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Abstract. This study introduces a novel workflow to model
the heterogeneity of complex aquifers using the multiple-
point statistics algorithm DeeSse. We illustrate the approach
by modeling the Continental Pliocene layer of the Roussil-
lon aquifer in the region of Perpignan (southern France).
When few direct observations are available, statistical infer-
ence from field data is difficult if not impossible and tradi-
tional geostatistical approaches cannot be applied directly.
By contrast, multiple-point statistics simulations can rely on
one or several alternative conceptual geological models pro-
vided using training images (TIs). But since the spatial ar-
rangement of geological structures is often non-stationary
and complex, there is a need for methods that allow to de-
scribe and account for the non-stationarity in a simple but
efficient manner. The main aim of this paper is therefore to
propose a workflow, based on the direct sampling algorithm
DeeSse, for these situations. The conceptual model is pro-
vided by the geologist as a 2D non-stationary training im-
age in map view displaying the possible organization of the
geological structures and their spatial evolution. To control
the non-stationarity, a 3D trend map is obtained by solv-
ing numerically the diffusivity equation as a proxy to de-
scribe the spatial evolution of the sedimentary patterns, from
the sources of the sediments to the outlet of the system. A
3D continuous rotation map is estimated from inferred paleo-
orientations of the fluvial system. Both trend and orientation
maps are derived from geological insights gathered from out-
crops and general knowledge of processes occurring in these
types of sedimentary environments. Finally, the 3D model

is obtained by stacking 2D simulations following the paleo-
topography of the aquifer. The vertical facies transition be-
tween successive 2D simulations is controlled partly by the
borehole data used for conditioning and by a sampling strat-
egy. This strategy accounts for vertical probability of transi-
tions, which are derived from the borehole observations, and
works by simulating a set of conditional data points from
one layer to the next. This process allows us to bypass the
creation of a 3D training image, which may be cumbersome,
while honoring the observed vertical continuity.

1 Introduction

It has been shown, for example by Naranjo-Fernández et al.
(2018), that accounting for heterogeneity is an important
step in producing realistic hydrogeological models and in
properly managing the water resource, especially in a con-
text of global climatic changes. The present study pro-
poses a new multivariate workflow, using a multiple-point
statistics (MPS) approach, to model the spatial heterogene-
ity of complex alluvial aquifers. The workflow is applied
to the Roussillon aquifer, which is a multi-layered system
composed of the Marine Pliocene aquifer, the Continental
Pliocene aquifer, and the Quaternary aquifer. Located along
the southernmost part of the French Mediterranean coast,
near the Spanish border, this system is used intensively for
both drinkable water and irrigation (Aunay et al., 2006).
From its social and economic importance, understanding the
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aquifer is essential for the authorities to ensure a long-term
and sustainable management of the resource. Since one of
the largest sources of uncertainty is the identification of the
hydraulic conductivity field, it has been decided to focus on
the modeling of the complex geological heterogeneity of the
Continental Pliocene layer. This layer consists of alluvial de-
posits and presents a high level of internal heterogeneity.

To model the heterogeneity, different geostatistical meth-
ods have been developed and used in the last decades (Kolter-
mann and Gorelick, 1996; de Marsily et al., 2005). They
were employed in different fields ranging from risk assess-
ment, resource management, mining, or petroleum engineer-
ing (Matheron, 1963; Strebelle et al., 2002; de Carvalho
et al., 2017). All these methods aim to model the variables
of interest at locations where they have not been measured.
Traditional geostatistical methods are based on a covariance
or variogram models inferred from the data. Kriging (Math-
eron, 1963) provides the best linear unbiased estimator: it
is fast and produces a smooth interpolation. Multi-Gaussian
simulation methods, such as the sequential Gaussian simu-
lation approach (SGS) proposed by Journel (1974), are able
to generate random fields, depicting the spatial variability of
the variable of interest. Truncated Gaussian simulation meth-
ods (TGS or PGS) allow us to generate discrete realizations
where the spatial relations between the facies (categories) are
derived from one or several underlying multi-Gaussian ran-
dom fields (Matheron et al., 1987). However, these methods
are based on two-point statistics and cannot reproduce some
geological features such as the sinuosity of a channel or re-
alistic sedimentological patterns. Hence, they are not always
suitable for modeling the expected heterogeneities in geolog-
ical reservoirs. Multiple-point statistics methods have been
developed since the 1990s to overcome these limitations.
MPS techniques allow us to generate random fields reproduc-
ing the spatial statistics given in a training image (TI), which
is a conceptual model that integrates the geological knowl-
edge of the area of interest. Moreover, unlike traditional ap-
proaches, MPS does not require definition of an analytical
model to describe the statistical spatial distribution of the
variable of interest; instead, it infers the model in an implicit
way from the TI provided by the user (Hu and Chugunova,
2008).

Many MPS algorithms have been developed over the
years. The general principle consists in sequentially populat-
ing the simulation grid while reproducing the patterns (spa-
tial statistics) present in the TI. For example, in SNESIM
(Strebelle et al., 2002), the statistics of patterns on a pre-
defined geometry are stored in a tree-shaped database that
is built by scanning the whole TI before starting the simu-
lation. Then, the simulation proceeds pixel by pixel; a value
is drawn randomly according to probabilities conditioned by
the surrounding patterns and computed from the database.
As a consequence, the method is memory consuming and
limited to the simulation of categorical variables. In IM-
PALA (Straubhaar et al., 2011, 2013), the limitation due to

the memory is alleviated by using a list-shaped database,
and non-stationary TIs can also be handled with the use of
auxiliary variables (Chugunova and Hu, 2008). In other al-
gorithms, such as FILTERSIM (Zhang et al., 2006), CC-
SIM (Tahmasebi et al., 2012), or IQSIM (Hoffimann et al.,
2017), the simulation grid is filled by directly pasting or
quilting patches, i.e., several pixels at a time. FILTERSIM
uses a set of filters to reduce the dimension of the prob-
lem, whereas CCISM is based on cross-correlation between
patches. IQSIM proposes a new approach that bypasses tra-
ditional ad hoc weighting of auxiliary variables. The main
drawback of patch-based methods is often their difficulty in
honoring conditioning data.

One of the most flexible MPS algorithms is the direct sam-
pling method (Mariethoz et al., 2010). It is a pixel-based
method, where the simulation of one pixel consists in ran-
domly searching for a pattern in the TI that is similar to
the pattern centered on the considered pixel in the simula-
tion grid and then copying the value of the variable from the
TI. It has the advantage of making database creation unnec-
essary, does not require computation of probability, and can
handle patterns of varying geometry. By adapting the way of
comparing the patterns in the TI and in the simulation grid,
the algorithm is able to deal with categorical and continuous
variables as well as with the joint simulation of multiple vari-
ables. In this work, we use the direct sampling algorithm im-
plemented in the DeeSse code (Straubhaar, 2019). It is par-
allelized and offers many options to constrain the stochas-
tic simulations such as continuous rotation/affinity maps or
proportion targets. Finally, by generating an ensemble of re-
alizations, it is then possible to estimate any probability of
interest from the different facies maps. More details about
the features of the DeeSse code are provided in Meerschman
et al. (2013) and Straubhaar et al. (2016, 2020).

The choice of a simulation technique to model an aquifer
at a regional scale depends on different factors. One im-
portant aspect is the amount of data available. When the
amount of data is large, it is possible to infer rather accu-
rately the statistics describing the spatial variability from the
data. Probability distributions about the different rock types,
variograms, and spatial trends can be directly estimated and
used in the simulation process. This situation often occurs in
the mining industry, for example where a very large number
of drill holes are made during the exploitation of an ore de-
posit. The configuration is very different in other situations,
such as the Roussillon plain, where only a few boreholes are
available for a large study area. It then becomes difficult if
not impossible to estimate accurately those statistical param-
eters from the data set. One has then to rely more heavily
on indirect data, geological concepts, and analogy with other
sites. In these situations, statistical distributions, variograms,
and orders of magnitude of correlation lengths could be bor-
rowed from databases of similar environments such as those
developed by Colombera et al. (2012). The issue with that ap-
proach is that the simulations may be constrained only by a
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few data points, and therefore the final variability among the
simulations will be excessively large and the geological fea-
tures will not be properly represented because the field data
will not compensate for the lack of a geological concept in
a variogram-based geostatistical approach. An object-based
method would respect better the geological knowledge be-
cause the user will have to explicitly define the shape of the
objects, and this approach could be an interesting solution for
these situations with an important data gap. Here, we rather
consider the use of MPS. As for the object-based approach,
it allows direct integration of geological knowledge in the
stochastic simulation process.

When using MPS, an important part of the process is the
construction of the training image. We first want to note that
the conceptual sedimentological models are usually repre-
sented in 2D map views or block diagrams and geologists are
used to express their understanding of a system by drawing
such maps and cross sections. Furthermore, remote sensing
data or geological maps are widely available and can be used
to refine these 2D conceptual models. Accessing 2D train-
ing images is therefore easy and simple. However, the stan-
dard MPS workflow requires a 3D training image to generate
3D simulations. Getting the 3D training image from 2D con-
cepts is not a simple task. It may require a significant amount
of tedious work to construct manually a 3D training image
from the 2D concepts. Therefore, previous research was de-
voted to the design of MPS algorithms able to use 2D train-
ing images directly as input for 3D simulations (Comunian
et al., 2012; Cordua et al., 2016). Here, we propose a simple
approach that allows the user to avoid the step of 3D training
image construction. This is not mandatory. If a 3D training
image is available, it can easily be used in the workflow, but
if it is not available it should not be a limitation, as we will
illustrate in the paper.

Other very important aspects to take into account at the
regional scale are the statistical non-stationarities resulting
from geological processes, such as the location of the sources
of the sediments, their transport, deposition, and so on. Ap-
plication of MPS to a real case requires more than just an effi-
cient MPS code and a good training image; it also requires to
develop a complete methodology and workflow to take into
account all those aspects.

The aim of this paper is therefore to introduce a global
workflow allowing us to incorporate most of the available
geological knowledge into a plausible heterogeneity model
and to illustrate the method on the Roussillon plain. This
approach is generic and can be applied to any other case
where the available data are scarce compared to the geolog-
ical knowledge. The workflow includes a series of steps that
are described in detail in the paper. Based on the borehole and
geological knowledge of the site, a plan view non-stationary
training image displaying the main sedimentological features
is designed. In this paper, we limit ourselves to the construc-
tion of a 2D training image since there are many situations
in which the cross-sectional view at the scale of the aquifer

is much less well known than the expected spatial organi-
zation of the sedimentary layers on a 2D horizontal plane.
The vertical transitions are controlled using probability of
transitions derived from the boreholes. The boundary con-
ditions imposed on the diffusivity equation allow us to ac-
count for the paleo-input zones and for the lateral geometry
of the aquifer. In addition, the proposed workflow accounts
for the paleo-orientations of the sedimentary system and its
related uncertainty as inferred from field observations. This
work shows that such an approach can be efficient in simulat-
ing realistic alluvial systems matching the conceptual knowl-
edge of the system.

The paper is structured as follows: Sect. 2 introduces the
background information regarding the geology and hydroge-
ology of the Roussillon aquifer, and the DeeSse algorithm,
Sect. 3, describes the workflow, and Sect. 4 presents the re-
sults. The paper ends with a discussion and conclusion.

2 Background information

2.1 Geology

Located in southern France, this 800 km2 sedimentary basin
is limited by the foothills of the Pyrenees to the south and
west, the Corbières massif to the north, and the Mediter-
ranean Sea to the east (Fig. 1). This basin originates from
the opening of the Gulf of Lion (Oligocene to Miocene)
before being largely eroded by the Messinian Salinity Cri-
sis (MSC) (Clauzon et al., 2015). It is with the drying up
of the Mediterranean Sea that the Miocene was exposed
and eroded, approximately 6 Myr ago (Lofi et al., 2005).
During the Pliocene, the basin was filled up again, with
the Gilbert delta reworking the sediments generated by the
sub-aerial Messinian unconformity. The sediments grade to
wave-dominated deltas (Sandy Marine Pliocene) to a fluvial-
dominated delta, with the continental part corresponding to
the Continental Pliocene. On top of the stratigraphic pile,
Quaternary sediments associated with rivers and lagoon sys-
tems have been deposited.

The Pliocene layer is composed of different sandstone
units separated by silt and clay layers of low permeability
(Duvail, 2012; Aunay et al., 2006). The main sources of sed-
iments came from the weathering of the massifs surrounding
the Roussillon plain. Its depth increases towards the coast-
line, where its maximum thickness reaches 300 m (Duvail
et al., 2005).

Based on field observations, the Continental Pliocene can
be considered a classical fluvial sedimentary system. Near
the relief, the association of high-energy systems and the
large amount of available sediments created alluvial fan de-
posits, composed of sandstone conglomerates. These alluvial
fans have an extent of 1–3 km radius and can be more than
10 m thick. Fans merge together, producing larger bodies of
3 to 6 km wide and over 60 m thick. The alluvial fans rapidly
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Figure 1. Simplified geological map of the Roussillon Plio-
Quaternary aquifer.

evolve to braided river deposits composed of coarse sands
and sandstone conglomerates. These braided structures have
generally an extent of 100–150 m width and are 1–5 m thick.
It appears that these networks can be laterally and vertically
well connected, forming very dense and wide objects near
their sources. With the decrease in the sedimentary slope,
the structures tend to evolve toward meandering river struc-
tures. Their deposits are still relatively coarse yet much more
sorted and well contained within a single channel: their width
reaches up to 300 m and their thickness up to 12 m. The con-
nectivity of the river bed deposits is hard to observe in either
the vertical or horizontal direction. Three other sedimentary
elements are also intrinsically developed within the alluvial
plain. The first two are the crevasse splay deposits and the
levees, which are both directly related to the river banks’
flooding dynamic. The last element is the floodplain char-
acterized by a fine-grained (silt to shale) sedimentation cor-
responding to the decanting process of flooding events. In the
following, and because we do not consider the deeper Marine
Pliocene formations in this paper, we refer to the Continental
Pliocene layer/aquifer as the Pliocene layer/aquifer.

2.2 Hydrogeology

From a hydrogeological perspective, the study area contains
two main aquifers: the Quaternary located in the shallow al-
luvial deposits along the rivers (Agly, Têt, and Tech) and
the Continental and Marine Pliocene aquifer located deeper
and covering the whole basin (Fig. 1). These aquifers are ex-
ploited for agriculture and domestic use.

Due to its large extension, both onshore and offshore,
the Pliocene’s aquifer represents a large water reservoir.
However, due to uncertainties related to its properties and

recharge processes, the management of this resource is dif-
ficult. In the 1960s, the piezometric level was on average
8 m higher as compared to the 2012 data and even artesian
at some locations. In recent years and close to the seashore,
this exploitation has lowered the groundwater level below sea
level during the summer months, when withdrawals are most
intense. This situation raises concerns about seawater intru-
sion risk in the coastal part of the Pliocene aquifer.

As a consequence of climate change, groundwater reserves
and recharge may decrease in the near future. For a scenario
where the average annual temperature increases by 1.5 ◦C
associated with a decrease in precipitation rate, river flow
could drop by 40 % over the next 30 years (Chauveau et al.,
2013), which will automatically create new stress on the
groundwater resource. Considering that the multi-layer Plio-
Quaternary Roussillon aquifer accounts for almost 80 % of
the resources used for drinking water, there is an urgent need
to understand its behavior in order to manage this resource
in a sustainable manner to face global change impacts (Ca-
ballero and Ladouche, 2015).

2.3 Multiple-point statistics and DeeSse

The essential ingredient of MPS techniques is the TI. The
TI is a conceptual model displaying the structures the user
wants to simulate. The use of TI gives flexibility and creativ-
ity to the modeler. Unlike some other geostatistical methods
such as two-point statistics, utilization of training images al-
lows specialists from different fields to discuss together the
geometry and the type of heterogeneity of a model.

A TI can either be stationary or non-stationary. Station-
ary TIs are easier to use: they display a repetition of patterns
with a homogeneous spatial distribution; i.e., the same type
of spatial feature is present everywhere in the grid. By con-
trast, non-stationary TIs display different kinds of structures
depending on the location; they generally include more in-
formation and are more complex. When working with non-
stationary TI, some rules must be observed in order to pro-
duce realistic simulations. Since the repetition of patterns is
not homogeneous on such TIs, one or several auxiliary vari-
ables are required to describe the patterns’ spatial distribu-
tion. In the simulation grid, corresponding auxiliary variables
are defined to control the spatial location of the structures
that have to be simulated (Chugunova and Hu, 2008). With
this information, patterns are not mixed together when simu-
lated and trend characteristics can be reproduced. Auxiliary
variables for the simulation grid are often called trend maps,
because they allow us to control the trends of the simulated
structures.

A rotation map can also be used to orientate differently
the patterns in the simulation grid compared to their orienta-
tion in the TI. Hence, the specific spatial features displayed
in the TI can follow the same orientation everywhere, which
facilitates the construction of the conceptual model, whereas
the rotation map defines the local orientation in the simula-
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tion grid. Such a map consists of angle values defined on the
simulation grid for each pixel, the given angle specifying a
rotation that must be applied to the TI structures.

As previously mentioned, the DeeSse code is used in this
project, which is an implementation of the direct sampling
method (Mariethoz et al., 2010). The algorithm is controlled
by three main parameters, i.e., n – number of neighboring
nodes, f – scan fraction, and t – distance threshold. The
first one, n, defines the maximum number of nodes consid-
ered when comparing a pattern in the TI and in the simula-
tion grid. At the beginning of the simulation, these n closest
points are likely to be located far away from the simulated
point. As the simulation progresses, the density of simulated
points increases and the n closest points start to be located
closer to the central point. This feature enables DeeSse to re-
produce structures of all sizes during the simulation, starting
with large ones and finishing with small and fine structures
(Mariethoz et al., 2010). The second parameter is the thresh-
old value t . When comparing patterns during the simulation,
DeeSse calculates the pattern similarity between the TI and
the simulation grid with a distance value. A perfect match
between the patterns represents a distance of zero and com-
pletely different patterns correspond to a distance of one. If
the distance calculated at the first random position in the TI is
larger than the threshold, another point is chosen randomly in
the TI and the distance is re-calculated. This is repeated until
the value of the distance has reached the threshold or until a
perfect match is found; then, DeeSse copies the value of the
central point found in the TI into the simulation grid. The last
parameter, f , allows limitation of the simulation time while
conserving realistic pattern reproduction. If a fraction f of
the TI is scanned without finding a pattern satisfying the
threshold condition t , then the best node scanned so far (cor-
responding to the minimal distance between patterns) is re-
trieved. The same principles are used for categorical and con-
tinuous variables with an adapted definition of the distance.
For multivariate simulation, one pattern per variable is con-
sidered, with the same central node and one threshold value
per variable.

3 Materials and methods

This section presents the different elements that constitute
the proposed MPS workflow. The elements are presented in
their chronological order. The section starts with an overview
of the workflow before describing the different steps in more
detail.

3.1 Overview

The first step of the workflow consists in interpreting the geo-
physical logs and geological field observations to establish
the geological concept and build the hard conditioning data
set.

The second step consists in converting these observations
and concepts into one or several training images. This step
is an iterative task: the modeler works with the geologist and
they come up with one or several representative TI(s) of the
system. In the Roussillon case, the TI used for the Pliocene
is a 2D non-stationary conceptual plan view of an alluvial
system composed of six sedimentary facies. The TI imposes
constraints regarding the geometry of the simulation grid and
on the auxiliary information that has to be incorporated into
the model.

The third step is the creation of a suitable simulation grid
and its associated auxiliary variables. The Roussillon simu-
lation grid is created based on the bottom topography of the
Pliocene, in a flattened space, where 2D simulations can be
generated in layers sharing the same age of deposition.

In order to cope with the non-stationary TI, we use two
auxiliary variable maps, one for the TI and one for the sim-
ulation grid. For the TI, the auxiliary variable is simply
the x coordinate re-scaled between zero and one. This vari-
able represents the continuous evolution of the conceptual
sedimentary system, advancing from the sediment sources
(left-hand side of the TI) to the seashore (right-hand side
of the TI). In the simulation grid, we compute the auxiliary
variable by solving numerically a diffusivity equation with
proper boundary conditions, allowing us to mimic the gen-
eral trend of sediment transport from the sediment sources,
in the west of the basin, to the coast. The last auxiliary infor-
mation that is incorporated into the model is rotation maps.
The use of the direct sampling algorithm allows us to work
with continuous rotation maps, defined for all the nodes of
the grid (Mariethoz et al., 2010), whereas classic MPS tech-
niques require us to define rotation zones of unique value
(de Carvalho et al., 2017). In addition, two continuous rota-
tion maps are used to define the rotation bounds for the simu-
lation with a tolerance of±10◦ on the rotation values. Theses
rotation maps are obtained by kriging data that constrain the
paleo-orientations of the main paleo-rivers.

The 3D model is then composed of stacked 2D simulations
constrained by 3D auxiliary information. As discussed in the
introduction, this approach allows us to avoid the construc-
tion of a 3D TI that could be cumbersome. To compensate for
this choice and to take most of the information available from
the hard data set, the 3D grid is created with a rather fine reso-
lution along the z axis (2 m), which corresponds to the small-
est body’s dimension encountered in the plain. The vertical
transition between facies is controlled by simulating addi-
tional conditioning data points between two 2D simulations.
The values assigned to these sampled points are based on the
vertical transition distribution of the facies, inferred from the
hard data set. This process allows us to bypass the creation
of a 3D TI and to simulate, with 2D simulation, 3D objects
with a realistic z dimension.

The last step consists in generating a set of simulations to
characterize the uncertainties. Probability and entropy maps
are computed to summarize this information.

https://doi.org/10.5194/hess-24-4997-2020 Hydrol. Earth Syst. Sci., 24, 4997–5013, 2020



5002 V. Dall’Alba et al.: 3D multiple-point statistics simulations of the Roussillon Continental Pliocene aquifer

3.2 Hard data set

Hard data correspond to field observations assigned to cell
values in the simulation grid. The hard conditioning data set
of the Pliocene model is composed of 52 well logs (litho-
logical, gamma-ray, and resistivity logs), which have been
described and interpreted in terms of sedimentary facies. The
boreholes are not homogeneously distributed on the plain but
are mainly located along the Têt River and in the central zone
of the Roussillon plain (Fig. 1). Their depths range from 20 to
150 m, and they are on average 77 m deep.

The gamma-ray and resistivity logs allowed us to identify
changes in sedimentary deposits and grain distribution along
depth. Sand sediments have a small gamma-ray response pro-
ducing small peaks on the curve, whereas clay sediments
produce high response peaks due to their high content in ra-
dioactive elements (Serra and Sulpice, 1975). By analyzing
the gamma-ray and resistivity responses at a certain depth
coupled with their vertical evolution, it is possible to iden-
tify and assign a sedimentary facies at a certain depth range.
A complete description of the interpretation process of these
facies can be found in Duvail (2008).

The hard conditioning data set also incorporates geo-
logical information from the geological map of Roussil-
lon (Genna, 2009). These data correspond to the mapped
Pliocene alluvial fan outcrops. We transformed the polygons
from the geological map into a conditioning data set for
the simulation. The facies assigned to these outcrops corre-
sponds to the alluvial fan facies.

The final conditioning set results in 3500 interpreted
points that are used during the simulation as hard condition-
ing data.

3.3 Training images

Based on field observations, well log analysis, and the gen-
eral understanding of the sedimentary processes composing
the Pliocene, three TIs were created (Fig. 2). They corre-
spond to different possible conceptual representations of the
Pliocene and were tested using 2D simulations. As discussed
by Høyer et al. (2017), the creation of the TI is an itera-
tive task, and it is always preferable to compare TIs not only
on their structural aspects, but also on their associated MPS
simulation outputs. This is particularly important when the
model includes non-stationary TIs and uses complex auxil-
iary variables, making the simulated patterns difficult to pre-
dict from the TIs alone. The three TIs (Fig. 2) describe allu-
vial systems composed of similar elements and spatial pat-
tern evolution: the system starts from the sediment sources
on the upstream side, with alluvial fan deposits, and grad-
ually moves toward the output of the system on the coastal
side. In all cases, the facies evolves from braided to mean-
dering river deposits. The three different training images are
proposed to test different assumptions concerning the spatial
arrangement of the facies at different scales.

The first TI (Fig. 2a) was created based on the visual inter-
pretation of satellite images of the Tagliamento River, which
is located in northern Italy near the town of Udine close to
the Slovenian border. The entire channel belt is considered
the main deposition zone. This first TI represents neither the
small-scale internal structures of the river deposits within
the channel belts nor the levee structures. The output of the
2D MPS simulation using this TI results in the creation of too
many small braided/meandering river deposits on the plain.

The second TI (Fig. 2b) was created based on a more con-
ventional conceptual representation of braided/meandering
river systems. It includes a more complex braided structure
and larger meandering river beds. The resulting simulation
displays meandering river deposits that are wider than those
observed in outcrops in the Roussillon plain. Moreover, the
alluvial fan deposits – dark blue facies – are underrepresented
compared to the field observations.

The third TI (Fig. 2c) was obtained by trial-and-error ad-
justments. It is composed of six sedimentary facies (Fig. 2d)
and displays the evolution of an alluvial system from the
mountain (sediment sources) to the seashore, without includ-
ing the estuary part (Nichols and Fisher, 2007). It is this TI
that is used for the next modeling part of the workflow. In
this last TI, meandering river channels are represented by a
straight shape because our concept here is that the TI does not
show the patterns that would be found in a snapshot of a flu-
vial system in the surface but rather represents an integrated
view of the sedimentary system through time. This concept is
illustrated in Fig. 2e, with the meandering river facies used as
an example. At t = 0, the meandering river bed follows one
path, controlled by the sedimentary slope and the topography.
At t = 1 this bed would have laterally migrated, which could
cut through the previous one. Finally, at t = 2 it is possible
to define an area of high river bed occurrences, where all the
meandering river bed facies would be located. The last one,
t = 3, highlights the only possible location where crevasse
splay and levee can be preserved, on the borders of the river
channel belt.

The final TI is composed of 100× 125 cells with a 100×
100 m dimension. These dimensions are chosen to avoid any
affinity (scaling) transformation during the simulation. To
represent the possible variability for the position of the tran-
sition between braided and meandering river deposits and
the distance between the channel belts, the final TI includes
some variability in these aspects (Fig. 2c). Note also that the
dimension of the crevasse splay deposits increases with the
decrease in the sedimentary slope (assuming the sedimentary
slope decreases as we move from the sediment sources to the
seashore). Finally, the levee facies is incorporated into the
TI outside of the meandering river objects. Even if this facies
is not recognized in the borehole data, its spatial location will
be constrained by the meandering facies during simulation.
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Figure 2. Horizontal training images (TIs) associated with their corresponding 2D MPS simulations. (a) Analog TI derived from satellite
images of the Tagliamento River, (b) a conceptual analog TI, and (c) a TI created based on outcrop descriptions and general knowledge of
the Roussillon plain. (d) The six sedimentary facies of the final TI. (e) Illustration of the sedimentological concept for the creation of the
final TI: the aim is to simulate the area of high river bed occurrences (channel belt) rather than individual river channels.

3.4 Flattened space simulation grid

With the creation of the TI, the conceptual sedimentation
process of the Roussillon plain is now transferred into a
model. The next step consists in creating a suitable simula-
tion grid (SG) for the MPS simulation in accordance with the
sedimentation process expressed in the TI. As mentioned be-
fore, it is decided to create the 3D model by staking 2D sim-
ulations in a transformed grid.

A regular Cartesian grid is used for the simulation with the
following dimensions: 407×504×125 cells (25 641 000 cells
in total) with a cell dimension of 100×100×2 m. The z-axis
dimension is defined in order to represent the minimal size
of the sedimentary objects that we want to model, while the
x and y cell dimensions are defined to optimize the resolution
of the modeled objects while keeping the computing time
reasonable.

Digital elevation maps corresponding to the top and bot-
tom altitudes of the Pliocene (Duvail, 2012) are used to select
the active cells of the 3D simulation grid; the final volume
of the Pliocene grid is composed of 3 753 230 active cells
(Fig. 3a). Since the TI represents the sedimentary evolution

of a fluvial system, the 2D simulations have to be carried out
in cells that share the same age of deposition. This requires
us to transform our 3D grid based on the topography of the
bottom layer (Fig. 3b). A vertical shift is applied to each col-
umn of cells to flatten the base of the grid to the bottom of
the Pliocene. With this transformation (flattened space), we
create a 3D grid where it is possible to simulate inside hori-
zontal layer zi composed of cells sharing approximately the
same age of deposition.

3.5 Trend maps

In order to cope with the non-stationary TI, the model has to
be constrained with one auxiliary variable map (trend map)
for the TI and one for the simulation grid. For the TI, the
trend map is simply the x coordinate re-scaled between zero
and one and corresponds to the lateral evolution of the flu-
vial system. This trend map has to be associated with another
trend map of similar range for the simulation grid.

Creating a 3D trend map for the simulation grid is com-
plex due to the geometry of the layers and requires us to
develop a new approach, different from the one used for
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Figure 3. (a) In dark green the 3D grid of the Pliocene (the grey
volume representing the transformed space). (b) In dark orange the
transformed grid (flattened space) of the Pliocene layer inside which
the 2D simulations are simulated (the grey volume representing the
original space). The vertical scale is exaggerated in this representa-
tion. View from the south of the area toward the north.

the TI. In the flattened space grid, the auxiliary variable, a
trend map ranging between [0–1], is computed by solving
numerically a diffusivity equation in steady state (1h= 0,
with 1 representing the Laplacian operator) for each of the
2D layers composing the 3D grid. The problem is solved
using a finite-element mesh following the exact geometry
of the domain. The boundary conditions are prescribed val-
ues h(x)= h0 corresponding to some parts of the boundary
and ∇h(x) ·nx = 0 to the rest, meaning that the gradient of
h(x) should be perpendicular to the vector nx that is normal
to the boundary at that location; i.e., the maximum variation
of the trend must be parallel to the boundary. This problem
is similar to the simulation of the hydraulic heads in a homo-
geneous confined aquifer for a steady-state flow.

After setting the proper boundary conditions – four in-
put zones set to h0 = 0 and one output zone set to h1 = 1
(Fig. 4a) – we obtain the trend map (values ranging be-
tween [0–1]) by solving numerically the diffusivity equation.
The resulting map is a proxy for describing the evolution of
the sedimentary system in the SG (Fig. 4b). The four zones
with values close to zero correspond to the main paleo-river
entrances and to the southern relief zone where alluvial fan
deposits are known to be present (Fig. 4a). The output zone
with values close to one corresponds to the seashore. This
method allows us to create trend maps that respect the ge-
ometry of the SG and takes into account the paleo-river loca-
tions. It mimics the general trend of sediment transport from
the sediment sources to the coast, but it does not constitute
an attempt to develop a physically based model of sedimen-
tation.

This approach is also used to create the vertical sedimen-
tation trend of the plain, corresponding to the progradation
of the sedimentary system towards the sea. By simulating

12 representative 2D trend layers (Fig. 4b) and combining
them together vertically (assigning the first trend layer to lay-
ers 0–9, the second trend layer to layers 10–19, and so on), a
complex 3D trend map is finally obtained. This trend map ac-
counts for both vertical and lateral sedimentation trends that
characterize the Roussillon plain (Fig. 4c).

3.6 Rotation maps

A 2D rotation map is created to control the orientation of the
structures in the SG relative to their orientations in the TI.
This map is built based on data gathered from field observa-
tions and interpretations of assumed river paleo-orientations
(Fig. 5a). The main river influx came from the Têt River in
the central part of the basin and from the Tech River in the
southwestern part. Based on these orientations, a fictive rota-
tion point set is created and interpolated using kriging.

The orientation map is based on interpretation and
is therefore uncertain. DeeSse allows us to account for
this uncertainty. A tolerance of ±10◦ is considered and
added/subtracted to the kriged map to obtain two rotation
maps: one with the minimal angle values and one with the
maximal angle values (Fig. 5b).

The 3D maps are then created by extruding these rotation
values along the z axis, assuming that the variation of the
paleo-orientations through time is encompassed within the
tolerance values.

3.7 Vertical transition

To control the vertical transition from one layer to the next
one, we developed a simple sampling approach, illustrated
in Fig. 6. The approach starts by simulating the first layer
of the transformed grid (layer 0/bottom layer) using only the
borehole hard data set as conditioning data. Once this layer is
simulated, points are sampled from this layer and propagated
as additional (or secondary) hard data for the next layer. The
facies value assigned to these points is drawn according to the
vertical transition probability between two facies, calculated
from the borehole hard data set.

Three parameters control this method: the first one defines
which facies have to be sampled. After some tests, it appears
that, concerning the Roussillon case, the best way to control
the vertical continuity of the objects of interest is to sample
only from three facies: the alluvial fan, the braided river, and
the meandering river facies. Since the floodplain facies is the
most frequent one, sampling this facies at a random location
leads to an over-representation of the floodplain and tends to
bias the MPS simulations. The levee and crevasse splay fa-
cies are not sampled in order to avoid over-constraining the
structure of the fluvial objects. The second parameter is the
sampling rate. It is here fixed at 1 % of the number of sim-
ulated cells for each of the three facies. The last parameter
controls the maximum number of successive layers that are
simulated using the sampling approach. This mechanism al-
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Figure 4. (a) Meshed grid with the four input zones and the one output zone used for the resolution of the diffusivity equation, (b) different
2D layers that compose the 3D trend map of the transformed grid, and (c) top view of the 3D trend map in the transformed space, where the
progradation of the trend value towards the seashore is visible.

Figure 5. (a) Interpreted orientations of the paleo-rivers in the Roussillon plain. (b) Interpolated continuous kriged values, where a positive
rotation value corresponds to a clockwise pattern rotation and a negative rotation value corresponds to a counterclockwise pattern rotation.

lows us to control indirectly the maximal vertical size of the
objects. This last parameter is set to 6 for the Roussillon case,
meaning that after six successive layers simulated using the
approach, the next one will not use secondary sampled hard
data.

Without this approach the vertical transition between fa-
cies would only be controlled by the hard conditioning data,
which are scarce compared to the size of the SG and the num-
ber of active cells that compose it.
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Figure 6. (a) The first simulation takes place with only the hard data set as conditioning data. Then a set of cells is sampled (in yellow) and
used as new conditioning data for the next simulation. (b) The process is repeated until the defined number of successive layers is reached.
Once reached, a simulation takes place without a sampling set. (c) The value of the sampled cell is drawn based on the vertical transition
matrix, calculated from the borehole data set.

3.8 DeeSse parameters

The main parameters used for the MPS simulation with
DeeSse are tested and chosen in order to minimize the sim-
ulation time without impairing the quality of the outputs.
Two variables are considered: the facies (categorical) and
the trend (continuous). The parameters defined for these two
properties are the search ellipsoid which allows us to limit the
size of the pattern, the maximal number of pattern nodes (n),
the acceptance threshold (t), and the scan fraction (f ).

The search ellipsoids are identical for both variables and
are defined by a radius of 20 cells in the x- and y-axis direc-
tions and 0 along z because 2D simulations are performed.
The maximal number of nodes is set to 24 for the facies vari-
able and to 5 nodes for the trend variable. The larger num-
ber of neighboring nodes for the facies is defined to ensure
a proper pattern reproduction during the simulation at both
large and fine scales. Since the trend variable is defined for
every node of the SG, there is no need to define a large num-
ber of nodes for that property. The threshold parameter t that
controls the pattern quality reproduction is set to 0.05 for the
facies property and to 0.25 for the trend property. Finally, the
scanned fraction of the TI is set to 0.75.

Once satisfied with the 3D simulation output, the last step
of the approach consists in producing a large number of sim-
ulations in order to compare them and to study the uncer-
tainty of the model. The simulations are run on a CPU clus-

ter, allowing us to parallelize the computational load between
different CPUs.

4 Simulation results

The following section presents the results of the workflow
and the models obtained with DeeSse. The general aspect of
the simulation is first discussed before focusing on the en-
semble statistics results calculated from 50 simulation sets.

Note that MPS validation is still an active research topic.
Some tests and approaches are discussed for example by Ma-
riethoz and Caers (2014). However, due to the small number
of hard conditioning data, we limit ourselves in this work
to analyzing the plausibility of the geological patterns in the
simulations with respect to the conceptual model, the final
geological uncertainty resulting from the model, and some
summary statistics.

4.1 3D simulation

One simulation is presented in Fig. 7. The first observation
is that the model reproduces well the training image patterns
over the different layers of the grid. All the main features
of the TI are reproduced and the different patterns are glob-
ally not mixed between each other, as can be observed in
the different horizontal sections (Fig. 7c). Some discontinu-
ities between the braided and meandering river deposits can
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Figure 7. (a) The six simulated facies, (b) one 3D model of the simulations set, in the original 3D grid (left figure) and in the transformed
grid (right figure). (c) Different z layers (horizontal sections extracted from the 3D transformed grid).

be observed. These discontinuities are due to the presence of
hard conditioning data, which do not match the pattern loca-
tions imposed by the SG trend maps. The continuous rotation
maps produce smooth pattern rotations, which could not be
obtained with classical zonal rotation. This feature helps to
not break the pattern continuity and helps to create realistic
simulated shapes.

Regarding the non-stationarity, we can see that the simu-
lated structures successfully follow the trend imposed by the
auxiliary variable (Fig. 7c). In particular, the progradation
trend imposed on the grid succeeds in reproducing a real-
istic vertical progradation of the system (Fig. 7b). The allu-
vial fans, which represent the start of the sedimentary system,
gradually move toward the sea as the depth decreases in the
model.

One 3D model, composed of 3 753 230 active cells, is gen-
erated in about 15 min on a Intel® Core i7-7700 CPU at
3.6 GHz.

4.2 Probability maps

Simulating a large number of realizations enables us to cal-
culate probability maps (Fig. 8) and the pixel-wise entropy
of the simulations set (Fig. 9).

The probability maps display the probability of facies
occurrence at each grid location based on 50 simulations
(Fig. 8). If a facies is largely constrained at a spatial location,

it is likely that all the simulations will simulate this facies
at the same location and thus the probability map will dis-
play either a very high or very low value at this spatial loca-
tion. By contrast, if a facies is less constrained, its probability
map will display larger zones of occurrence through the sim-
ulations with more moderate values. The zones of extreme
values are generally around hard conditioning data locations,
which induce zones of low variability near them. These maps
help the modeler to understand the model and the associated
uncertainties. In this case we are focusing on the uncertainty
regarding the shape of the channels and the uncertainty links
to their spatial location.

In Fig. 8, we can see that every facies has a different vari-
ability behavior through the ensemble of simulation. How-
ever, the facies variability is not influenced by the depth of
the simulated layer, every facies displaying the same proba-
bility range at different depths.

The alluvial fan facies is the more constrained of all of
the simulated facies. It is mainly due to its low spatial vari-
ability imposed by the trend maps. The second most con-
strained facies is the floodplain. It is mainly constrained by
the other five facies, which explains its low variability in sim-
ulation. These high values are also linked to the dominance
in proportion of this facies. For the braided river facies, the
spatial probability of occurrence evolves through the layer
and is mainly constrained by the hard data, creating zones of
high probability. Moreover, the location of these facies are
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Figure 8. Probability maps of the six simulated facies at different depths. The probability maps are calculated over a 50-simulation set.

mainly controlled by the trend value of the simulation grid.
The same observation can be transposed for the meandering
river facies. Finally, the crevasse splay deposits are homoge-
neously distributed through the layers and the levee facies is
only simulated near the meandering river facies.

These maps also highlight the fact that the model is not
over-constrained by neither the TI nor the hard data. Focus-
ing on the meandering and braided river facies. We can ob-
serve that in some locations the probability maps show high
probability values due to the presence of conditioning data.
However, this probability decreases proportionally to the dis-

tance to the hard data, which demonstrates that the model
is not over-constrained by the conditioning data. Moreover,
even when a river bed location is constrained with a hard
data, the associated spacing with other river bed is not fixed
and can fluctuate through the simulation set, which indicates
that the TI does not lock the locations of the pattern through
the ensemble of simulations. Finally, this analysis of the sim-
ulations outputs is satisfying since it shows that the model
respects the depositional concept expressed by the TI and the
trend map.
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Figure 9. Shannon entropy of the model, calculated from the six facies probability maps. (a) 3D views in the transformed grid; (b) different
z layers (horizontal sections in the 3D transformed grid).

4.3 Entropy map

The six probability maps are used to calculate the informa-
tion entropy. The Shannon entropy was introduced in the the-
ory of information developed by Shannon in the middle of
the 20th century (Shannon, 1948) and represents the amount
of information carried within a probabilistic distribution. As
proposed by Wellmann and Regenauer-lieb (2012), informa-
tion entropy is an effective tool to visualize uncertainties in a
spatial context. The main advantage of the entropy is that it
summarizes the overall uncertainty contained in a probability
distribution with a single number. The entropy is defined as

H =−

n∑
i=1

pi logn (pi) , (1)

where n is the base of the logarithm corresponding to the
number of categories (or the number of facies in our case,
six) and pi the probability of occurrence of the ith category.
The entropy is maximal and equal to one when all the out-
comes have maximum uncertainty and is equal to zero when
there is a perfect certainty on the outcome.

The entropy map (Fig. 9) shows that there is little geo-
logical uncertainty in the upstream part of the plain where
the alluvial fan dominates. Similarly, the uncertainty is rather
small in the transition zone between braided and meandering
river. The entropy map also reveals that the meandering river
facies is mostly constrained around the hard data.

4.4 Facies proportion and vertical transition

Figure 10a compares the proportion of facies from the TI,
the hard conditioning data set, and two simulation sets, each
composed of 50 simulations, the first one with the vertical
sampling approach and the second one without it. Overall,
the proportion of simulated facies is satisfyingly reproduced

Figure 10. (a) Facies percentage in the training image, the hard
data set, 3D simulation with vertical sampling, and 3D simulation
without vertical sampling. (b) The dissimilarity values of the two
simulation sets. The dissimilarity values are calculated against the
vertical size distribution of the hard conditioning data.

when we compare the proportion distributions of the simula-
tion sets against the proportion distribution of the hard data.
It appears that the facies proportions are controlled by both
the TI and hard data, with the hard data set having a slightly
larger influence. This is reflected in the alluvial fan facies,

https://doi.org/10.5194/hess-24-4997-2020 Hydrol. Earth Syst. Sci., 24, 4997–5013, 2020



5010 V. Dall’Alba et al.: 3D multiple-point statistics simulations of the Roussillon Continental Pliocene aquifer

Figure 11. Cross sections through two simulations, presented in the transformed space. (a) Two perpendicular vertical cross sections through
a simulation generated without the sampling approach. (b) The same cross sections through a simulation generated with the sampling
approach. The braided and meandering facies display more vertical connection. (c) The six simulated facies. (d) Map view of the bottom
layer of the simulation indicating the locations of the cross sections.

which is less represented in the hard data set – mostly due to
the central location on the plain of the majority of the bore-
holes – and less represented in the model compared to the
TI proportion. These facies proportion distributions show the
importance of the hard data for the simulation output and the
consequence that can arise from a biased hard data set.

To quantify the impact of the vertical sampling strategy,
following previous authors, we compared the distributions
of the vertical runs (Mood, 1940; Boisvert et al., 2007). To
compute this indicator, the 3D grid is decomposed as a set of
vertical columns of voxels. A vertical run is then defined as
the length of a succession of the same facies values preceded
and succeeded by a different facies. By computing the run
length on all the columns for a given facies, one can com-
pute the empirical distribution of runs for this facies. The
same operation is conducted for all of the facies. In addition,
these empirical distributions are also computed on the bore-
hole data. We then compute dissimilarity indices between the
simulated and observed distributions for all the facies using
a normalized Euclidean distance. The closest to zero the dis-
similarity value is, the more identical the distributions are
and reciprocally (Fig. 10b). The alluvial fan facies is here
not represented, because it is underrepresented in the hard

data set and a reference distribution cannot be inferred from
it.

The impact of the sampling approach can also be observed
when studying vertical cross sections along the x and y axes
in the transformed grid space (Fig. 11). In Fig. 11a the chan-
nels created by the stacking of the braided/meandering facies
are vertically disconnected from each other. The sampling
approach leads to the creation of vertically connected objects
as can be observed in Fig. 11b. With this approach, “channels
like” cross sections can be observed in the simulation results
while this was not the case before.

Overall, the simulation set using the vertical sampling
strategy possesses distributions closer to the conditioning
data (smaller dissimilarities value) and produces vertically
connected objects. The set using the vertical sampling strat-
egy is composed of a larger number of thick objects as com-
pared to the simulations set not using the sampling approach.
Figures 10b and 11b show the beneficial impact of the verti-
cal sampling approach on the simulation outputs.
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5 Discussion and conclusion

This study proposes a new workflow for the simulation of
complex heterogeneous aquifers. Unlike more classical MPS
studies, which rely on large primary or secondary hard data
sets such as geophysics (Strebelle et al., 2002; Barfod et al.,
2018; Høyer et al., 2017), this work relies on conceptual
knowledge and auxiliary information.

The main novelties within this workflow are the use of
2D simulations accounting for trends computed by solving
a diffusion equation, the use of two continuous maps of ro-
tation angles to account for the uncertainty on the paleo-
orientations, and the transfer of conditioning data from layer
to layer to constrain the vertical transitions between the fa-
cies.

Solving numerically the diffusion equation allows us to
account easily for the complex geometry of the extension of
the sedimentary basin when computing the trend map. Using
that technique, it is straightforward to impose prescribed val-
ues of the trend on certain parts of the boundary and to ensure
that the gradient of the trend will remain perpendicular to the
sides of the domain.

The proposed approach is simpler and faster than one
based on 3D TI. It has the advantage of being more flexible
during the development of the model, where all of the ele-
ments can be easily adapted to the specific case and tested.
In particular, the possibility of using auxiliary information al-
lows the modeler to approach each problem with a different
angle making MPS, and especially DeeSse very flexible.

The study of the Roussillon plain shows the importance
of testing different TIs to obtain acceptable structures. The
TI must be created to reflect the general geological knowl-
edge available for the study site and it must respect the inter-
preted data. One of the strengths of the MPS method is that
it allows to test rapidly a wide range of different concepts
that can be discussed and then adapted. Moreover, the use
of complex auxiliary variable and continuous rotation maps
allow the final model to account for that information while
honoring the borehole data.

The robustness of the proposed methodology has been
tested with two sets of 50 simulations, one set with the verti-
cal sampling approach and the other one without it. Despite
its relatively simple method, the vertical sampling improves
the vertical object size reproduction. The simulations with-
out vertical sampling miss to create the large vertically con-
nected objects, where the simulations with vertical sampling
have a distribution more comparable to the hard data set dis-
tribution (Fig. 10b). These improvements, regarding the ver-
tical objects size reproduction, are important, since the mean-
dering river deposits and the braided river deposits are known
to have high aquifer potentials. Recreating the vertical con-
nectivity of these objects is a key parameter for the future use
of the geological model for the hydro-characterization of the
aquifer.

The probability and the entropy maps show that the im-
portant sedimentary concepts have been well integrated into
the model. The facies proportion distributions of the differ-
ent objects are satisfactorily reproduced and are constrained
by both the boreholes facies distribution and the TI distri-
bution. The probability and the entropy maps also show a
lack of hard data. Indeed, the hard data set used may not be
fully representative of the facies distribution of the Pliocene
and the simulation can suffer from this bias. Regarding the
vertical sampling approach, even if it improves the realism
of the simulated object, the simulated shapes would benefit
from additional constraints. The vertical transition matrix in-
ferred from the boreholes can also present a bias due to their
location or their non-representativeness of the real transition
matrix.

Therefore, the model of the Roussillon plain would clearly
benefit from additional boreholes with gamma-ray and resis-
tivity logs at locations that are not yet constrained. A denser
data set would permit to conduct a meaningful cross valida-
tion exercise as suggested by Juda et al. (2020). At present,
the data are not sufficient to really test carefully the predictive
power of the MPS model. The model of the Roussillon plain
would also benefit from additional information regarding the
geometry of the sedimentological objects (their width, their
lateral distribution . . . ). Analog data or geophysical inputs
could help to better understand these geometries and could
help in characterizing the transition zone between braided
and meandering river deposits.

Finally, despite these possible improvements, this work
demonstrates the applicability of DeeSse and of the proposed
workflow to simulate complex internal aquifer heterogeneity
at a regional scale.
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