Articles | Volume 24, issue 10
Hydrol. Earth Syst. Sci., 24, 4997–5013, 2020
https://doi.org/10.5194/hess-24-4997-2020
Hydrol. Earth Syst. Sci., 24, 4997–5013, 2020
https://doi.org/10.5194/hess-24-4997-2020
Research article
26 Oct 2020
Research article | 26 Oct 2020

3D multiple-point statistics simulations of the Roussillon Continental Pliocene aquifer using DeeSse

Valentin Dall'Alba et al.

Related authors

Ice volume and basal topography estimation using geostatistical methods and ground-penetrating radar measurements: application to the Tsanfleuron and Scex Rouge glaciers, Swiss Alps
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021,https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Stochastic approaches
Influence of low-frequency variability on high and low groundwater levels: example of aquifers in the Paris Basin
Lisa Baulon, Nicolas Massei, Delphine Allier, Matthieu Fournier, and Hélène Bessiere
Hydrol. Earth Syst. Sci., 26, 2829–2854, https://doi.org/10.5194/hess-26-2829-2022,https://doi.org/10.5194/hess-26-2829-2022, 2022
Short summary
Technical note: Using long short-term memory models to fill data gaps in hydrological monitoring networks
Huiying Ren, Erol Cromwell, Ben Kravitz, and Xingyuan Chen
Hydrol. Earth Syst. Sci., 26, 1727–1743, https://doi.org/10.5194/hess-26-1727-2022,https://doi.org/10.5194/hess-26-1727-2022, 2022
Short summary
Technical note: Discharge response of a confined aquifer with variable thickness to temporal, nonstationary, random recharge processes
Ching-Min Chang, Chuen-Fa Ni, We-Ci Li, Chi-Ping Lin, and I-Hsien Lee
Hydrol. Earth Syst. Sci., 25, 2387–2397, https://doi.org/10.5194/hess-25-2387-2021,https://doi.org/10.5194/hess-25-2387-2021, 2021
Short summary
Data assimilation with multiple types of observation boreholes via the ensemble Kalman filter embedded within stochastic moment equations
Chuan-An Xia, Xiaodong Luo, Bill X. Hu, Monica Riva, and Alberto Guadagnini
Hydrol. Earth Syst. Sci., 25, 1689–1709, https://doi.org/10.5194/hess-25-1689-2021,https://doi.org/10.5194/hess-25-1689-2021, 2021
Short summary
A field evidence model: how to predict transport in heterogeneous aquifers at low investigation level
Alraune Zech, Peter Dietrich, Sabine Attinger, and Georg Teutsch
Hydrol. Earth Syst. Sci., 25, 1–15, https://doi.org/10.5194/hess-25-1-2021,https://doi.org/10.5194/hess-25-1-2021, 2021

Cited articles

Aunay, B., Duvail, C., Giordana, G., Doerfliger, N., Le Strat, P., Montginoul, M., and Pistre, S.: A pluridisciplinary methodology for integrated management of a coastal aquifer: Geological, hydrogeological and economic studies of the Roussillon aquifer (Pyrénées-Orientales, France), Observatoire Océanologique – Laboratoire Arago, Vie et Milieu/Life & Environment, 56, 275–285, 2006. a, b
Barfod, A. A. S., Møller, I., Christiansen, A. V., Høyer, A.-S., Hoffimann, J., Straubhaar, J., and Caers, J.: Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods, Hydrol. Earth Syst. Sci., 22, 3351–3373, https://doi.org/10.5194/hess-22-3351-2018, 2018. a
Boisvert, J. B., Pyrcz, M. J., and Deutsch, C. V.: Multiple-point statistics for training image selection, Nat. Resourc. Res., 16, 313–321, https://doi.org/10.1007/s11053-008-9058-9, 2007. a
Caballero, Y. and Ladouche, B.: Impact of climate change on groundwater in a confined Mediterranean aquifer, Hydrol. Earth Syst. Sci. Discuss., 12, 10109–10156, https://doi.org/10.5194/hessd-12-10109-2015, 2015. a
Chauveau, M., Chazot, S., Perrin, C., Bourgin, P.-Y., Sauquet, E., Vidal, J.-P., Rouchy, N., Martin, E., David, J., Norotte, T., Maugis, P., and De Lacaze, X.: Quels impacts des changements climatiques sur les eaux de surface en France à l'horizon 2070?, Houille Blanche, 4, 5–15, https://doi.org/10.1051/lhb/2013027, 2013. a
Download
Short summary
Due to climate and population evolution, increased pressure is put on the groundwater resource, which calls for better understanding and models. In this paper, we describe a novel workflow to model the geological heterogeneity of coastal aquifers and apply it to the Roussillon plain (southern France). The main strength of the workflow is its capability to model aquifer heterogeneity when only sparse data are available while honoring the local geological trends and quantifying uncertainty.