresponding
to the return level of 100 years. Red lines mean the average of the black line. The lower right figures show the ensemble average (blue line
for stationary model and red line for nonstationary model) and 95 PPU of the stationary (blue dotted line) and nonstationary (red dotted line)
scale parameter.

fore, it can be said that the nonstationary frequency analysis
using DPT or SAT has an advantageous structure for exam-
ining the effect of global warming on the rainfall quantile
(Wasko and Sharma, 2017; Lee et al., 2020).

4 Discussion

4.1 Reference covariate

As described above, when performing the uncertainty anal-
ysis of the nonstationary frequency analysis, an undesired

disturbance in which the ensemble of the rainfall quantile is
excessively dispersed due to some extreme covariate values
appears. Since the value of the covariate is the data observed
on the day that the POT excess occurred (i.e., a deterministic
variable), analyzing the uncertainty in the rainfall quantile by
randomly sampling the value of DPT or SAT from a prede-
fined probability distribution of covariate is likely to result in
an overestimation of the uncertainty. We thought that the un-
certainty analysis of randomly sampling the values of the co-
variate from a predefined distribution of the covariate was not
feasible. The method of randomly sampling the value of the
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Figure 5. Rainfall quantile estimates at (a) the Busan and (b) Seoul sites for the return level of 100 years using observed dew point tem-
perature and global warming scenarios. The stationary rainfall quantile is indicated as a blue vertical line since it is a single value. The
nonstationary rainfall quantiles were calculated using the average of the parameter ensemble sampled by MCMC and the DPT observed on
the day of POT excesses (red dotted line). In these figures, the label of nonstationary (3 ◦C up) is an empirical distribution of the rainfall
quantile derived using DPTs that add 3 ◦C to DPTs observed on the day of POT excesses. Likewise, nonstationary (5 ◦C up) is an empirical
distribution of the rainfall quantile under the scenario condition in which DPT has risen 5 ◦C due to global warming.

covariate in this study was implemented under the condition
that all observed covariate samples corresponding to POT ex-
cesses were applied. Therefore, this study investigated the re-
lationship between the value of the covariate and the rainfall
quantile.

From Eq. (5), the DPT value (i.e., reference DPT) of the
nonstationary GP distribution that returns the rainfall quan-
tile to being equal to the stationary GP distribution can be cal-
culated (reference SAT can be calculated in the same way).
Figure 6 shows an example of the determination of a refer-
ence DPT. The results of calculating the reference DPT at
the Busan and Seoul sites indicate that the reference DPT
increases as the return level increases. The right graphs in
Fig. 6a and b show the histogram of DPT corresponding to
POT excesses. The distribution of DPT is slightly distorted to
the left. It can be seen that the reference DPT corresponding
to various return levels at the Busan and Seoul sites is simi-
lar to the location of the mode of the DPT distribution. This
fact reveals that covariate values that deviate significantly
from the reference covariate (i.e., some extreme values of
the covariate) amplify the uncertainty of the rainfall quantile
from the nonstationary frequency analysis. From the results
of the regression analysis of the rainfall quantile for various
return levels and the corresponding reference DPT, the re-
lationship of DPT= 18.8589RL∧0.01555 (where RL is the
return level in year and the unit of DPT is in degrees Cel-
sius) was obtained at the Busan site. At the Seoul site, a rela-
tionship of DPT= 19.8540RL∧0.01728 was obtained. The
coefficient of the determination of the regression analysis
was 0.99 or higher at the Busan and Seoul sites. From these
results, the reference DPT corresponding to the return level
of 100 years at the Busan site could be applied to 20.2567 ◦C
and to 21.4958 ◦C at the Seoul site. As shown in Figs. 6, S3,

and S4, the value of the reference covariate is almost com-
pletely dependent on the return level. It should be noted that
the return level and the reference covariate are proportional
to each other at some sites and are inversely proportional to
other sites. This means that it is not easy to identify a single
covariate value corresponding to a rainfall quantile. In this
study, we tried to overcome the problem of random sampling
of covariates by introducing the concept of the reference co-
variate when estimating the rainfall quantile and analyzing its
uncertainty from the nonstationary frequency analysis based
on the covariate. From a practical point of view, how to set
the value of the reference covariate may be an important re-
search topic in the covariate-based nonstationary frequency
analysis.

Figure 7a shows the values of the negative log likelihood
function of the stationary model and the nonstationary mod-
els at 13 sites. The stationary model, the SAT-based nonsta-
tionary model, and the DAT-based nonstationary model were
found to have no significant difference in the fit performance
with the observed POT excesses. Figure 7b shows the h fac-
tor of the rainfall quantile corresponding to the return level
of 100 years. When all the values of the covariate observed
on the day of POT excesses are considered (DPT and SAT in
Fig. 7b) at all sites, except the Mokpo site, the nonstationary
h factor is greater than the stationary h factor. However, when
the reference covariate is applied, the nonstationary h factor
is smaller than the stationary h factor. Results from 13 sites
and most of the nonstationary models using SAT or DPT as
a covariate indicate that determining the appropriate value of
the covariate corresponding to the rainfall quantile plays an
important role in securing the reliability of the nonstationary
frequency analysis.
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Figure 6. Selection of the reference dew point temperature to estimate the rainfall quantiles at (a) the Busan and (b) Seoul sites. In this
figure, RF refers to the empirical relative frequency of DPT on the day of the POT excess.

Figure 7. Performance of the stationary and nonstationary frequency analysis models. The Site ID numbers refer to the following sites:
1 – Ghangreung, 2 – Seoul, 3 – Incheon, 4 – Chupungryeong, 5 – Pohang, 6 – Daegu, 7 – Jeonju, 8 – Ulsan, 9 – Ghwangju, 10 – Busan,
11 – Mokpo, 12 – Yeosu, and 13 – Jeju.

The uncertainty of the nonstationary frequency analysis
for various sample size changes was analyzed using a ref-
erence DPT corresponding to the return level of 100 years.
In the first case, the POT and covariate series of the last
10 years, from 2008 to 2017, were applied, and a frequency
analysis was performed by extending the data period in the
past direction to 5 years. Figure 8 shows the uncertainty of
the rainfall quantile under the condition that the reference
DPT is given. Generally, the h factor of the nonstationary fre-
quency analysis is smaller than the stationary frequency anal-
ysis. It can be found that, for the h factor to be less than 0.5,
the nonstationary frequency analysis requires a data period of
about 40 years (at the Busan site) and 75 years (at the Seoul
site), while the stationary frequency analysis requires more
than 100 years. The data period required to achieve a certain
level of the h factor can play an important role in the optimal
model selection. As in other regions, the observed data pe-
riod in South Korea varies widely from site to site. If the data
period is short and there is no significant difference in per-
formance (both in terms of goodness of fit and uncertainty)

between the stationary model and the nonstationary model, it
can be said that it is better to apply a stationary model with a
relatively well-established methodology. However, in terms
of the uncertainty, if the value of the reference covariate can
be well defined, the results in Fig. 8 show that the nonstation-
ary model can estimate the rainfall quantile with the same
level of uncertainty, even with relatively shorter data periods.
That is, when frequency analysis is performed using samples
of the same data period at a site, if the appropriate covariate
is applied and the reference value of the covariate is appropri-
ately determined, then it can be said that the rainfall quantile
estimated from the nonstationary model is more reliable than
the rainfall quantile estimated from the stationary model.

4.2 Uncertainty of rate of change

Through Fig. 5, we can see that the nonstationary frequency
analysis using DPT has an advantageous structure for ex-
amining the effect of global warming on the rainfall quan-
tile. In this section, we extend the concept of Fig. 5 a little
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Figure 8. Effect of the number of samples on the uncertainty of the rainfall quantile using the reference dew point temperature.

further to investigate the uncertainty about the rate of change
in the rainfall quantile for global warming. Here, the rate of
change is defined as [future rainfall quantile− present rain-
fall quantile]/[present rainfall quantile]. That is, a rate of
change of 0.2 means that the future rainfall quantile will in-
crease by 20 % from the present rainfall quantile. In most
global warming scenarios, the state of DPT increases, so the
case in which the change rate is less than 0 is not considered
in this study. In fact, it is not difficult to consider.

Let us assume that the rainfall quantile for the return level
of T years in the present DPT state is XTp , and the rainfall
quantile in the future DPT state is XTf . At this time, XTp and
XTf are composed of an ensemble sampled by MCMC under
the conditions, given the present and future reference DPT,
respectively. The probability that the rainfall quantile XTf in
the future DPT state increases by more than α×100 (%) than
the rainfall quantileXTp in the present DPT condition, that is,
the probability P Tα that the rate of change becomes more than
α can be defined as follows:

P Tα = P
[
XTf ≥ (1+α)X

T
p

]
= 1−

∞∫
0

F Tf

[
(1+α)XTp

]
· f Tp

[
XTp

]
dXTp , (11)

where F Tf [ ] is the cumulative probability distribution func-
tion ofXTf in the future DPT state and will behave depending
on the DPT rise in the future global warming scenario. The
probability distribution of XTp in the present DPT state was
expressed as f Tp [ ]. From Eq. (11), it can be recognized that
P Tα increases, as the future DPT increase increases, and de-
creases, as the rate of change increases.

When a frequency analysis using the Bayesian approach
is performed, a large number of samples for XTp and XTf can
be obtained through MCMC simulation; instead of calculat-
ing P Tα using Eq. (11), it is possible to numerically calculate
P Tα from the generated samples. Figure 9 shows the probabil-
ity that the rainfall quantile for the return level of 100 years

will exceed a certain rate of change under various condi-
tions (1DPT) in a global warming scenario expressed as a
rise in DPT. That is, the probability that the rainfall quantile
for the return level of 100 years increases by 20 % or more in
a scenario condition in which the state of DPT increases by
6 ◦C at the Busan site is about 80 %.

When Fig. 9 is substituted for a specific DPT rise scenario,
the reliability of the rate of change in the rainfall quantile can
be obtained, as explained below. Figure 10 describes the pro-
cedure for analyzing the rate of change in the rainfall quantile
for the return level of 100 years under the DPT 4 ◦C rise sce-
nario. The upper left graphs in Fig. 10a and b show the proba-
bility distribution of the rainfall quantile ensemble at the Bu-
san and Seoul sites, respectively. One can see that the prob-
ability distribution of XTf is shifted to the right. Using the
information on these probability distributions and the con-
cept of Eq. (11), the likelihood of an increase over change
rate (LoI), P Tα , can be drawn (see the upper right subplot).
Since the LoI is the probability that the rate of change of the
rainfall quantile for a specific return level is greater than or
equal to α in a specific DPT rising condition, the probability
that the rate of change is less than or equal to α is 1−P Tα .
That is, the cumulative probability distribution of the rate of
change becomes 1−P Tα , which is shown in the lower right
graph. The probability distribution of the rate of change can
be obtained numerically from the cumulative probability dis-
tribution of rate of change, and it is shown in the lower left
graph. The ensemble average of the rate of change of the
rainfall quantile for the return level of 100 years at the Busan
site was 0.3138 (0.3742 at the Seoul site), and the standard
deviation of the ensemble was 0.2734 (0.3298 at the Seoul
site).

The uncertainty of the parameters estimated in the fre-
quency analysis will influence the estimation of the rate of
change in future climate change scenarios. An ensemble of
the rainfall quantile can be obtained from various parame-
ter combinations sampled by MCMC, and an ensemble of
the future rainfall quantile can also be obtained by applying
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Figure 9. Likelihood of an increase over the change rate of the rainfall quantile for a return level of 100 years.

Figure 10. Procedure for analyzing the uncertainty in the rate of change. In the upper left figures, the blue line is the probability distribution
of XTp in the present condition, and the red line is the probability distribution of XTf in the DPT 4 ◦C rising condition. In the lower left
figures, the section of the standard deviation is colored pink.

climate change scenarios to covariates. A simple compari-
son of the ensemble average of the rainfall quantile derived
from present and future DPT states using a reference DPT
makes it possible to obtain an average rate of change, but it
is impossible to determine how reliable the rate of change is.
Through the procedure presented in Fig. 10, one can recog-
nize that it is possible to quantify the uncertainty inherent in
the rate of change. It should be noted, however, that this un-
certainty analysis of the rate of change only considered the
uncertainty that comes from parameter estimation. When an-
alyzing the uncertainty of the rate of change, the uncertainty
arising from the selection of the probability distributions for
the frequency analysis and the uncertainty resulting from the
choice of covariates should also be addressed. In addition,
the uncertainty arising from various climate change scenar-
ios should be treated as important.

5 Conclusion

In this study, stationary and nonstationary frequency analysis
was performed using daily precipitation data from 13 ma-
jor sites in South Korea. Daily precipitation data for the
frequency analysis was extracted based on the POT ap-
proach. As a threshold for extracting the POT series, it was
confirmed that a value between 30 and 150 mm d−1 was
appropriate from the results of plotting the mean residual
life plot. Both the Busan and Seoul sites have finally set
50 mm d−1 as the threshold of the POT excesses. The POT
series was adapted to the GP distribution, and as a result
of estimating the parameters using the PWM and MH algo-
rithms, it was confirmed that the parameter estimation of the
GP distribution by the MH algorithm is applicable. Confir-
mation of the applicability to the MH algorithm means that
information on the empirical probability distribution of the
estimated GP distribution parameters can be obtained.
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The nonstationarity of the POT series was implemented
by expressing the scale parameter of the GP distribution as a
function of the DPT or SAT observed on the day of the POT
excess. The AIC of the nonstationary GP distribution, using
the covariate, was calculated to be slightly smaller than the
AIC of the stationary GP distribution. However, since the dif-
ference was thought to be likely to change in any way during
the parameter estimation process, it was recognized that the
performance, in terms of data fitness of the stationary and
nonstationary GP distributions, was almost similar. On the
other hand, since the nonstationary frequency analysis using
the covariate can separately provide the empirical distribu-
tion of the rainfall quantile at the current covariate level and
the empirical distribution of the rainfall quantile at the co-
variate level that changed due to global warming, changes
in the rainfall quantile, considering climate change, can be
expressed explicitly.

In this study, the rainfall quantile for the various parame-
ter combinations was simulated using MCMC sampling from
the posterior distribution of the parameters derived by the
MH algorithm. Under the condition that considered all ob-
served ranges of the covariate, it was found that the uncer-
tainty of the nonstationary model was calculated to be greater
than the uncertainty of the stationary model, since the ef-
fects of extreme values of covariate were added to the uncer-
tainty resulting from parameter estimation. In other words,
although the performance in terms of goodness of fit was bet-
ter for the nonstationary model, it was difficult to say that the
results of the nonstationary model were more reliable than
the results of the stationary model because of the nonstation-
arity from the variation in the covariate when estimating rain-
fall quantile. However, in this study, the concept of the ref-
erence covariate was introduced to prevent excessive disper-
sion of the rainfall quantile ensemble due to extreme values
of the covariate. That is, it was suggested that the reliability
of the nonstationary frequency analysis could be superior to
the reliability of the stationary frequency analysis under the
condition that an appropriate reference covariate was given.
For reference, it was found that it was necessary to change
the reference covariate in response to the return level of the
rainfall quantile.

The focus of this study was on how to examine the rel-
ative superiority of the stationary and nonstationary models
when performing frequency analysis. When considering the
uncertainty of the parameter of the probability distribution,
which is mainly caused by the limited sample size, it was
thought be insufficient for evaluating the relative goodness of
the stationary and nonstationary models only by evaluating
the fitness of the sample using the estimated parameter. This
study was promoted from the viewpoint that a model with
smaller uncertainty inherent in the rainfall quantile, which is
the result of frequency analysis, was better. From this point
of view, it was found that the covariate-based nonstationary
frequency analysis could be a better model than the station-
ary frequency analysis if the reference covariate was properly

given. In addition, it was recognized that the uncertainty in
the rate of change of the rainfall quantile in future covariate
conditions could also be identified by using the rainfall quan-
tile ensemble in present and future covariate conditions that
can be obtained in the uncertainty analysis process.
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